Genetic Diversity Analysis of Sugar Beet Multigerm Germplasm Resources Based on SRAP Molecular Markers
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction of DNA
2.3. Primers
2.4. PCR Amplification Reaction System and Procedure
2.5. Detection by 8% Polyacrylamide Gel Electrophoresis
2.6. Data Analysis
3. Results
3.1. Analysis of the Genetic Diversity of Sugar Beet Germplasm Resources
3.2. Cluster Analysis and Genetic Distance
3.3. Population Structure Analysis
3.4. Discriminant Analysis of Principal Components (DAPC)
3.5. Analysis of Molecular Variance (AMOVA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuroda, Y.; Kuranouchi, T.; Okazaki, K. Biennial sugar beets capable of flowering without vernalization treatment. Genet. Resour. Crop Evol. 2024, 71, 2823–2834. [Google Scholar] [CrossRef]
- Li, J.Q.; Schulz, B.; Stich, B. Population structure and genetic diversity in elite sugar beet germplasm investigated with SSR markers. Euphytica 2010, 175, 35–42. [Google Scholar] [CrossRef]
- Galewski, P.; McGrath, J.M. Genetic diversity among cultivated beets (Beta vulgaris) assessed via population-based whole genome sequences. BMC Genom. 2020, 21, 189. [Google Scholar] [CrossRef]
- Sun, B.W.; Li, S.N.; Pi, Z.; Wu, Z.D.; Wang, R.H. Assessment of genetic diversity and population structure of exotic sugar beet (Beta vulgaris L.) varieties using three molecular markers. Plants 2024, 13, 2954. [Google Scholar] [CrossRef]
- Kniss, A.R.; Wilson, R.G.; Martin, A.R.; Burgener, P.A.; Feuz, D.M. Economic evaluation of glyphosate-resistant and conventional sugar beet. Weed Technol. 2004, 18, 388–396. [Google Scholar] [CrossRef]
- Dimitrijević, A.; Gavrilović, M.; Ivanović, S.; Mileusnić, Z.; Miodragović, R.; Todorović, S. Energy use and economic analysis of fertilizer use in wheat and sugar beet production in Serbia. Energies 2020, 13, 2361. [Google Scholar] [CrossRef]
- Francesca, D.M.; Michele, B. Plastid transformation in sugar beet: An important industrial crop. Methods Mol. Biol. 2021, 2317, 283–290. [Google Scholar] [CrossRef]
- Rajan, N.; Debnath, S.; Perveen, K.; Khan, F.; Pandey, B.; Srivastava, A.; Khanam, M.N. Optimizing hybrid vigor: A comprehensive analysis of genetic distance and heterosis in eggplant landraces. Front. Plant Sci. 2023, 14, 1238870. [Google Scholar] [CrossRef] [PubMed]
- Polat, Y.; Karcı, H.; Çelik, F.; Kafkas, S.; Kafkas, N.E. SSR markers-based molecular characterization and genetic diversity in pomegranate (Punica granatum L.) genotypes. Genet. Resour. Crop Evol. 2025, 72, 7269–7282. [Google Scholar] [CrossRef]
- Ravi, S.; Hassani, M.; Heidari, B.; Deb, S.; Orsini, E.; Li, J.; Richards, C.M. Development of an SNP assay for marker-assisted selection ofsSoil-borne rhizoctonia solani AG-2-2-IIIB resistance in sugar beet. Biology 2021, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Quiros, C.F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. TAG Theor. Appl. Genet. 2001, 103, 455–461. [Google Scholar] [CrossRef]
- Abdelhamid, A.E.; Kamal, F.A.; Ibrahim, A.I.; Amany, M.M.; Inas, Z.; Osama, A.E. Efficiency of sequence related amplified polymorphism (SRAP) and target region amplified polymorphism (TRAP) markers in detecting banana somaclonal variants. Afr. J. Biotechnol. 2017, 16, 879–888. [Google Scholar] [CrossRef]
- Robarts, D.W.; Wolfe, A.D. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology. Appl. Plant Sci. 2014, 2, 1400017. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, L.; Gong, Y.Q.; Wang, M.X.; Chen, L.M.; Yang, J.L.; Wang, L.Z. DNA fingerprinting and genetic diversity analysis of late-bolting radish cultivars with RAPD, ISSR and SRAP markers. Sci. Hortic. 2007, 116, 240–247. [Google Scholar] [CrossRef]
- Wen, Y.C.; Wang, H.Z.; Shen, J.X.; Liu, G.H. Comparison of fingerprinting in Brassica napus varieties based on SRAP and SSR markers. J. Oil Crop Sci. 2006, 28, 233–239. [Google Scholar]
- Abdelhameed, A.A.; Amer, M.W.; Shaye, A.A.N.; Hassan, M.O. Assessing the Diversity of Beta vulgaris L. ssp. maritima (Sea Beet) Populations in Egypt. Plants 2024, 13, 3152. [Google Scholar] [CrossRef] [PubMed]
- Nagl, N.; Weiland, J.; Lewellen, R. Detection of DNA polymorphism in sugar beet bulks by SRAP and RAPD markers. J. Biotechnol. 2007, 131, S32. [Google Scholar] [CrossRef]
- Chadded, H.; Crespan, M.; Guenni, K.; Sai-Kachout, S.; Chtourou-Ghorbel, N. Genetic diversity assessment in Tunisian Tall Fescue (Festuca arundinacea Schreb) using SRAP markers: Implications for breeding and germplasm conservation. Plant Mol. Biol. Report. 2025, 1–12. [Google Scholar] [CrossRef]
- Yan, C.; Zou, Y.; Wu, Z.D.; Xing, W.; Li, H. A method suitable for large-scale and rapid extraction of DNA from sugar beets. Sugar Crops China 2018, 40, 44–46. [Google Scholar] [CrossRef]
- Guo, Y.Z.; Huang, Q.; Ye, X.R.; Chen, Z.; Huang, Z.; Chen, H.L.; Xue, Z.Z. Genetic Diversity Analysis of Kidney Bean Germplasm Resources Based on Morphological Markers and SRAP Markers. Fujian J. Agric. Sci. 2023, 38, 166–173. [Google Scholar] [CrossRef]
- Song, Y.; Wu, Z.D. Screening of Core CBDP Primers for Sugar Beet Based on Different Programs. Sugar Crops China 2025, 47, 23–30. [Google Scholar] [CrossRef]
- Yi, Z.Z.; Zhang, S.T.; Li, M.H. Genetic diversity of Procambarus clarkii populations based on mitochondrial DNA and microsatellite markers in different areas of Guangxi, China. Mitochondrial DNA 2020, 31, 48–56. [Google Scholar] [CrossRef]
- Sudhir, K.; Glen, S.; Koichiro, T. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Li, Y.L.; Liu, J.X. Structure Selector: A web based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 2018, 18, 176–177. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Lv, Z.; Guo, H. Comparison of genetic diversity analysis by RSAP, SSR and SRAP markers in potato. Genom. Appl. Biol. 2018, 37, 2544–2550. [Google Scholar]
- Li, Q.Q.; Wang, Y.Q.; Liu, R.; Liu, N.X.; Pi, Z.; Wu, Z.D. Screening and evaluation of SSR primers in sugar beet genome. Chin. Agric. Sci. Bull. 2022, 38, 95–99. [Google Scholar]
- Bahjat, M.N.; Yıldız, M.; Nadeem, A.M. Correction: Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection. BMC Plant Biol. 2025, 25, 672. [Google Scholar] [CrossRef]
Forward Primer | Forward Primer Sequence (5′-3′) | Reverse Primer | Reverse Primer Sequence (5′-3′) |
---|---|---|---|
ME2 | TGAGTCCAAACCGGAGC | EM2 | GACTGCGTACGAATTTGC |
ME3 | TGAGTCCAAACCGGAAT | EM3 | GACTGCGTACGAATTGAC |
ME4 | TGAGTCCAAACCGGACC | EM5 | GACTGCGTACGAATTAAC |
ME6 | TGAGTCCAAACCGGTAG | EM6 | GACTGCGTACGAATTGCA |
ME7 | TGAGTCCAAACCGGTTG | EM8 | GACTGCGTACGAATTAGC |
ME8 | TGAGTCCAAACCGGTGT | EM9 | GACTGCGTACGAATTACG |
ME9 | TGAGTCCAAACCGGTCA | EM10 | GACTGCGTACGAATTTAG |
ME10 | TGAGTCCAAACCGGTAC | EM12 | GACTGCGTACGAATTGCT |
ME16 | TGAGTCCAAACCGGTGC | EM13 | GACTGCGTACGAATTGGT |
ME17 | TTCAGGGTGGCCGGATG | EM14 | GACTGCGTACGAATTCAG |
ME19 | CTGGCGAACTCCGGATG | EM15 | GACTGCGTACGAATTCTG |
ME21 | AGCGAGCAAGCCGGTGG | EM16 | GACTGCGTACGAATTCGG |
ME22 | GAGCGTCGAACCGGATG | EM18 | GACTGCGTACGAATTCAA |
ME23 | CAAATGTGAACCGGATA | EM19 | GACTGCGTACGAATTCGA |
ME24 | GAGTATCAACCCGGATT | EM21 | TGTGGTCCGCAAATTTAG |
Primer Number | Primer Combination | Na | Ne | I | Nei’s (H) | PPB% |
---|---|---|---|---|---|---|
1 | ME10-EM12 | 1.8962 | 1.4583 | 0.4358 | 0.2831 | 35.06% |
2 | ME9-EM2 | 1.8113 | 1.4508 | 0.2720 | 0.4134 | 36.98% |
3 | ME4-EM3 | 1.8774 | 1.6093 | 0.5030 | 0.3432 | 55.09% |
4 | ME7-EM5 | 1.5472 | 1.2711 | 0.2633 | 0.1693 | 25.71% |
5 | ME9-EM5 | 1.8113 | 1.3765 | 0.3746 | 0.2394 | 28.57% |
6 | ME9-EM6 | 1.4528 | 1.2631 | 0.2429 | 0.1606 | 29.87% |
7 | ME8-EM8 | 1.7925 | 1.3880 | 0.3766 | 0.2429 | 29.40% |
8 | ME9-EM3 | 1.7642 | 1.2816 | 0.3132 | 0.1924 | 21.83% |
9 | ME8-EM13 | 1.6509 | 1.3765 | 0.3379 | 0.2238 | 31.13% |
10 | ME2-EM13 | 1.5377 | 1.2274 | 0.2381 | 0.1493 | 18.49% |
11 | ME3-EM16 | 1.6698 | 1.3269 | 0.3237 | 0.2084 | 24.91% |
12 | ME10-EM16 | 1.8302 | 1.3953 | 0.3858 | 0.2476 | 30.03% |
13 | ME21-EM15 | 1.9057 | 1.5623 | 0.4942 | 0.3313 | 44.50% |
14 | ME21-EM16 | 1.8774 | 1.5843 | 0.4973 | 0.3370 | 41.13% |
15 | ME17-EM9 | 1.7925 | 1.5416 | 0.4543 | 0.3090 | 52.12% |
16 | ME17-EM21 | 1.8208 | 1.5518 | 0.4662 | 0.3164 | 46.98% |
17 | ME3-EM10 | 1.6132 | 1.3348 | 0.3109 | 0.2035 | 31.13% |
18 | ME23-EM10 | 1.5094 | 1.3568 | 0.2968 | 0.2024 | 55.97% |
19 | ME16-EM18 | 1.8491 | 1.5563 | 0.3804 | 0.3190 | 50.19% |
20 | ME16-EM19 | 1.8679 | 1.4969 | 0.4565 | 0.3019 | 39.43% |
21 | ME23-EM5 | 1.8019 | 1.5114 | 0.4380 | 0.2947 | 43.96% |
22 | ME23-EM9 | 1.7170 | 1.3207 | 0.3285 | 0.2082 | 27.55% |
23 | ME2-EM14 | 1.6887 | 1.4329 | 0.3792 | 0.2544 | 37.74% |
24 | ME2-EM15 | 1.8962 | 1.5415 | 0.4848 | 0.3237 | 39.62% |
Mean | / | 1.7492 | 1.4256 | 0.3772 | 0.2614 | 36.56% |
SD | / | 0.1352 | 0.1147 | 0.0849 | 0.0682 | / |
CV | / | 7.73% | 8.05% | 22.54% | 26.09% | / |
Source | Df | SS | MS | Est. Var. | p | Nm | % |
---|---|---|---|---|---|---|---|
Among Populations | 3 | 214.903 | 71.634 | 1.929 | <0.001 | 7% | |
Among Individuals | 105 | 2574.106 | 24.515 | 24.515 | 93% | ||
Total | 108 | 2789.009 | 26.445 | 3.3977 | 100% |
Population | n | SSWP | Hs | Ht | Fst |
---|---|---|---|---|---|
G1 | 3 | 49.333 | |||
G2 | 42 | 1118.089 | |||
G3 | 7 | 713.200 | |||
G4 | 54 | 693.484 | |||
Overall | 106 | 2574.106 | 0.2777 | 0.3186 | 0.1283 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Li, J.; Li, S.; Wu, Z.; Pi, Z. Genetic Diversity Analysis of Sugar Beet Multigerm Germplasm Resources Based on SRAP Molecular Markers. Horticulturae 2025, 11, 988. https://doi.org/10.3390/horticulturae11080988
Song Y, Li J, Li S, Wu Z, Pi Z. Genetic Diversity Analysis of Sugar Beet Multigerm Germplasm Resources Based on SRAP Molecular Markers. Horticulturae. 2025; 11(8):988. https://doi.org/10.3390/horticulturae11080988
Chicago/Turabian StyleSong, Yue, Jinghao Li, Shengnan Li, Zedong Wu, and Zhi Pi. 2025. "Genetic Diversity Analysis of Sugar Beet Multigerm Germplasm Resources Based on SRAP Molecular Markers" Horticulturae 11, no. 8: 988. https://doi.org/10.3390/horticulturae11080988
APA StyleSong, Y., Li, J., Li, S., Wu, Z., & Pi, Z. (2025). Genetic Diversity Analysis of Sugar Beet Multigerm Germplasm Resources Based on SRAP Molecular Markers. Horticulturae, 11(8), 988. https://doi.org/10.3390/horticulturae11080988