Influence of Physiologically Active Substances on the Mineral Composition of Sweet Cherry (Prunus avium L.) Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Location, Soil and Climatic Features
2.2. Experimental Design
2.3. Leaf Sampling and Elemental Analysis
2.4. Statistical Data Processing
3. Results
3.1. The Influence of Foliar Application with Physiologically Active Substances, Locations, and Year on the Mineral Composition of Sweet Cherry Leaves
3.2. The Influence of Foliar Applications with Physiologically Active Substances on Particular Locations and Year on the Mineral Content of Ca, Mg, and K in Sweet Cherry Leaves
3.3. Relationships Among Ca, Mg, P, and K Content in Sweet Cherry Leaves Under the Influence of Applied Foliar Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003 (Text with EEA Relevance). 2019. Available online: https://eur-lex.europa.eu/homepage.html (accessed on 19 March 2024).
- Yakhin, O.; Lubyanov, A.; Yakhin, I.; Brown, P. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Biostimulants in agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Xu, L.; Geelen, G. Developing biostimulants from agro-food and industrial by-products. Front. Plant Sci. 2018, 9, 1567. [Google Scholar] [CrossRef] [PubMed]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants research in some horticultural plant species—A review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Tian, C.; Yao, R.; Xu, X.; Ai, X.; Hu, M.; Wang, W.; Liu, X.; Li, Y.; Zhang, A. Genome-wide characterization and expression analysis of the PavC2H2 gene family to different abiotic stress in sweet cherry (Prunus avium L.). S. Afr. J. Bot. 2024, 171, 245–256. [Google Scholar] [CrossRef]
- Serrano, M.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Valero, D. Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. J. Agric. Food Chem. 2005, 53, 2741–2745. [Google Scholar] [CrossRef] [PubMed]
- Afonso, S.; Oliveira, I.; Meyer, A.S.; Gonçalves, B. Biostimulants to improved tree physiology and fruit quality: A review with special focus on sweet cherry. Agronomy 2022, 12, 659. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products. 2024. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 21 May 2024).
- Roversi, A.; Malvicini, G.L.; Porro, D.; Plessi, C. Sweet cherry leaf composition as influenced by genotype, rootstock and orchard management. Acta Hortic. 2010, 868, 243–246. [Google Scholar] [CrossRef]
- Nagy, P.T.; Thurzó, S.; Kincses, I.; Szabó, Z.; Nyéki, J. Effect of foliar fertilization on leaf mineral composition, sugar and organic acid contents of sweet cherry. Int. J. Hortic. Sci. 2008, 14, 45–48. [Google Scholar] [CrossRef]
- Ziogas, V.; Michailidis, M.; Karagiannis, E.; Tanou, G.; Molassiotis, A. Manipulating Fruit Quality Through Foliar Nutrition; Elsevier: Amsterdam, The Netherlands, 2020; pp. 401–417. [Google Scholar] [CrossRef]
- Tagliavini, M.; Drahorad, W.; Dalla Via, J. Preface. Acta Hortic. 2002, 594, 9. [Google Scholar] [CrossRef]
- Varaldo, A.; Giacalone, G. Enhancing cracking resistance and post-harvest quality of sweet cherries (Prunus avium L.) through Ca and potassium-based foliar treatments. Horticulturae 2025, 11, 30. [Google Scholar] [CrossRef]
- Barczak, B.; Nowak, K. Effect of sulphur fertilisation on the content of microelements’ and their ionic ratios in potato tubers. J. Elem. 2015, 20, 37–47. [Google Scholar] [CrossRef]
- Heyburn, J.; McKenzie, P.; Crawley, M.J.; Fornara, D.A. Effects of grassland management on plant C:N:P stoichiometry: Implications for soil element cycling and storage. Ecosphere 2017, 8, e01963. [Google Scholar] [CrossRef]
- San Martino, L.; Sozzi, G.O.; San Martino, S.; Lavado, R.S. Isotopically labelled N uptake and partitioning in sweet cherry as influenced by timing of fertilizer application. Sci. Hortic. 2010, 126, 42–49. [Google Scholar] [CrossRef]
- Shah, I.H.; Jinhui, W.; Li, X.; Hameed, M.K.; Manzoor, M.A.; Li, P.; Zhang, Y.; Niu, O.; Chang, L. Exploring the role of nitrogen and potassium in photosynthesis implications for sugar: Accumulation and translocation in horticultural crops. Sci. Hortic. 2024, 27, 112832. [Google Scholar] [CrossRef]
- Tariq, A.; Zeng, F.; Graciano, C.; Ullah, A.; Sadia, S.; Ahmed, Z.; Murtaza, G.; Ismoilov, K.; Zhang, Z. Regulation of metabolites by nutrients in plants. In Plant Ionomics: Sensing, Signaling, and Regulation; Singh, V.P., Siddiqui, M.H., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2023; pp. 1–18. [Google Scholar] [CrossRef]
- Głuszek, S.; Derkowska, E.; Sas-Paszt, L.; Sitarek, M.; Sumorok, B. Influence of bioproducts and mycorrhizal fungi on the growth and yielding of sweet cherry trees. Hort. Sci. 2020, 47, 122–129. [Google Scholar] [CrossRef]
- Dejong, T.M.; Walton, E.F. Carbohydrate requirements of peach fruit growth and respiration. Tree Physiol. 1989, 5, 329–335. [Google Scholar] [CrossRef]
- Penzel, M.; Möhler, M.; Weltzien, C.; Herppich, W.; Zude-Sasse, M. Estimation of daily carbon demand in sweet cherry (Prunus avium L.) production. J. Appl. Bot. Food Qual. 2020, 93, 149–158. [Google Scholar] [CrossRef]
- Bergmann, W. Farbatlas—Ernährungsstörungen bei kulturpflanzen. Jena VEB Gustav Fischer Verlag. 1986, 1, 306. [Google Scholar]
- Sagredo, K.X.; Cassasa, V.; Vera, R.; Carroza, I. Pollination and fruit set for ‘Kordia’ and ‘Regina’ sweet cherry trees in the south of Chile. Acta Hortic. 2017, 1161, 353–360. [Google Scholar] [CrossRef]
- Šegota, T.; Filipčić, A. Köppenova podjela klima i hrvatsko nazivlje. Geoadria 2003, 8, 17–37. [Google Scholar] [CrossRef]
- PinovaMeteo Agriculture Weather Station. Available online: https://pinova-meteo.com (accessed on 12 March 2024).
- Fadón, E.; Herrero, M.; Rodrigo, J. Flower development in sweet cherry framed in the BBCH scale. Sci. Hortic. 2015, 192, 141–147. [Google Scholar] [CrossRef]
- Wu, S.L.; Feng, X.B.; Wittmeier, A. Microwave digestion of plant and grain reference materials in nitric acid or a mixture of nitric acid and hydrogen peroxide for the determination of multi-elements by inductively coupled plasma mass spectrometry. J. Anal. Atomic Spectr. 1997, 12, 797–806. [Google Scholar] [CrossRef]
- Matusiewicz, H.; Sturgeon, R.E.; Berman, S.S. Trace element analysis of biological material following pressure digestion with nitric acid—Hydrogen peroxide and microwave heating. J. Anal. At. Spectrom. 1989, 4, 323–327. [Google Scholar] [CrossRef]
- TIBCO Statistica, v. 13.6.0; TIBCO Software Inc.: Palo Alto, CA, USA, 2020. Available online: https://docs.tibco.com/products/spotfire-statistica/archive (accessed on 15 April 2024).
- Monib, A.W.; Alimyar, O.; Mohammad, M.U.; Akhundzada, M.S.; Niazi, P. Macronutrients for plants growth and humans health. J. Res. Appl. Sci. Biotechnol. 2023, 2, 268–279. [Google Scholar] [CrossRef]
- Roper, T.R.; Keller, J.D.; Loescher, W.H.; Rom, C.R. Photosynthesis and carbohydrate partitioning in sweet cherry: Fruiting effeets. Physiol. Plant. 1988, 72, 42–47. [Google Scholar] [CrossRef]
- Leece, D.R. Diagnostic leaf analysis for stone fruit. 5. Sweet cherry. Aust. J. Exp. Agric. Anim. Husb. 1975, 15, 118–122. [Google Scholar] [CrossRef]
- Thakur, D.; Rehalia, A.S.; Kumar, J. Standardization of foliar sampling techniques for macronutrients in sweet cherry (Prunus avium L.) Cv. Stella. Agric. Sci. Digest. 2013, 33, 274–278. [Google Scholar] [CrossRef]
- Sánchez-Alonso, F.; Lachica, M. Seasonal trends in the elemental content of sweet cherry leaves. Commun. Soil Sci. Plant Anal. 1987, 18, 17–29. [Google Scholar] [CrossRef]
- Clark, J.; Smith, G.S. Seasonal changes in mineral nutrient content of persimmon leaves. Sci. Horti. 1990, 42, 85–97. [Google Scholar] [CrossRef]
- Batjer, I.P.; Westwood, M.N. Seasonal trend of several mineral elements in leaves and fruit of Elberta Peach. Proc. Amer. Soc. Hort. Sci. 1958, 71, 116–126. [Google Scholar]
- Verma, K.S.; Bhandari, A.R. Standardization of leaf sampling techniques for macronutrient element in temperate peaches. Indian, J. Hort. 1990, 47, 140–153. [Google Scholar]
- Rehalia, A.S.; Sandhu, R.D. Standardization of foliar sampling technique for micronutrients in persimmon (Diospyrous Kaki L.). Acta Hortic. 2005, 696, 265–268. [Google Scholar] [CrossRef]
- Mikiciuk, G.; Mikiciuk, M.; Możdżer, E.; Statkiewicz, M.; Chylewska, U. The effects of foliar nutrition with inca fertilizer on the chemical composition of leaves and fruits of sweet cherry. J. Ecol. Eng. 2015, 16, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.A.; Ghazzi, A.K. Response of olive transplants to seaweed extract as soil application and foliar application of Mg. Iraqi J. Agric. Sci. 2012, 34, 119–131. [Google Scholar]
- Bradshaw, T.L.; Berkett, L.P.; Griffith, M.C.; Kingsley-Richards, S.L.; Darby, H.M.; Parsons, R.L.; Moran, R.E.; Garcia, M.E. Assessment of kelp extract biostimulants on arthropod incidence and damage in a certified organic apple orchard. Acta Hortic. 2013, 1001, 139–145. [Google Scholar] [CrossRef]
- Al-Hadethi, M.E.; Al-Qatan, Y.F. Effect of algae extract and ascorbic acid spray with different levels on yield and growth of apricot trees. Egypt. J. Appl. Sci. 2013, 28, 93–101. [Google Scholar]
- Eman, A.; El Moniem, A.; AbdAllah, A.S.E. Effect of algae extract as foliar spray on vegetative growth, yield and berries quality of Superior grapevines. Am. Eurasian. J. Agric. Environ. Sci. 2008, 4, 427–433. [Google Scholar]
- Jannin, L.; Arkoun, M.; Etienne, P.; Laîné, P.; Goux, D.; Garnica, M.; Fuentes, M.; Francisco, S.; Baigorri, R.; Cruz, F.; et al. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: Microarray analysis and physiological characterization of N, C, and S metabolisms. J. Plant Growth Regul. 2013, 32, 31–52. [Google Scholar] [CrossRef]
- Hölzel, N.; Close, D.C.; Bound, S.A.; Quin, P.R.; Visentin, D.C.; Swarts, N.D. Uptake and translocation of foliar-applied L-proline in sweet cherry (Prunus avium L.). Agronomy 2023, 13, 958. [Google Scholar] [CrossRef]
- Shehata, R.S. Proline in action: Enhancing fruit quality. DYSONA—Appl. Sci. 2025, 6, 8–15. [Google Scholar] [CrossRef]
- Hakimi, F.; Lafrikhi, H. Effects of foliar Ca applications on raspberry fruit quality and shelf life. Intern. J. Proc. Sci. Technol. 2021, 29, 30–36. [Google Scholar]
- Basile, B.; Brown, N.; Valdes, J.M.; Cardarelli, M.; Scognamiglio, P.; Mataffo, A.; Rouphael, Y.; Bonini, P.; Colla, G. Plant-based biostimulant as sustainable alternative to synthetic growth regulators in two sweet cherry cultivars. Plants 2021, 10, 619. [Google Scholar] [CrossRef]
- Zouari, M.; Ben Ahmed, C.; Elloumi, N.; Bellassoued, K.; Delmail, D.; Labrousse, P.; Ben Abdallah, F.; Ben Rouina, B. Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. Ecotoxicol. Environ. Saf. 2016, 128, 195–205. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Wang, C.; Lü, W.; Jin, J.B.; Hua, X. Proline induces calcium-mediated oxidative burst and salicylic acid signaling. J. Amino Acids 2011, 40, 1473–1484. [Google Scholar] [CrossRef] [PubMed]
- Aghaeifard, F.; Babalar, M.; Fallahi, E.; Ahmadi, A. Influence of humic acid and salicylic acid on yield, fruit quality, and leaf mineral elements of strawberry (Fragaria ananassa Duch.) Cv. Camarosa. J. Plant. Nutr. 2015, 39, 1821–1829. [Google Scholar] [CrossRef]
- Khan, M.I.; Fatma, M.; Per, T.S.; Anjum, N.A.; Khan, N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci. 2015, 30, 462. [Google Scholar] [CrossRef] [PubMed]
- Dell’Aversana, E.; Cirillo, V.; Van Oosten, M.J.; Di Stasio, E.; Saiano, K.; Woodrow, P.; Ciarmiello, L.F.; Maggio, A.; Carillo, P. Ascophyllum nodosum based extracts counteract salinity stress in tomato by remodeling leaf N metabolism. Plants 2021, 10, 1044. [Google Scholar] [CrossRef]
- Esitken, A.; Pirlak, L.; Turan, M.; Sahin, F. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci. Hort. 2006, 110, 324–327. [Google Scholar] [CrossRef]
- Rashedy, A.A.; Abd-Einafea, M.H.; Khedr, E.H. Co-application of proline or Ca and humic acid enhances productivity of salt stressed pomegranate by improving nutritional status and osmoregulation mechanisms. Sci. Rep. 2022, 12, 14285. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.H.; Wu, R.Y.; Chuang, K.C.; Hsieh, T.F.; Chung, R.S. Effects of chemical and organic fertilizers on the growth, flower quality andnutrient uptake of Anthurium andreanum, cultivated for cut flower production. Sci. Hortic. 2010, 125, 434–441. [Google Scholar] [CrossRef]
- Gransee, A.; Fuhrs, H. Mg mobility in soils as a challenge for soil and plant analysis Mg fertilization and root uptake under adverse growth conditions. Plant Soil. 2013, 368, 5–21. [Google Scholar] [CrossRef]
- Ertiftik, H.; Zengin, M. Response of maize for grain to potassium and Mg fertilizers in soils with high lime contents. J. Plant Nutr. 2017, 40, 93–103. [Google Scholar] [CrossRef]
- Rhodes, R.; Miles, N.; Hughes, J.C. Interactions between potassium, Ca and Mg in sugarcane grown on two contrasting soils in South Africa. Field Crop. Res. 2018, 223, 1–11. [Google Scholar] [CrossRef]
- Piao, H.-C.; Li, S.-L.; Yan, Z.; Li, C. Understanding nutrient allocation based on leaf N isotopes and elemental ratios in the karst region of Southwest China. Agric. Ecosyst. Environ. 2020, 294, 106864. [Google Scholar] [CrossRef]
- Rose, T.J.; Raymond, C.A.; Bloomfield, C.; King, G.J. Perturbation of nutrient source—Sink relationships by post anthesis stresses results in differential accumulation of nutrients in wheat grain. J. Plant Nutr. Soil Sci. 2015, 178, 89–98. [Google Scholar] [CrossRef]
- Kobayashi, H.; Masaoka, Y.; Sato, S. Effects of excess Mg on the growth and mineral content of rice and Echinochloa. Plant Prod. Sci. 2005, 8, 38–43. [Google Scholar] [CrossRef]
- Thouraya, A.; Albouchi, A.; Campoy, J.; Mezni, M.; Ben Ahmed, H.; Youssef, A. Effect of soil mineralogical composition on fruit quality of sweet cherry cultivars. Int. J. Agron. Agric. Res. 2016, 9, 45–56. [Google Scholar]
- Andziak, J.; Tomala, K.; Sadowski, A.; Dziuban, R. Nutritional status and quality of ‘šampion’ apples depending on rootstock. Acta Sci. Pol. Hortum Cultus 2004, 3, 179–187. [Google Scholar]
- Wakeel, A.; Gul, M.; Zörb, C. Potassium for sustainable agriculture. In Soil Science: Agricultural and Environmental Prospectives; Hakeem, K.R., Akhtar, J., Sabir, M., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Schonewille, J.T. Mg in dairy cow nutrition: An overview. Plant Soil. 2013, 368, 167–178. [Google Scholar] [CrossRef]
- Teklić, T.; Parađiković, N.; Špoljarević, M.; Zeljković, S.; Lončarić, Z.; Lisjak, M. Linking abiotic stress, plant metabolites, biostimulants and functional food. Ann. Appl. Biol. 2021, 178, 169–191. [Google Scholar] [CrossRef]
Variants | Description | Dose Per Tree | Time of Applications |
---|---|---|---|
Control—T0 | Tap water | 2 L | 4, 5, and 6 weeks after full bloom |
Calcium (Ca)—T1 | Commercial, liquid, containing CaO 15% | 5 mL/2 L H2O | |
Biostimulator—T2 | Commercial, liquid, containing the algae extract (Ascophyllum nodosum L.) | 10 mL/2 L H2O | |
Proline—T3 | solution, 10 mM | 2 L | |
Salicylic acid—T4 | solution, 1 mM | 2 L |
Factor | Variants | C (%) | N (%) | Ca (g/kg) | Mg (g/kg) | K (g/kg) | P (g/kg) |
---|---|---|---|---|---|---|---|
Foliar application | T0 | 41.84 | 1.84 a | 15.85 b | 3.91 c | 15.07 b | 2.44 |
T1 | 42.22 | 1.89 a | 22.48 a | 4.48 b | 17.39 a | 2.38 | |
T2 | 42.22 | 2.16 b | 20.29 a | 4.88 a | 17.32 a | 2.45 | |
T3 | 41.99 | 1.82 a | 19.82 a | 4.63 ab | 17.15 a | 2.47 | |
T4 | 42.11 | 1.90 a | 20.75 a | 4.71 ab | 17.43 a | 2.35 | |
F test | 0.14 | 3.34 | 4.43 | 10.31 | 4.65 | 0.36 | |
p | 0.9680 | 0.0162 | 0.0036 | <0.0001 | 0.0027 | 0.8394 | |
Standards | / | / | 2.2–2.6 | 14–24 | 3.0–8.0 | 16–30 | 1.4–2.5 |
Location | Murvica | 41.54 b | 1.80 b | 21.63 a | 4.44 | 16.07 b | 2.57 a |
Ninski Stanovi | 42.62 a | 2.04 a | 18.05 b | 4.60 | 17.68 a | 2.26 b | |
F test | 8.96 | 12.51 | 11.29 | 1.50 | 14.58 | 21.49 | |
p | 0.0040 | 0.0008 | 0.0014 | 0.2266 | 0.0003 | <0.0001 | |
Year | 2022 | 40.81 b | 2.05 a | 22.65 a | 4.55 | 17.47 a | 2.57 a |
2023 | 43.34 a | 1.79 b | 17.03 b | 4.49 | 16.27 b | 2.26 b | |
F test | 161.0 | 17.52 | 38.91 | 0.23 | 7.23 | 23.46 | |
p | <0.0001 | <0.0001 | <0.0001 | 0.6359 | 0.0093 | <0.0001 | |
Foliar application × Year | F test | 0.3 | 1.66 | 0.55 | 5.51 | 1.90 | 0.83 |
p | 0.8792 | 0.1784 | 0.7028 | 0.0009 | 0.1251 | 0.5120 | |
Foliar application × Location | F test | 0.29 | 17.81 | 0.24 | 1.29 | 6.48 | 0.90 |
p | 0.8812 | <0.0001 | 0.9128 | 0.2872 | 0.0003 | 0.4725 | |
Location × Year | F test | 2.2 | 105.36 | 18.12 | 2.11 | 0.20 | 2.42 |
p | 0.1423 | <0.0001 | 0.0001 | 0.1521 | 0.6557 | 0.1251 | |
Foliar application × Year × Location | F test | 1.3 | 6.86 | 2.54 | 0.28 | 3.87 | 5.64 |
p | 0.2857 | 0.0003 | 0.0548 | 0.8878 | 0.0095 | 0.0011 |
Correlations | Coefficient (R) | |||
---|---|---|---|---|
Ca | T0 | Mg | T0 | 0.82 ** |
T1 | T1 | −0.03 * | ||
T2 | T2 | −0.02 * | ||
T3 | T3 | −0.12 * | ||
T4 | T4 | 0.23 * | ||
Ca | T0 | P | T0 | 0.53 ** |
T1 | T1 | 0.70 ** | ||
T2 | T2 | 0.61 ** | ||
T3 | T3 | 0.46 ** | ||
T4 | T4 | 0.71 ** | ||
Ca | T0 | K | T0 | 0.65 ** |
T1 | T1 | −0.12 * | ||
T2 | T2 | 0.51 ** | ||
T3 | T3 | −0.41 * | ||
T4 | T4 | −0.13 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zorica, M.; Teklić, T.; Špoljarević, M.; Kolega, Š.; Zorica, M.; Ravlić, J.; Kos, T.; Lisjak, M. Influence of Physiologically Active Substances on the Mineral Composition of Sweet Cherry (Prunus avium L.) Leaves. Horticulturae 2025, 11, 943. https://doi.org/10.3390/horticulturae11080943
Zorica M, Teklić T, Špoljarević M, Kolega Š, Zorica M, Ravlić J, Kos T, Lisjak M. Influence of Physiologically Active Substances on the Mineral Composition of Sweet Cherry (Prunus avium L.) Leaves. Horticulturae. 2025; 11(8):943. https://doi.org/10.3390/horticulturae11080943
Chicago/Turabian StyleZorica, Marko, Tihana Teklić, Marija Špoljarević, Šimun Kolega, Magdalena Zorica, Jelena Ravlić, Tomislav Kos, and Miroslav Lisjak. 2025. "Influence of Physiologically Active Substances on the Mineral Composition of Sweet Cherry (Prunus avium L.) Leaves" Horticulturae 11, no. 8: 943. https://doi.org/10.3390/horticulturae11080943
APA StyleZorica, M., Teklić, T., Špoljarević, M., Kolega, Š., Zorica, M., Ravlić, J., Kos, T., & Lisjak, M. (2025). Influence of Physiologically Active Substances on the Mineral Composition of Sweet Cherry (Prunus avium L.) Leaves. Horticulturae, 11(8), 943. https://doi.org/10.3390/horticulturae11080943