Yield and Quality Response of Indeterminate Tomatoes to Combined Growing Methods and Rootstock Cultivars
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Experimental Design and Treatments
2.2.1. In the Plastic Tunnel
2.2.2. In the Shade Net Structure
2.3. Fertigation
2.4. Data Collection
2.5. Statistical Analysis
3. Results and Discussion
3.1. Plastic Tunnel Experiment
3.2. Shade Net Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maboko, M.M.; Du Plooy, C.P.; Bertling, I. Comparative performance of tomato on soilless vs in-soil production systems. Acta Hortic. 2009, 843, 319–326. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather. Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Shaji, S.; Beena, R.; Sarada, S.; Rani, T.S.; Stephen, R.; Manju, R.V.; Viji, M.M. High temperature induced changes in quality and yield parameters of tomato (Solanum lycopersicum L.) and similarity coefficients among genotypes using ssr markers. Heliyon 2021, 7, e5988. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yang, C.; Ming, F.; Yu, B.; Cheng, Z.; Wang, Y.; Qiu, Z.; Zhang, X.; Cao, B.; Yan, S. A bHLH transcription factor, CsSPT, regulates high-temperature resistance in cucumber. Hortic. Plant. J. 2024, 10, 503–514. [Google Scholar] [CrossRef]
- De Oliveira, M.M.T.; Lu, S.H.; Zurgil, U.; Raveh, E.; Tel-Zur, N. Grafting in Hylocereus (Cactaceae) as a tool for strengthening tolerance to high temperature stress. Plant Physiol. Biochem. 2021, 160, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Kyriacou, M.; Colla, G. Vegetable grafting: A toolbox for securing yield stability under multiple stress conditions. Front. Plant Sci. 2018, 8, 2255. [Google Scholar] [CrossRef] [PubMed]
- Rivero, R.M.; Ruiz, J.M.; Romero, L. Can grafting in tomato plants strengthen resistance to thermal stress? J. Sci. Food Agric. 2003, 83, 1315–1319. [Google Scholar] [CrossRef]
- Urlić, B.; Runjić, M.; Mandušić, M.; Žanić, K.; Vuletin Selak, G.; Matešković, A.; Dumičić, G. Partial root-zone drying and deficit irrigation effect on growth, yield, water use and quality of greenhouse grown grafted tomato. Agronomy 2020, 10, 1297. [Google Scholar] [CrossRef]
- Tola, E.; Al-Gaadi, K.A.; Madugundu, R.; Zeyada, A.M.; Edrris, M.K.; Edrees, H.F.; Mahjoop, O. The use of spectral vegetation indices to evaluate the effect of grafting and salt concentration on the growth performance of different tomato varieties grown hydroponically. Horticulturae 2025, 11, 368. [Google Scholar] [CrossRef]
- Pogonyi, A.; Pék, Z.; Lajos, D.R.; Helyes, L.; Lungisa, A. Effect of grafting on the tomato′s yield, quality and main fruit components in spring forcing. Acta Aliment. 2005, 34, 453–462. [Google Scholar] [CrossRef]
- Devi, P.; Perkins-Veazie, P.; Miles, C. Impact of grafting on watermelon fruit maturity and quality. Horticulturae 2020, 6, 97. [Google Scholar] [CrossRef]
- Khah, E.M.; Kakava, E.; Mavromatis, A.; Chachalis, D.; Goulas, C. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open field. J. Appl. Hortic. 2006, 8, 3–7. [Google Scholar] [CrossRef]
- O’Connell, S. Grafted Tomato Performance in Organic Production Systems: Nutrient Uptake, Plant Growth, and Fruit Yield. Master’s Thesis, North Carolina St. University, Raleigh, NC, USA, 12 September 2008. [Google Scholar]
- Djidonou, D.; Zhao, X.; Brecht, J.K.; Cordasco, K.M. Influence of interspecific hybrid rootstocks on tomato growth, nutrient accumulation, yield, and fruit composition under greenhouse conditions. Hort. Technol. 2017, 27, 868–877. [Google Scholar] [CrossRef]
- Maboko, M.M.; Du Plooy, C.P. Effect of pruning on yield and quality of hydroponically grown cherry tomato (Lycopersicon esculentum). S. Afr. J. Plant Soil 2008, 25, 178–181. [Google Scholar] [CrossRef]
- Maboko, M.M.; Bertling, I.; Du Plooy, C.P. Arbuscular mycorrhiza has limited effect on yield and quality of tomatoes grown under soilless cultivation. Acta Agric. Scand. B Soil Plant Sci. 2013, 63, 261–270. [Google Scholar] [CrossRef]
- Maboko, M.M.; Du Plooy, C.P. Response of hydroponically grown cherry and fresh market tomatoes to reduced nutrient concentration and foliar fertiliser application under shadenet conditions. HortScience 2017, 52, 572–578. [Google Scholar] [CrossRef]
- Walubengo, D.; Orina, I.; Kubo, Y.; Owino, W. Physico-chemical and postharvest quality characteristics of intra and interspecific grafted tomato fruits. J. Agric. Food Res. 2022, 7, 100261. [Google Scholar] [CrossRef]
- Frey, C.J.; Zhao, X.; Brecht, J.K.; Huff, D.M.; Black, Z.E. High tunnel and grafting effects on organic tomato plant growth and yield in the subtropics. HortTechnology 2020, 30, 492–503. [Google Scholar] [CrossRef]
- Rahmatian, A.; Delshad, M.; Salehi, R. Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically. Hort. Environ. Biotechnol. 2014, 55, 115–119. [Google Scholar] [CrossRef]
- Maboko, M.M.; Du Plooy, C.P. Response of field-grown indeterminate tomato to plant density and stem pruning on yield. Int. J. Veg. Sci. 2018, 24, 612–621. [Google Scholar] [CrossRef]
- Ohta, K.; Makino, R.; Akihiro, T.; Nishijima, T. Planting density influence yield, plant morphology and physiological characteristics of determinate ‘Suzukoma’ Tomato. J. Appl. Hort. 2018, 20, 3–10. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L.; Kong, Q.; Cheng, F.; Niu, M.; Xie, J.; Nawaz, M.A.; Bie, Z. Comprehensive mineral nutrition analysis of watermelon grafted onto two different rootstocks. Hort. Plant J. 2016, 2, 105–113. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, P.; Chaudhari, S.; Edelstein, M. Tomato grafting: A global perspective. HortScience 2017, 52, 1328–1336. [Google Scholar] [CrossRef]
- Peet, M.M.; Willits, D.H. Role of excess water in tomato fruit cracking. HortScience 1995, 30, 65–68. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, J.; He, J.; Li, H.E.; Ding, P.; He, Y.; Cui, G.; Zhang, J.; He, X.; An, X.; et al. Prediction the Fruit Cracking Behavior of Tomato Caused by Irrigation Using Extended Finite Element Method. Available online: https://ssrn.com/abstract=5099941 (accessed on 23 June 2025).
- Yang, Z.; Wu, Z.; Zhang, C.; Hu, E.M.; Zhou, R.; Jiang, F.L. The composition of pericarp, cell aging, and changes in water absorption in two tomato genotypes: Mechanism, factors, and potential role in fruit cracking. Acta Physiol. Plant 2016, 38, 215. [Google Scholar] [CrossRef]
- O’Connell, S.; Rivard, C.; Peet, M.M.; Harlow, C.; Louws, F. High tunnel and field production of organic heirloom tomatoes: Yield, fruit quality, disease, and microclimate. HortScience 2012, 47, 1283–1290. [Google Scholar] [CrossRef]
- Davis, A.R.; Perkins-Veazie, P.; Hassell, R.; Levi, A.; King, S.R.; Zhang, X. Grafting effects on vegetable quality. HortScience 2008, 43, 1–3. [Google Scholar] [CrossRef]
- Gebologlu, N.; Yilmaz, E.; Cakmak, P.; Aydin, M.; Kasap, Y. Determining of the yield, quality and nutrient content of tomatoes grafted on different rootstocks in soilless culture. Sci. Res. Essays. 2011, 6, 2147–2153. [Google Scholar]
- Al-Harbi, A.; Hejazi, A.; Al-Omran, A. Responses of grafted tomato (Solanum lycopersiocon L.) to abiotic stresses in Saudi Arabia. Saudi J. Bio. Sci. 2017, 24, 1274–1280. [Google Scholar] [CrossRef]
- Ozturk, B.; Ozer, H. Effects of grafting and green manure treatments on postharvest quality of tomatoes. J. Soil Sci. Plant Nutr. 2019, 19, 780–792. [Google Scholar] [CrossRef]
- Nkansah, G.O.; Ahwireng, A.; Amoatey, C. Grafting onto African eggplant enhances growth, yield, and fruit quality of tomatoes in tropical forest ecozones. J. Appl. Hortic. 2013, 15, 16–20. [Google Scholar] [CrossRef]
- Rouphaela, Y.; Schwarz, D.; Angelika, K.; Colla, G. Impact of grafting on product quality of fruit vegetables. Sci. Hortic. 2010, 127, 172–179. [Google Scholar] [CrossRef]
Month | Temperature (°C) | Relative Humidity (%) | Average Rainfall (mm·Month−1) | Total Evapotranspiration (mm·Month−1) | ||
---|---|---|---|---|---|---|
Tmax | Tmin | RHmax | Rhmin | |||
December | 27.69 | 15.03 | 96.32 | 42.8 | 9.47 | 3.99 |
January | 29.2 | 15.81 | 95.95 | 38.49 | 4.91 | 4.3 |
February | 31.31 | 14.98 | 95.6 | 30.44 | 7.68 | 4.83 |
March | 28.91 | 14.24 | 95.65 | 34.18 | 2.93 | 3.67 |
April | 24.54 | 10.14 | 97.61 | 38.79 | 5.32 | 2.79 |
Treatment | Plant height (m) | Stem Diameter (cm) | Number of Trusses per Plant−1 | Plant Fresh Mass (kg∙plant−1) | Plant Dry Mass (kg∙Plant−1) |
---|---|---|---|---|---|
SCX824-1S | 2.25 cd | 1.62 a | 5.22 c | 0.66 c | 0.17 |
Booster-1S | 2.72 ab | 1.55 ab | 5.67 c | 0.69 c | 0.13 |
Goldbac-1S | 2.59 abc | 1.56 ab | 5.44 c | 0.76 bc | 0.14 |
SVTX6258-1S | 2.15 d | 1.37 abc | 6.44 bc | 0.59 c | 0.13 |
SCX824-2S | 2.41 bcd | 1.64 a | 6.56 bc | 0.77 bc | 0.15 |
Booster-2S | 2.97 a | 1.25 c | 8.78 a | 1.06 a | 0.17 |
Goldbac-2S | 2.57 abcd | 1.33 bc | 8.56 a | 0.98 ab | 0.19 |
SVTX6258-2S | 2.47 bcd | 1.22 c | 8.22 ab | 0.77 bc | 0.17 |
LSD 0.05 | 0.42 | 0.27 | 1.90 | 0.23 | ns |
Treatment | Early Harvest | Total Harvest | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Yield (kg∙Plant−1) | Total Number of Fruits∙Plant−1 | Marketable Yield (kg∙Plant−1) | Number of Marketable Fruits∙Plant−1 | Unmarketable Yield (kg∙Plant−1) | Number of Unmarketable Fruit∙Plant−1 | Total Yield (kg·Plant−1) | Total Number of Fruits∙Plant−1 | Marketable Yield (kg∙Plant−1) | Number of Marketable Fruits∙Plant−1 | Unmarketable Yield (kg∙Plant−1) | Number of Unmarketable Fruits∙Plant−1 | |
SCX824-1S | 2.184 | 13.67 | 2.066 | 12.70 | 0.129 | 13.67 | 4.072 | 34.08 bc | 3.667 b | 28.72 bc | 0.406 | 34.08 bc |
Booster-1S | 2.309 | 16.02 | 2.184 | 15.08 | 0.126 | 16.02 | 3.608 | 30.15 c | 3.353 b | 26.72 c | 0.255 | 30.15 c |
Goldbac-1S | 2.639 | 18.82 | 2.450 | 17.40 | 0.189 | 18.82 | 4.267 | 34.80 bc | 3.718 b | 28.85 bc | 0.549 | 34.80 bc |
SVTX6258-1S | 2.311 | 15.83 | 2.114 | 14.43 | 0.197 | 15.83 | 3.555 | 30.52 c | 3.256 b | 26.58 c | 0.299 | 30.52 c |
SCX824-2S | 2.013 | 15.21 | 1.874 | 14.04 | 0.139 | 15.21 | 4.396 | 38.86 abc | 4.003 b | 32.77 abc | 0.393 | 38.86 abc |
Booster-2S | 2.558 | 17.74 | 2.40 | 16.29 | 0.162 | 17.74 | 5.499 | 46.08 a | 5.066 a | 39.42 a | 0.433 | 46.08 a |
Goldbac-2S | 2.409 | 15.38 | 2.251 | 14.19 | 0.158 | 15.38 | 4.695 | 41.77 ab | 4.133 ab | 35.22 ab | 0.562 | 41.77 ab |
SVTX6258-2S | 3.836 | 27.20 | 3.590 | 25.38 | 0.246 | 27.20 | 4.221 | 40.05 abc | 3.831 b | 33.55 abc | 0.389 | 40.05 abc |
LSD 0.05 | ns | ns | ns | ns | ns | ns | ns | 10.03 | 1.025 | 8.094 | ns | 10.03 |
Treatment | Fruit number∙Plant−1 | Fruit Mass (kg∙Plant−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
XL | L | M | S | XS | XL | L | M | S | XS | |
SCX824-1S | 0.60 | 3.29 | 18.90 | 5.93 c | 3.44 | 0.234 | 0.609 | 2.339 b | 0.485 bcd | 0.125 |
Booster-1S | 0.28 | 2.11 | 19.26 | 5.69 c | 2.15 | 0.066 | 0.393 | 2.492 b | 0.402 d | 0.068 |
Goldbac-1S | 0.72 | 3.03 | 19.41 | 5.07 c | 2.58 | 0.154 | 0.556 | 2.539 b | 0.469 bcd | 0.095 |
SVTX6258-1S | 0.37 | 2.43 | 17.16 | 6.62 bc | 2.17 | 0.099 | 0.453 | 2.257 b | 0.447 cd | 0.080 |
SCX824-2S | 0.43 | 2.60 | 21.93 | 7.81 abc | 4.33 | 0.123 | 0.462 | 2.829 b | 0.590 bcd | 0.152 |
Booster-2S | 0.60 | 2.31 | 25.98 | 10.52 a | 4.63 | 0.125 | 0.430 | 3.652 a | 0.859 a | 0.169 |
Goldbac-2S | 0.63 | 2.67 | 22.92 | 9.01 ab | 4.06 | 0.151 | 0.484 | 2.842 ab | 0.657 abc | 0.183 |
SVTX258-2S | 0.46 | 1.75 | 22.10 | 9.25 ab | 4.63 | 0.129 | 0.317 | 2.701 b | 0.685 ab | 0.167 |
LSD 0.05 | ns | ns | ns | 2.83 | ns | ns | ns | 0.8128 | 0.2286 | ns |
Treatment | Ca (%) | Mg (%) | K (%) | Na (mg∙kg−1) | S (%) | P (%) | Fe (mg∙kg−1) | Mn (mg∙kg−1) | Cu (mg∙kg−1) | Zn (mg∙kg−1) | Mo (mg∙kg−1) | B (mg∙kg−1) | Moisture (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SCX824-1S | 0.12 cd | 0.15 cd | 3.19 b | 929.70 | 0.13 | 0.32 c | 45.00 ab | 16.33 | 7.67 | 16.00 | 4.58 | 19.67 | 94.78 |
Booster-1S | 0.13 bcd | 0.17 b | 3.27 b | 574.70 | 0.13 | 0.38 ab | 53.67 a | 15.00 | 8.67 | 15.00 | 5.34 | 19.33 | 95.01 |
Goldbac-1S | 0.16 a | 0.15 cd | 3.28 b | 707.00 | 0.14 | 0.35 bc | 52.00 a | 16.67 | 8.00 | 17.67 | 4.76 | 19.00 | 95.01 |
SVTX6258-1S | 0.13 abc | 0.15 cd | 3.12 b | 1003.70 | 0.13 | 0.33 bc | 47.33 ab | 15.67 | 8.00 | 16.33 | 4.59 | 20.00 | 94.77 |
SCX824-2S | 0.14 abc | 0.16 bc | 3.19 b | 824.70 | 0.14 | 0.36 bc | 39.00 b | 12.33 | 7.67 | 16.00 | 4.49 | 20.33 | 94.78 |
Booster-2S | 0.10 d | 0.21 a | 3.82 a | 746.00 | 0.15 | 0.42 a | 55.67 a | 17.67 | 9.67 | 18.67 | 5.22 | 19.33 | 94.90 |
Goldbac-2S | 0.15 ab | 0.16 bc | 3.33 b | 1054.70 | 0.14 | 0.35 bc | 55.33 a | 16.00 | 8.33 | 17.33 | 4.61 | 19.00 | 95.05 |
SVTX6258-2S | 0.14 abc | 0.14 d | 3.06 b | 1144.30 | 0.12 | 0.31 c | 38.00 b | 12.33 | 7.33 | 13.67 | 5.33 | 20.00 | 94.91 |
LSD 0.05 | 0.024 | 0.016 | 0.3405 | ns | ns | 0.052 | 12.37 | ns | ns | ns | ns | ns | ns |
Treatment | Early Harvest | Total Harvest | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Yield (kg∙Plant−1) | Total Number of Fruits∙Plant−1 | Marketable Yield (kg∙Plant−1) | Number of Marketable Fruits∙Plant−1 | Unmarketable Yield (kg∙Plant−1) | Number of Unmarketable Fruits∙Plant−1 | Total Yield (kg∙Plant−1) | Total Number of Fruits∙Plant−1 | Marketable Yield (kg∙plant−1) | Number of Marketable Fruits∙Plant−1 | Unmarketable Yield (kg∙Plant−1) | Number of Unmarketable Fruits∙Plant−1 | |
SCX824 | 1.622 c | 11.30 c | 1.503 c | 10.33 c | 0.119 | 11.30 c | 6.081 d | 51.75 c | 4.980 d | 39.88 c | 1.101 | 51.75 c |
Booster-1S | 2.183 bc | 14.96 bc | 1.958 c | 13.31 bc | 0.225 | 14.96 bc | 7.464 bcd | 64.02 bc | 5.939 cd | 48.38 bc | 1.525 | 64.02 bc |
Goldbac-1S | 2.674 bc | 18.01 bc | 2.512 bc | 16.58 bc | 0.163 | 18.01 bc | 8.192 abc | 69.91 b | 6.801 abc | 54.97 b | 1.391 | 69.91 b |
SVTX6258-1S | 2.552 bc | 14.87 bc | 2.373 c | 13.62 bc | 0.179 | 14.87 bc | 6.419 cd | 56.18 c | 5.629 cd | 45.18 bc | 0.791 | 56.18 c |
Booster-2S | 3.924 a | 27.96 a | 3.675 a | 26.17 a | 0.249 | 27.96 a | 9.658 a | 86.63 a | 8.332 a | 70.81 a | 1.326 | 86.63 a |
Goldbac-2S | 3.219 ab | 22.39 ab | 3.008 ab | 20.76 ab | 0.212 | 22.39 ab | 8.944 ab | 69.54 b | 7.623 ab | 55.54 b | 1.321 | 69.54 b |
SVTX6258-2S | 2.437 bc | 17.93 bc | 2.262 bc | 16.47 bc | 0.175 | 17.93 bc | 7.203 bcd | 63.47 bc | 6.097 bcd | 50.10 bc | 1.106 | 63.47 bc |
LSD 0.05 | 1.079 | 8.35 | 1.021 | 7.805 | ns | 8.35 | 1.784 | 13.28 | 1.557 | 11.66 | ns | 13.28 |
Treatment | Cracking | Blossom End Rot | Zippering | Catface | Rotten | Nipple | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Number∙ Plant−1 | Weight (kg∙Plant−1) | Number∙ Plant−1 | Weight (kg∙Plant−1) | Number∙Plant−1 | Weight (kg∙Plant−1) | Number∙Plant−1 | Weight (kg∙Plant−1) | Number∙Plant−1 | Weight (kg∙Plant−1) | Number∙Plant−1 | Weight (kg∙Plant−1) | |
SCX824 | 2.35 bc | 0.30 bc | 0.00 | 0.00 | 0.77 | 0.10 | 0.39 | 0.09 | 3.62 | 0.41 | 0.03 | 0.003 |
Booster-1S | 4.14 a | 0.51 a | 0.00 | 0.00 | 1.34 | 0.17 | 0.47 | 0.11 | 6.92 | 0.64 | 0.03 | 0.004 |
Goldbac-1S | 2.44 bc | 0.30 bc | 0.00 | 0.00 | 0.79 | 0.10 | 0.42 | 0.14 | 7.57 | 0.68 | 0.15 | 0.019 |
SVTX6258-1S | 1.73 c | 0.18 c | 0.00 | 0.00 | 0.92 | 0.12 | 0.36 | 0.09 | 2.55 | 0.22 | 0.05 | 0.006 |
Booster-2S | 1.77 c | 0.21 c | 0.00 | 0.00 | 1.10 | 0.13 | 0.42 | 0.09 | 7.62 | 0.52 | 0.16 | 0.026 |
Goldbac-2S | 3.46 ab | 0.40 ab | 0.31 | 0.03 | 0.67 | 0.08 | 0.49 | 0.11 | 5.70 | 0.69 | 0.05 | 0.009 |
SVTX6258-2S | 1.87 bc | 0.24 bc | 0.00 | 0.00 | 1.18 | 0.14 | 0.26 | 0.05 | 6.13 | 0.50 | 0.05 | 0.007 |
LSD 0.05 | 1.63 | 0.18 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatment | Ca (%) | Mg (%) | K (%) | Na (mg∙kg−1) | S (%) | P (%) | Fe (mg∙kg−1) | Mn (mg∙kg−1) | Cu (mg∙kg−1) | Zn (mg∙kg−1) | Mo (mg∙kg−1) | B (mg∙kg−1) | Moisture (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SCX824 | 0.14 | 0.15 c | 3.49 b | 395.30 b | 0.15 | 0.39 bc | 74.33 | 16.67 | 7.67 | 17.33 | 3.96 | 19.00 | 94.63 |
Booster-1S | 0.16 | 0.17 ab | 3.94 a | 240.70 d | 0.16 | 0.46 a | 66.00 | 14.33 | 8.67 | 16.3 | 3.71 | 19.33 | 94.72 |
Goldbac-1S | 0.17 | 0.17 ab | 3.91 a | 334.00 bc | 0.17 | 0.39 bc | 68.67 | 14.00 | 8.33 | 19.00 | 3.73 | 20.00 | 94.72 |
SVT6258-1S | 0.17 | 0.16 bc | 3.49 b | 502.70 a | 0.17 | 0.36 c | 56.00 | 12.67 | 8.33 | 18.33 | 3.51 | 19.00 | 94.44 |
Booster-2S | 0.16 | 0.18 a | 4.12 a | 310.70 cd | 0.17 | 0.45 a | 56.00 | 13.33 | 9.33 | 17.00 | 4.42 | 19.33 | 94.72 |
Goldbac-2S | 0.18 | 0.17 abc | 4.08 a | 371.30 bc | 0.17 | 0.44 ab | 59.00 | 13.33 | 8.33 | 15.33 | 4.07 | 19.67 | 94.80 |
SVT6258-2S | 0.17 | 0.17 ab | 3.84 ab | 573.00 a | 0.18 | 0.42 ab | 75.33 | 15.33 | 9.00 | 18.00 | 3.69 | 19.33 | 94.35 |
LSD 0.05 | ns | 0.019 | 0.376 | 82.6 | ns | 0.0565 | ns | ns | ns | ns | ns | ns | ns |
Treatment | Fruit Weight Loss (%) | ||||
---|---|---|---|---|---|
Day 3 | Day 6 | Day 9 | Day 12 | Day 15 | |
SCX824 | 2.54 | 3.64 | 4.72 | 5.92 | 6.98 |
Booster-1S | 1.72 | 2.92 | 4.37 | 5.28 | 6.67 |
Goldbac-1S | 1.69 | 2.86 | 4.38 | 5.73 | 7.76 |
SVTX6258-1S | 2.06 | 3.17 | 4.45 | 8.77 | 5.91 |
Booster-2S | 1.62 | 2.75 | 4.23 | 5.35 | 7.61 |
Goldbac-2S | 1.91 | 3.26 | 4.84 | 5.98 | 7.29 |
SVTX6258-2S | 1.59 | 2.60 | 4.10 | 4.95 | 5.84 |
LSD 0.05 | ns | ns | ns | ns | ns |
Treatment | Total Soluble Solids (%Brix) | pH | Electrical Conductivity (mS·cm−1) | Firmness (kPa) |
---|---|---|---|---|
SCX824 | 7.0 | 4.5 | 4.05 | 1.44 b |
Booster-1S | 6.8 | 4.4 | 4.30 | 1.59 b |
Goldbac-1S | 7.2 | 4.5 | 3.98 | 1.87 a |
SVT6258-1S | 7.3 | 4.4 | 3.95 | 1.64 ab |
Booster-2S | 6.9 | 4.4 | 4.38 | 1.42 b |
Goldbac-2S | 7.4 | 4.5 | 4.50 | 1.54 b |
SVT6258-2S | 6.8 | 4.4 | 4.15 | 1.58 b |
LSD 0.05 | ns | ns | ns | 0.2373 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndlovu, M.E.; Soundy, P.; De Klerk, J.J.; Maboko, M.M. Yield and Quality Response of Indeterminate Tomatoes to Combined Growing Methods and Rootstock Cultivars. Horticulturae 2025, 11, 758. https://doi.org/10.3390/horticulturae11070758
Ndlovu ME, Soundy P, De Klerk JJ, Maboko MM. Yield and Quality Response of Indeterminate Tomatoes to Combined Growing Methods and Rootstock Cultivars. Horticulturae. 2025; 11(7):758. https://doi.org/10.3390/horticulturae11070758
Chicago/Turabian StyleNdlovu, Mampe E., Puffy Soundy, Jacob J. De Klerk, and Martin M. Maboko. 2025. "Yield and Quality Response of Indeterminate Tomatoes to Combined Growing Methods and Rootstock Cultivars" Horticulturae 11, no. 7: 758. https://doi.org/10.3390/horticulturae11070758
APA StyleNdlovu, M. E., Soundy, P., De Klerk, J. J., & Maboko, M. M. (2025). Yield and Quality Response of Indeterminate Tomatoes to Combined Growing Methods and Rootstock Cultivars. Horticulturae, 11(7), 758. https://doi.org/10.3390/horticulturae11070758