How Irrigation Level and Soil Type Affect Nutritional Quality and Yield of Greenhouse Tomato Grown Under Mild Environmental Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil and Environmental Conditions
2.2. Irrigation Levels
2.3. Plant Material
- 1st sampling—1 November 2023
- 2nd sampling—20 December 2023
- 3rd sampling—27 February 2024
- 4th sampling—14 April 2024
- 5th sampling—25 June 2024
2.4. Fruit Production
2.5. Fruit Quality Parameters
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Benabderrazik, K.; Kopainsky, B.; Monastyrnaya, E.; Thompson, W.; Tazi, L.; Joerin, J.; Six, J. Climate Resilience and the Human-Water Dynamics. The Case of Tomato Production in Morocco. Sci. Total Environ. 2022, 849, 157597. [Google Scholar] [CrossRef] [PubMed]
- Bogale, A.; Nagle, M.; Latif, S.; Aguila, M.; Müller, J. Regulated Deficit Irrigation and Partial Root-Zone Drying Irrigation Impact Bioactive Compounds and Antioxidant Activity in Two Select Tomato Cultivars. Sci. Hortic. 2016, 213, 115–124. [Google Scholar] [CrossRef]
- Hamdy, A.; Abu-Zeid, M.; Lacirignola, C. Water Crisis in the Mediterranean: Agricultural Water Demand Management. Water Int. 1995, 20, 176–187. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Flores, F.; Moneo, M. Challenges to Manage the Risk of Water Scarcity and Climate Change in the Mediterranean. Water Resour. Manag. 2007, 21, 775–788. [Google Scholar] [CrossRef]
- Casals, J.; Rivera, A.; Sabaté, J.; Romero Del Castillo, R.; Simó, J. Cherry and Fresh Market Tomatoes: Differences in Chemical, Morphological, and Sensory Traits and Their Implications for Consumer Acceptance. Agronomy 2018, 9, 9. [Google Scholar] [CrossRef]
- Mahajan, G.; Singh, K.G. Response of Greenhouse Tomato to Irrigation and Fertigation. Agric. Water Manag. 2006, 84, 202–206. [Google Scholar] [CrossRef]
- Hagassou, D.; Francia, E.; Ronga, D.; Buti, M. Blossom End-Rot in Tomato (Solanum lycopersicum L.): A Multi-Disciplinary Overview of Inducing Factors and Control Strategies. Sci. Hortic. 2019, 249, 49–58. [Google Scholar] [CrossRef]
- De Oliveira, H.F.E.; De Moura Campos, H.; Mesquita, M.; Machado, R.L.; Vale, L.S.R.; Siqueira, A.P.S.; Ferrarezi, R.S. Horticultural Performance of Greenhouse Cherry Tomatoes Irrigated Automatically Based on Soil Moisture Sensor Readings. Water 2021, 13, 2662. [Google Scholar] [CrossRef]
- Yang, C.; Wu, J.; Li, P.; Wang, Y.; Yang, N. Evaluation of Soil-Water Characteristic Curves for Different Textural Soils Using Fractal Analysis. Water 2023, 15, 772. [Google Scholar] [CrossRef]
- Mencarelli, F.; Saltveit, M.E., Jr. Ripening of Mature-Green Tomato Fruit Slices. J. Am. Soc. Hortic. Sci. 1988, 113, 742–745. [Google Scholar] [CrossRef]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in Wood: Comparison of Different Estimation Methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Devaki, M. The Ferric Reducing/Antioxidant Power (FRAP) Assay for Non-Enzymatic Antioxidant Capacity: Concepts, Procedures, Limitations and Applications. In Measurement of Antioxidant Activity & Capacity; Apak, R., Capanoglu, E., Shahidi, F., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 77–106. ISBN 978-1-119-13538-8. [Google Scholar]
- Silva, C.J.D.; Frizzone, J.A.; Silva, C.A.D.; Golynski, A.; Silva, L.F.M.D.; Megguer, C.A. Tomato Yield as a Function of Water Depths and Irrigation Suspension Periods. Rev. Bras. Eng. Agrícola Ambient. 2019, 23, 591–597. [Google Scholar] [CrossRef]
- Burato, A.; Fusco, G.M.; Pentangelo, A.; Nicastro, R.; Modugno, A.F.; Scotto Di Covella, F.; Ronga, D.; Carillo, P.; Campi, P.; Parisi, M. Regulated Deficit Irrigation to Boost Processing Tomato Sustainability and Fruit Quality. Sustainability 2024, 16, 3798. [Google Scholar] [CrossRef]
- Soni, P.G.; Basak, N.; Rai, A.K.; Sundha, P.; Narjary, B.; Kumar, P.; Yadav, G.; Kumar, S.; Yadav, R.K. Deficit Saline Water Irrigation under Reduced Tillage and Residue Mulch Improves Soil Health in Sorghum-Wheat Cropping System in Semi-Arid Region. Sci. Rep. 2021, 11, 1880. [Google Scholar] [CrossRef] [PubMed]
- Aragüés, R.; Medina, E.T.; Martínez-Cob, A.; Faci, J. Effects of Deficit Irrigation Strategies on Soil Salinization and Sodification in a Semiarid Drip-Irrigated Peach Orchard. Agric. Water Manag. 2014, 142, 1–9. [Google Scholar] [CrossRef]
- Ghannem, A.; Ben Aissa, I.; Majdoub, R. Effects of Regulated Deficit Irrigation Applied at Different Growth Stages of Greenhouse Grown Tomato on Substrate Moisture, Yield, Fruit Quality, and Physiological Traits. Environ. Sci. Pollut. Res. 2021, 28, 46553–46564. [Google Scholar] [CrossRef]
- Bello, A.S.; Huda, S.; Alsafran, M.; Abu-Dieyeh, M.H.; Chen, Z.-H.; Ahmed, T. Enhancing Eggplant (Solanum melongena L.) Yield and Water Use Efficiency through Optimized Irrigation and Nitrogen Practices in Open Field Conditions. J. Agric. Food Res. 2024, 18, 101527. [Google Scholar] [CrossRef]
- Chand, J.; Hewa, G.; Hassanli, A.; Myers, B. Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse. Agriculture 2020, 10, 297. [Google Scholar] [CrossRef]
- Helyes, L.; Lugasi, A.; Pék, Z. Effect of Irrigation on Processing Tomato Yield and Antioxidant Components. Turk. J. Agric. For. 2012, 36, 702–709. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Colla, G.; Rea, E. Yield, Mineral Composition, Water Relations, and Water Use Efficiency of Grafted Mini-Watermelon Plants Under Deficit Irrigation. HortScience 2008, 43, 730–736. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Xiang, Y.; Zheng, J.; Guo, J. Responses of Growth, Fruit Yield, Quality and Water Productivity of Greenhouse Tomato to Deficit Drip Irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
- Takács, S.; Pék, Z.; Csányi, D.; Daood, H.G.; Szuvandzsiev, P.; Palotás, G.; Helyes, L. Influence of Water Stress Levels on the Yield and Lycopene Content of Tomato. Water 2020, 12, 2165. [Google Scholar] [CrossRef]
- Nangare, D.D.; Singh, Y.; Kumar, P.S.; Minhas, P.S. Growth, Fruit Yield and Quality of Tomato (Lycopersicon esculentum Mill.) as Affected by Deficit Irrigation Regulated on Phenological Basis. Agric. Water Manag. 2016, 171, 73–79. [Google Scholar] [CrossRef]
- Dorai, M.; Papadopoulos, A.P.; Gosselin, A. Influence of Electric Conductivity Management on Greenhouse Tomato Yield and Fruit Quality. Agronomie 2001, 21, 367–383. [Google Scholar] [CrossRef]
- Li, Y.L.; Stanghellini, C. Analysis of the Effect of EC and Potential Transpiration on Vegetative Growth of Tomato. Sci. Hortic. 2001, 89, 9–21. [Google Scholar] [CrossRef]
Sample | Composition | pH | EC dS/m | CaCO3 % | Organic Matter % | Sand % | Clay % | Silt % | Exchangable Na cmolc/kg | CEC cmolc/kg | ESP % |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Zone 1 + manure + fertilizers | 7.79 | 2.22 | 16.90 | 3.97 | 42 | 26 | 32 | 0.57 | 21.65 | 2.61 |
2 | Zone 2 + manure+ fertilizers | 7.65 | 1.74 | 15.40 | 2.96 | 42 | 26 | 32 | 0.55 | 18.62 | 2.93 |
Treatment | Fruit Production Per Plant (kg) |
---|---|
Soil Zone (A) | 0.16 |
Irrigation Level (Β) | 0.05 |
A × Β | 0.38 |
Fruit Production Per Plant/month | 29 October 2023 | 11 November 2023 | 16 December 2023 | 30 December 2023 | 20 Jenuary 2024 |
---|---|---|---|---|---|
Soil Zone (A) | 0.29 | 0.29 | 0.96 | 0.94 | 0.13 |
Irrigation Level (Β) | 0.37 | 0.68 | 0.61 | 0.12 | 0.53 |
A × Β | 0.81 | 0.36 | 0.51 | 0.35 | 0.23 |
3 February 2024 | 1 March 2024 | 27 April 2024 | 11 May 2024 | 25 June 2024 | |
Soil Zone (A) | 0.17 | 0.35 * | 0.46 | 0.9 | 0.32 |
Irrigation Level (Β) | 0.04 * | 0.17 | 0.69 | 0.028 * | 0.048 * |
A × Β | 0.81 | 0.025 * | 0.64 | 0.38 | 0.05 |
Treatment | Total Soluble Solids | Phenolic Content | Antioxidant Capacity | Lycopene | |
---|---|---|---|---|---|
1st Sampling | Soil Zone (A) | 0.14 | 0.3 | 0.04 * | 0.05 |
Irrigation Level (Β) | 0.14 | 0.3 | 0.04 * | 0.05 | |
A × Β | 0.14 | 0.3 | 0.04 * | 0.05 | |
2nd Sampling | Soil Zone (A) | 0.56 | 0.08 | 0.07 | 0.99 |
Irrigation Level (Β) | 0.001 * | 0.16 | 0.05 | 0.24 | |
A × Β | 0.39 | 0.99 | 0.03 * | 0.21 | |
3rd Sampling | Soil Zone (A) | 0.88 | 0.004 * | 0.71 | 0.005 * |
Irrigation Level (Β) | 0.06 | 0.59 | 0.77 | 0.57 | |
A × Β | 0.51 | 0.86 | 0.43 | 0.00 * | |
4th Sampling | Soil Zone (A) | 0.03 * | 0.76 | 0.20 | 0.91 |
Irrigation Level (Β) | 0.48 | 0.37 | 0.52 | 0.17 | |
A × Β | 0.72 | 0.08 | 0.48 | 0.33 | |
5th Sampling | Soil Zone (A) | 0.003 * | 0.17 | 0.51 | 0.01 * |
Irrigation Level (Β) | 0.22 | 0.08 | 0.69 | 0.03 * | |
A × Β | 0.04 * | 0.61 | 0.96 | 0.30 |
Treatment | Total Soluble Solids Brix (°) | Phenolic Content (mg/g f.w) | Antioxidant Capacity (μg/g f.w) | Lycopene (mg/100 g f.w) | |
1st Sampling | Zone 1 100% | 7.67 ± 0.13 a | 0.65 ± 0.01 a | 172.3 ± 2.54 b | 7.18 ± 0.20 a |
Zone 1 50% | 7.67 ± 0.13 a | 0.65 ± 0.01 a | 172.3 ± 2.54 b | 7.18 ± 0.20 a | |
Zone 2 100% | 7.40 ± 0.06 a | 0.69 ± 0.03 a | 183.8 ± 3.01 a | 6.43 ± 0.18 a | |
Zone 2 50% | 7.40 ± 0.06 a | 0.69 ± 0.03 a | 183.8 ± 3.01 a | 6.43 ± 0.18 a | |
2nd Sampling | Zone 1 100% | 7.80 ± 0.12 b | 1.10 ± 0.04 a | 226.9 ± 4.03 a | 3.78 ± 0.21 a |
Zone 1 50% | 8.23 ± 0.13 ab | 1.16 ± 0.05 a | 225.9 ± 2.90 ab | 3.16 ± 0.05 a | |
Zone 2 100% | 7.77 ± 0.09 b | 1.18 ± 0.03 a | 208.8 ± 5.40 b | 3.45 ± 0.33 a | |
Zone 2 50% | 8.40 ± 0.10 a | 1.24 ± 0.04 a | 227.8 ± 2.43 a | 3.48 ± 0.26 a | |
3rd Sampling | Zone 1 100% | 6.63 ± 0.38 a | 1.09 ± 0.01 a | 232.3 ± 14.93 a | 2.75 ± 0.07 a |
Zone 1 50% | 7.53 ± 0.13 a | 1.12 ± 0.04 a | 226.1 ± 3.06 a | 1.41 ± 0.14 b | |
Zone 2 100% | 6.80 ± 0.46 a | 0.96 ± 0.02 a | 227.1 ± 16.56 a | 1.94 ± 0.23 b | |
Zone 2 50% | 7.27 ± 0.09 a | 0.97 ± 0.06 a | 240.1 ± 4.16 a | 3.48 ± 0.20 a | |
4th Sampling | Zone 1 100% | 8.77 ± 0.15 a | 0.94 ± 0.03 a | 202.5 ± 7.08 a | 3.71 ± 0.43 a |
Zone 1 50% | 8.87 ± 0.07 a | 0.91 ± 0.01 a | 202.0 ± 4.58 a | 4.57 ± 0.47 a | |
Zone 2 100% | 9.37 ± 0.38 a | 0.88 ± 0.02 a | 185.9 ± 8.64 a | 4.10 ± 0.06 a | |
Zone 2 50% | 9.67 ± 0.34 a | 0.96 ± 0.04 a | 196.9 ± 9.75 a | 4.26 ± 0.19 a | |
5th Sampling | Zone 1 100% | 9.83 ± 0.09 b | 0.91 ± 0.02 a | 197.1 ± 5.76 a | 3.59 ± 0.23 ab |
Zone 1 50% | 10.20 ± 0.50 b | 0.97 ± 0.01 a | 201.1 ± 2.88 a | 2.88 ± 0.15 b | |
Zone 2 100% | 11.90 ± 0.17 a | 0.95 ± 0.04 a | 204.2 ± 9.52 a | 4.03 ± 0.26 a | |
Zone 2 50% | 10.70 ± 0.31 ab | 1.06 ± 0.07 a | 209.3 ± 18.88 a | 3.74 ± 0.03 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papoui, E.; Gkotzamani, A.; Nikoloudis, K.; Bantis, F.; Koukounaras, A. How Irrigation Level and Soil Type Affect Nutritional Quality and Yield of Greenhouse Tomato Grown Under Mild Environmental Conditions. Horticulturae 2025, 11, 742. https://doi.org/10.3390/horticulturae11070742
Papoui E, Gkotzamani A, Nikoloudis K, Bantis F, Koukounaras A. How Irrigation Level and Soil Type Affect Nutritional Quality and Yield of Greenhouse Tomato Grown Under Mild Environmental Conditions. Horticulturae. 2025; 11(7):742. https://doi.org/10.3390/horticulturae11070742
Chicago/Turabian StylePapoui, Eleni, Anna Gkotzamani, Konstantinos Nikoloudis, Filippos Bantis, and Athanasios Koukounaras. 2025. "How Irrigation Level and Soil Type Affect Nutritional Quality and Yield of Greenhouse Tomato Grown Under Mild Environmental Conditions" Horticulturae 11, no. 7: 742. https://doi.org/10.3390/horticulturae11070742
APA StylePapoui, E., Gkotzamani, A., Nikoloudis, K., Bantis, F., & Koukounaras, A. (2025). How Irrigation Level and Soil Type Affect Nutritional Quality and Yield of Greenhouse Tomato Grown Under Mild Environmental Conditions. Horticulturae, 11(7), 742. https://doi.org/10.3390/horticulturae11070742