Stage-Dependent Mineral Element Dynamics in ‘Junzao’ Jujube: Ionic Homeostasis and Selective Transport Under Graduated Saline-Alkali Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Materials
2.2. Experimental Design
2.3. Measurement Indicators and Methodologies
2.4. Data Processing and Analysis
3. Results
3.1. Effects of Saline-Alkaline Stress on Mineral Element and C Content in Various Organs
3.2. Comparison of K and Na Contents in Leaves, Branches and Roots of ‘Junzao’ at Different Developmental Periods
3.3. The K/Na Ratio in Different Organs of ‘Junzao’ Jujube Fruits at Various Developmental Periods Under Saline-Alkali Stress
3.4. Effects of Saline-Alkaline Stress on the Selective Nutrient Transport Capacity in ‘Junzao’ Jujube Trees
3.5. Correlation Analysis of Mineral Nutrients in Various Organs at Different Developmental Periods Under Saline-Alkali Stress
4. Discussion
4.1. Effects of Saline-Alkaline Stress on the Accumulation of Na and K in Organs of ‘Junzao’ Jujube
4.2. Effects of Saline-Alkaline Stress on the Accumulation of Ca, Mg, Zn, Fe, Mn, and C in ‘Junzao’ Jujube
4.3. Effects of Saline-Alkaline Stress on the Transport of K, Ca, and Mg in the ‘Junzao’ Jujube
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
K | Potassium |
Na | Sodium |
Ca | Calcium |
Mg | Magnesium |
Fe | Iron |
Mn | Manganese |
Zn | Zinc |
C | Carbon |
ROS | Reactive Oxygen Species |
References
- Measho, S.; Li, F.; Pellikka, P.; Tian, C.; Hirwa, H.; Xu, N.; Qiao, Y.; Khasanov, S.; Kulmatov, R.; Chen, G. Soil Salinity Variations and Associated Implications for Agriculture and Land Resources Development Using Remote Sensing Datasets in Central Asia. Remote Sens. 2022, 14, 2501. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Y.Q. Saline and alkaline land improvement with demonstration in southern border area! China Mining News, 15 September 2021; p. 003. [Google Scholar] [CrossRef]
- Li, Y.F.; Wubier, A.; Ayiguli; Tian, C.Y.; Ma, Y.J.; Li, H.P.; Li, L. Damage of Saline-alkali Soil to the Growth of Chinese Date in Hami. J. Arid Land Resour. Environ. 2005, 19, 163–166. [Google Scholar] [CrossRef]
- Lu, X.Y.; Guo, J.X.; Tao, Y.F.; Ye, Y.; Gui, C.H.; Guo, H.J.; Min, W. Effects of different salt and alkali stress on absorption, transportation, and meta-bolism of nutrient elements in cotton. Chin. J. Eco-Agric. (Chin. Engl.) 2023, 31, 438–451. [Google Scholar]
- Liu, Y.W.; Yu, Y.; Fang, J. Saline-alkali stress and molecular mechanism of saline-alkali tolerance in plants. Soils Crops 2018, 7, 201–211. [Google Scholar]
- Xiang, C.Y.; Luo, D.Y.; Guo, L.; Du, J.Y.; Liu, S.B.; Pu, S.Y. Advances in Plant-microbial Combined Remediation of Chemically-degraded. Soils. Chin. J. Soil Sci. 2024, 55, 288–300. [Google Scholar] [CrossRef]
- DB65/T 602.11-2001; Xinjiang Soil Analytical Method Standard: Method for Analysis of Total Water-Soluble Salts and Their Composition Components. Xinjiang Uygur Autonomous Region Bureau of Quality and Technical Supervision: Ürümqi, China, 2001. Available online: https://max.book118.com/html/2024/0121/5211132031011044.shtm (accessed on 18 June 2025).
- Yang, J.S.; Yao, R.J.; Wang, X.P.; Xie, W.P.; Zhang, X.; Zhu, W.; Zhang, L.; Sun, R.J. Research on Salt-affected Soils in China: History, Status Quo and Prospect. Acta Pedol. Sin. 2022, 59, 10–27. [Google Scholar] [CrossRef]
- Aziz, I.; Khan, M.A. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Ann. Bot. 2001, 70, 259–268. [Google Scholar] [CrossRef]
- Luo, Q.H.; Reheman, A.; Li, Y.L.; Zhou, B.; Kasimu, G. Study on ion absorption, transportation, and distribution characteristics of adult jujube trees in saline soil habitats. Chin. J. Agron. 2021, 37, 87–94. [Google Scholar] [CrossRef]
- Cheng, X.W.; Ma, Y.P.; Xu, C.X. Absorption, translocation and distribution characteristics of salt ions of Chinese jujube and sour date under iso-osmotic potential drought, salt and alkaline stresses. J. Cent. South Univ. For Technol. 2013, 33, 20–25. [Google Scholar]
- Wang, H.; Liu, N.; Yao, Y.T.; Xie, W.B.; Wang, L. The relationship between total organic carbon and nutrient content of willow leaves in saline alkali land of northern Shanxi Province. J. Cent. South Univ. For Technol. 2017, 26, 2036–2044. [Google Scholar] [CrossRef]
- Zelm, E.V.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Feng, Y.; Yan, M.; Yu, J.; Zhou, X.F.; Bao, J.K.; Zhang, Q.Q.; Wu, C.Y. Effect of Saline–Alkali Stress on Sugar Metabolism of Jujube Fruit. Horticulturae 2022, 8, 474. [Google Scholar] [CrossRef]
- Qu, Y.Y. Effects of Exogenous cAMP on the Growth and Development of Chinese Jujube and Sour Jujube. Master’s Thesis, Hebei Agricultural University, Baoding, China, 2022. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, Y.; Yan, M.; Zhou, X.F.; Pu, X.P.; Yan, H.Y.; Yuan, H.Z.; Wu, C.Y. Effects of saline and alkaline stress on nutrient uptake, accumulation and transportion in ‘Junzao’ Jujube. Agric. Res. Arid Areas. 2024, 42, 44–52. [Google Scholar]
- Yan, M.; Wang, Y.; Watharkar, R.B.; Pu, Y.; Wu, C.; Lin, M.; Lu, D.; Liu, M.; Bao, J.; Xia, Y. Physicochemical and antioxidant activity of fruit harvested from eight jujube (Ziziphus jujuba Mill.) cultivars at different development stages. Sci. Rep. 2022, 12, 2272. [Google Scholar] [CrossRef]
- NY/T 2326-2013; Technical Specification for the Identification and Evaluation of Crop Germplasm Resources jujube. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2013. Available online: https://www.doc88.com/p-7965027738303.html?r=1 (accessed on 18 June 2025).
- Pitman, M.G. Transport across the root and shoot/root interactions. In Salinity Tolerance in Plants, Strategies for Crop Improvement; Staples, R.C., Toenniessen, G.H., Eds.; John Wiley and Sons: New York, NY, USA, 1984; pp. 93–123. [Google Scholar]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization, & International Electrotechnical Commission: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/66912.html (accessed on 18 June 2025).
- Wang, X.Z.; Li, Q.H.; Wu, F.Z. The absorption, distribution, and transport characteristics of Na+ and K+ in cultivated tomatoes under NaCl stress. Chin. Agric. Sci. 2010, 43, 1423–1432. [Google Scholar] [CrossRef]
- Marques, E.C.; Freitas, P.A.F.; Alencar, N.L.M.; Prisco, J.T.; Gomes-Filho, E. Increased Na+ and Claccumulation induced by NaCl salinity inhibits cotyledonary reserve mobilization and alters the source sink relationship in establishing dwarf cashew seedlings. Acta Physiol. Plant. 2013, 35, 2171–2182. [Google Scholar] [CrossRef]
- Xu, W.; Yuan, Q.H.; Wang, Y.; Jing, Y.X. Preliminary study on ion distribution in white clover seedlings under salt stress. Acta Agrestia Sin. 2011, 33, 33–39. [Google Scholar]
- Zhang, L.W.; Hu, S.R.; Gao, Y. Distribution Pattern of Salt Ions in Three Plants of Atriplex L.under Salt Stress. J. Inner Mong. Univ. Nat. Sci. Ed. 2014, 45, 289–294. [Google Scholar] [CrossRef]
- Dong, F.; Cao, J.; Li, X.T.; Zhang, L.J.; Yue, X.H.; Geng, J.; Zhang, J.L. Effects of various types Salt Stress on ion Absorption, Accumulation and Transportation in Pea(pisumsativum) Seedlings. Acta Pratacult. Sin. 2016, 25, 10. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Z.; Wang, Y. Effects of Salt Stress on Salt-Repellent and Salt-Secreting Characteristics of Two Apple Rootstocks. Plants 2024, 13, 1046. [Google Scholar] [CrossRef]
- Ali, K.; Yuan, L.; Kari, M. Effect of NaCl stress on Na+ and K+ uptakes by different organs of pistachio. Acta Bot. Boreal. Occid. Sin. 2005, 25, 1805–1810. [Google Scholar] [CrossRef]
- Zhang, J.L.; Li, H.R.; Guo, S.Y.; Wang, S.M.; Shi, H.Z.; Han, Q.Q.; Bao, A.K.; Ma, Q. Research advances in higher plant adaptation to salt stress. Acta Pratacult. Sin. 2015, 24, 220. [Google Scholar] [CrossRef]
- Wei, C.X.; Wang, J.B.; Chen, Y.F.; Zhou, W.D.; Sun, G.R. Epicuticular wax of leaf epidermis: A functional structure for salt excretion in a halophyte Puccinellia tenuiflora. Acta Ecol. Sin. 2004, 11, 2451–2456. [Google Scholar] [CrossRef]
- Dong, Z.; Gong, Y.; Zhao, J. Cerium-doped carbon quantum dots trigger mung bean seeds to help mitigate salt stress by increasing the degree of stomata opening. Carbon Lett. 2022, 32, 1715–1727. [Google Scholar] [CrossRef]
- Yang, H.B.; Han, Z.H.; Xu, X.F. Studies on Na+ Exclusion Mechanism of Three Malus Seedlings. Acta Hortic. Sin. 2004, 2, 143–148. [Google Scholar]
- Tang, L.; Luo, X.D.; Hang, Y.F.; Meng, Y.; Xiao, B.; Yang, Y.J. The effect of different concentrations of magnesium on photosynthesis and photoprotection ability of tea trees. Acta Agric. Bor. Sin. 2021, 30, 1210–1219. [Google Scholar]
- Yu, M.L. Effects and Regulatory Mechanisms of Prohexadione Calcium in Alleviating Saline-Alkali Stress in Soybean Seedlings. Ph.D. Thesis, Heilongjiang Bayi Agricultural University, Daqing, China, 2022. [Google Scholar] [CrossRef]
- Olowolaju, E.D.; Okunlola, O.G.; Ayodele, A.O. Growth and Photosynthetic Pigments Accumulation of Jute Mallow (Corchorus olitorius Linn) in Response to Different Levels of Magnesium Application. Not. Sci. Biol. 2017, 9, 214–218. [Google Scholar] [CrossRef]
- Guo, J.X.; Lu, X.Y.; Tao, Y.F.; Guo, H.J.; Hou, Z.M.; Min, W. Effects of saline and alkaline stresses ongrowth and nutrient uptake of cotton. Agric. Res. Arid Areas 2022, 40, 23–32+59. [Google Scholar]
- Gasimli, N.; Mahmoud, M.; Kamal, M.; Patil, S.; Alsaiari, H.; Hussein, H. Iron Sulfide Scale Inhibition in Carbonate Reservoirs. ACS Omega 2022, 7, 26137–26153. [Google Scholar] [CrossRef]
- Tuell, D.S.; Los, E.A.; Ford, G.A.; Stone, W.L. The Role of Natural Antioxidant Products That Optimize Redox Status in the Prevention and Management of Type 2 Diabetes. Antioxidants 2023, 12, 1139. [Google Scholar] [CrossRef]
- Hui, Y.; Liao, Z.Y.; Wang, S.J. Characteristics of the Retranslocation and Use of the Nutrient of Pinus Yunnanensis in Middle Yunnan Plateau. Ecol. Environ. Sci. 2016, 25, 1164–1168. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef]
- Gui, D.; Zhang, Y.; Lv, J.; Guo, J.; Sha, Z.P. Effects of intercropping on soil greenhouse gas emissions—A global meta-analysis. Sci. Total Environ. 2024, 918, 170632. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Zhang, X.; Sha, Z.P.; Li, S.; Chen, X.; Chen, Y.; Liu, X. Mitigation of reactive nitrogen loss from arable soils through microbial inoculant application: A meta-analysis. Soil Till. Res. 2024, 235, 105883. [Google Scholar] [CrossRef]
- Xie, Q.; Ma, L.; Tan, P.; Deng, W.; Huang, C.; Liu, D.; Lin, W.; Su, Y. Multiple High-Affinity K+ Transporters and ABC Transporters Involved in K+ Uptake/Transport in the Potassium-Hyperaccumulator Plant Phytolacca acinosa Roxb. Plants 2020, 9, 470. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Y.; Lu, X.Y.; Lin, H.R.; Cui, H.M. Effects of NaCl Stress on Ion Absorption and Distribution in Sour Jujube Seedlings. Acta Hortic. Sin. 2015, 42, 853–862. [Google Scholar] [CrossRef]
- Hou, J.M.; Liang, H.Y.; Wang, Y.; Ji, Q.J.; Yan, J.F.; Ma, C.M.; Yuan, Y.X. Ion distribution of Ulmus pumila, Fraxinus velutina, Amorpha fruticosa and Tamarix chinensis in different saline and alkali area. Chin. Agric. Sci. Bull. 2012, 158, 45–52. [Google Scholar]
- Shabala, S.; Cuin, T.A. Potassium transport and plant salt tolerance. Physiol. Plant. 2008, 133, 651–669. [Google Scholar] [CrossRef]
Salinity and Alkalinity Concentration | EC (us·cm) | pH | Alkaline-Hydrolyzable Nitrogen (mg/kg) | Fast-Acting Phosphorus (mg/kg) | Fast-Acting Potassium (mg/kg) | Organic Matter (g/kg) |
---|---|---|---|---|---|---|
0 mmol/L | 167.25 ± 15.88 | 7.76 ± 0.78 | 20.73 ± 3.78 | 24.35 ± 5.16 | 80.08 ± 5.59 | 2.13 ± 0.44 |
60 mmol/L | 245.23 ± 14.89 | 7.97 ± 1.21 | 14.33 ± 2.96 | 8.23 ± 3.14 | 72.64 ± 3.27 | 3.43 ± 0.76 |
180 mmol/L | 500.24 ± 19.01 | 8.26 ± 0.29 | 10.56 ± 2.45 | 7.25 ± 0.82 | 100.02 ± 6.69 | 2.65 ± 0.26 |
300 mmol/L | 887.23 ± 16.89 | 8.79 ± 0.66 | 9.56 ± 2.25 | 6.89 ± 1.62 | 115.9 ± 7.92 | 3.98 ± 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Zhou, X.; Zhang, Y.; Wang, Y.; Yan, H.; Sun, W.; Yan, M.; Wu, C. Stage-Dependent Mineral Element Dynamics in ‘Junzao’ Jujube: Ionic Homeostasis and Selective Transport Under Graduated Saline-Alkali Stress. Horticulturae 2025, 11, 726. https://doi.org/10.3390/horticulturae11070726
Yuan Z, Zhou X, Zhang Y, Wang Y, Yan H, Sun W, Yan M, Wu C. Stage-Dependent Mineral Element Dynamics in ‘Junzao’ Jujube: Ionic Homeostasis and Selective Transport Under Graduated Saline-Alkali Stress. Horticulturae. 2025; 11(7):726. https://doi.org/10.3390/horticulturae11070726
Chicago/Turabian StyleYuan, Ze, Xiaofeng Zhou, Yuyang Zhang, Yan Wang, Haoyu Yan, Wu Sun, Min Yan, and Cuiyun Wu. 2025. "Stage-Dependent Mineral Element Dynamics in ‘Junzao’ Jujube: Ionic Homeostasis and Selective Transport Under Graduated Saline-Alkali Stress" Horticulturae 11, no. 7: 726. https://doi.org/10.3390/horticulturae11070726
APA StyleYuan, Z., Zhou, X., Zhang, Y., Wang, Y., Yan, H., Sun, W., Yan, M., & Wu, C. (2025). Stage-Dependent Mineral Element Dynamics in ‘Junzao’ Jujube: Ionic Homeostasis and Selective Transport Under Graduated Saline-Alkali Stress. Horticulturae, 11(7), 726. https://doi.org/10.3390/horticulturae11070726