The Effects of Different Plastic Film Mulches on the Physicochemical and Microbiological Properties of Soils for Protected Pepper Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collection and Analysis
2.2.1. Soil Physicochemical Determination
2.2.2. Determination of Soil Microbial Composition
2.2.3. Data Analysis
3. Results and Analysis
3.1. Effects on Soil Physicochemical Properties
3.2. Characteristics of Soil Microbial Communities Under Different Plastic Film Mulching
3.2.1. Alpha Diversity of Soil Microorganisms
3.2.2. Beta Diversity of Soil Microorganisms
3.2.3. Composition of Soil Microbial Communities
3.2.4. The Correlation Between Soil Physicochemical Properties and Microbial Community Compositions
3.2.5. Prediction of Potential Functions in Different Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bulati, A.; Zhan, L.; Xu, Z.; Yang, K. Obtaining the value of waste polyethylene mulch film through pretreatment and recycling technology in China. Waste Manag. 2025, 197, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Flury, M.; Sun, S.; Cai, J.; Zhang, A.; Li, Q.; Jiang, R. In-field degradation of polybutylene adipate-co-terephthalate (PBAT) films, microplastic formation, and impacts on soil health. Environ. Res. 2025, 121086. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, Z.; Zhu, J.; Li, Y.; Yao, P.; Bi, Z.; Sun, C.; Liu, Y. Effects of different water treatments on the growth, physiological, photosynthesis, and yield of potato under drip irrigation with plastic mulch in northwest China. Sci. Hortic. 2025, 341, 113978. [Google Scholar] [CrossRef]
- Tan, Q.; Yang, L.; Wei, F.; Chen, Y.; Li, J. Comparative life cycle assessment of polyethylene agricultural mulching film and alternative options including different end-of-life routes. Renew. Sustain. Energy Rev. 2023, 178, 113239. [Google Scholar] [CrossRef]
- Li, S.; Ding, F.; Flury, M.; Wang, J. Dynamics of macroplastics and microplastics formed by biodegradable mulch film in an agricultural field. Sci. Total Environ. 2023, 894, 164674. [Google Scholar] [CrossRef]
- Dada, O.I.; Liyanage, T.U.H.; Chi, T.; Chen, S.; Yu, L.; Wasko DeVetter, L. Towards Sustainable Agroecosystems: A Life Cycle Assessment Review of Soil-Biodegradable and Traditional Plastic Mulch Films. Environ. Sci. Ecotechnol. 2025, 24, 100541. [Google Scholar] [CrossRef]
- Yu, Y.; Velandia, M.; Hayes, D.G.; DeVetter, L.W.; Miles, C.A.; Flury, M. Biodegradable plastics as alternatives for polyethylene mulch films. Adv. Agron. 2024, 183, 121–192. [Google Scholar]
- Wu, H.; Liu, Q.; Yang, F.; Hou, M. Degradation of Polyethylene Plastics by Microbial Action of Rhizobium spp. BM Isolated from Soil. JOM 2025, 12, 1–13. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Yan, C.; Chadwick, D.; Jones, D.L.; Liu, E.; Liu, Q.; Bai, R.; He, W. Kinetics of microplastic generation from different types of mulch films in agricultural soil. Sci. Total Environ. 2022, 814, 152572. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, K.; Ren, L.; Peng, A.; Zhou, S. Biodegradable microplastics, A review on the interaction with pollutants and influence to organisms. Bull. Environ. Contam. Toxicol. 2022, 108, 1006–1012. [Google Scholar] [CrossRef]
- Jacquiod, S.; Bouchard, E.; Beguet, J.; Roure, F.; Cheviron, N.; Mougin, C.; Coffin, A.; Blouin, M.; Martin-Laurent, F. Effect of plastic film and hemp canvas mulching on soil properties, microbial diversity and lettuce yield. Plant Soil 2024, 503, 65–83. [Google Scholar] [CrossRef]
- Campanale, C.; Galafassi, S.; Di Pippo, F.; Pojar, I.; Massarelli, C.; Uricchio, V.F. A critical review of biodegradable plastic mulch films in agriculture, Definitions, scientific background and potential impacts. TrAC Trends Anal. Chem. 2024, 170, 117391. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, N.; Zhao, F.; Wang, J. Mulching practices decreased soil microbial carbon degradation potential under spring maize in the Loess Plateau of China. Agric. Ecosyst. Environ. 2025, 381, 109465. [Google Scholar] [CrossRef]
- Shi, J.; Sun, Y.; Wang, X.; Wang, J. Microplastics reduce soil microbial network complexity and ecological deterministic selection. Environ. Microbiol. 2022, 24, 2157–2169. [Google Scholar] [CrossRef]
- Fei, Y.; Huang, S.; Zhang, H.; Tong, Y.; Wen, D.; Xia, X.; Wang, H.; Luo, Y.; Barceló, D. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Sci. Total Environ. 2020, 707, 135634. [Google Scholar] [CrossRef]
- Graf, M.; Greenfield, L.M.; Reay, M.K.; Bargiela, R.; Golyshin, P.N.; Evershed, R.P.; Lloyd, C.E.; Williams, G.B.; Chadwick, D.R.; Jones, D.L. Field-based assessment of the effect of conventional and biodegradable plastic mulch film on nitrogen partitioning, soil microbial diversity, and maize biomass. Appl. Soil Ecol. 2024, 202, 105595. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Li, Q.; Zhang, L.; Sun, B.; Qin, Y.; Yuan, Y.; Li, C.; Zhang, J.; Liu, H. Biodegradable film drip fertigation is more conducive to reducing the diversity and abundance of antibiotic resistance genes than plastic film drip fertigation. Plant Soil 2025, 1–18. [Google Scholar] [CrossRef]
- Bao, S. Soil Agro-Chemistrical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2007; pp. 268–270. [Google Scholar]
- Kong, M.; Gu, Y.-J.; Han, C.-L.; Shi, X.-P.; Kang, J.; Siddique, K.H.M.; Li, F.-M.; Yuan, Z.-Q. The Prolonged Effect of Film Mulch and P Application on Lucerne Forage Yield in a Semiarid Environment. Front. Plant Sci. 2023, 14, 1331704. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, J.; Cui, Z.; Xu, L.; Liu, Q.; Li, J.; Wang, S.; Zeng, X. Effects of biodegradable plastic mulch film on cabbage agronomic and nutritional quality traits, soil physicochemical properties and microbial communities. Agronomy 2023, 13, 1220. [Google Scholar] [CrossRef]
- Zhang, M.; Xue, Y.; Jin, T.; Zhang, K.; Li, Z.; Sun, C.; Mi, Q.; Li, Q. Effect of long-term biodegradable film mulch on soil physicochemical and microbial properties. Toxics 2022, 10, 129. [Google Scholar] [CrossRef]
- Santini, G.; Maisto, G.; Memoli, V.; Di Natale, G.; Trifuoggi, M.; Santorufo, L. Does the element availability change in soils exposed to bioplastics and plastics for six months? Int. J. Environ. Res. Public Health 2022, 19, 9610. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhao, Y.; Long, B.; Wang, F.; Li, F.; Xie, D. Biodegradable mulch films improve yield of winter potatoes through effects on soil properties and nutrients. Ecotoxicol. Environ. Saf. 2023, 264, 115402. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Yang, X.; Riksen, M.; Geissen, V. Effect of different polymers of microplastics on soil organic carbon and nitrogen–A mesocosm experiment. Environ. Res. 2022, 204, 111938. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Zhang, W.; Dai, Z.; Li, J.; Mao, W.; Yu, F.; Ma, J.; Wang, S.; Zeng, X. Comparative analysis of the effects of plastic mulch films on soil nutrient, yields and soil microbiome in three vegetable fields. Agronomy 2022, 12, 506. [Google Scholar] [CrossRef]
- Nan, W.-G.; Yue, S.-C.; Huang, H.-Z.; Li, S.-Q.; Shen, Y.-F. Effects of plastic film mulching on soil greenhouse gases (CO2, CH4 and N2O) concentration within soil profiles in maize fields on the Loess Plateau, China. J. Integr. Agric. 2016, 15, 451–464. [Google Scholar] [CrossRef]
- Somanathan, H.; Sathasivam, R.; Sivaram, S.; Kumaresan, S.M.; Muthuraman, M.S.; Park, S.U. An update on polyethylene and biodegradable plastic mulch films and their impact on the environment. Chemosphere 2022, 307, 135839. [Google Scholar] [CrossRef]
- Li, Y.; Hou, Y.; Hou, Q.; Long, M.; Wang, Z.; Rillig, M.C.; Liao, Y.; Yong, T. Soil microbial community parameters affected by microplastics and other plastic residues. Front. Microbiol. 2023, 14, 1258606. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Sun, X.; Peng, Y.; Xiao, L. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 2020, 243, 125271. [Google Scholar] [CrossRef]
- Zhou, J.; Gui, H.; Banfield, C.C.; Wen, Y.; Zang, H.; Dippold, M.A.; Charlton, A.; Jones, D.L. The microplastisphere, Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol. Biochem. 2021, 156, 108211. [Google Scholar] [CrossRef]
- Jin, T.; Li, L.; Peng, K.; Li, W.; Jin, D.; Chen, W.; Peng, J. Comparative Analysis of Biodegradable Mulches on Soil Bacterial Community and Pepper Cultivation. Agronomy 2024, 14, 905. [Google Scholar] [CrossRef]
- Muroi, F.; Tachibana, Y.; Kobayashi, Y.; Sakurai, T.; Kasuya, K.-I. Influences of poly (butylene adipate-co-terephthalate) on soil microbiota and plant growth. Polym. Degrad. Stab. 2016, 129, 338–346. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, W.; Jiang, J.; Li, R.; Liang, W. Nitrogen conversion and mechanisms related to reduced emissions by adding exogenous modified magnesium ore during aerobic composting. J. Environ. Manag. 2025, 378, 124550. [Google Scholar] [CrossRef] [PubMed]
- Butbunchu, N.; Pathom-Aree, W. Actinobacteria as promising candidate for polylactic acid type bioplastic degradation. Front. Microbiol. 2019, 10, 2834. [Google Scholar] [CrossRef] [PubMed]
- Basik, A.A.; Sanglier, J.-J.; Yeo, C.T.; Sudesh, K. Microbial degradation of rubber, Actinobacteria. Polymers 2021, 13, 1989. [Google Scholar] [CrossRef]
- Akash, K.; Parthasarathi, R.; Elango, R.; Bragadeeswaran, S. Exploring the plastic-fed Indian mealworm (Tenebrio molitor) gut bacterial strain (Bacillus subtilis AP-04)–A potential driver of polyethylene degradation. J. Hazard. Mater. 2025, 486, 137022. [Google Scholar] [CrossRef]
- Zeng, J.; Yao, J.; Zhang, W.; Zhang, M.; Wang, T.; Yu, X.; Liu, Y.; Sun, X.; Li, L. Biodegradation of commercial polyester polyurethane by a soil-borne bacterium Bacillus velezensis MB01B, Efficiency, degradation pathway, and in-situ remediation in landfill soil. Environ. Pollut. 2024, 363, 125300. [Google Scholar] [CrossRef]
- Nikolić, M.A.; Gauthier, E.; Colwell, J.M.; Halley, P.; Bottle, S.E.; Laycock, B.; Truss, R. The challenges in lifetime prediction of oxodegradable polyolefin and biodegradable polymer films. Polym. Degrad. Stab. 2017, 145, 102–119. [Google Scholar] [CrossRef]
- Fan, P.; Tan, W.; Yu, H. Effects of different concentrations and types of microplastics on bacteria and fungi in alkaline soil. Ecotoxicol. Environ. Saf. 2022, 229, 113045. [Google Scholar] [CrossRef]
- Nasrabadi, A.E.; Ramavandi, B.; Bonyadi, Z. Recent progress in biodegradation of microplastics by Aspergillus sp. in aquatic environments. Colloid Interface Sci. Commun. 2023, 57, 100754. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Liquet y González, J.E.; Henderson, K.B.; Anunciado, M.B.; Hayes, D.G.; DeBruyn, J.M. Soil Microbial Communities Associated with Biodegradable Plastic Mulch Films. Front. Microbiol. 2020, 11, 2840. [Google Scholar] [CrossRef]
- Wang, K.; Flury, M.; Kuzyakov, Y.; Zhang, H.; Zhu, W.; Jiang, R. Aluminum and microplastic release from reflective agricultural films disrupt microbial communities and functions in soil. J. Hazard. Mater. 2025, 491, 137891. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.D.; Qin, X.R.; Li, T.L.; Cao, H.B.; Xie, Y.H. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China. J. Integr. Agric. 2023, 22, 1560–1573. [Google Scholar] [CrossRef]
- Fang, J.; Wang, Y.-B.; Sui, J.-H.; Liu, C.-S.; Liu, R.; Xu, Z.F.; Han, X.-Y.; Zhang, T.; Zhang, Q.-H.; Chen, C.-B. Response of ginseng rhizosphere microbial communities and soil nutrients to phosphorus addition. Ind. Crops Prod. 2025, 226, 120687. [Google Scholar] [CrossRef]
Treatments | pH | EC (µS/cm) | SOM (g/kg) | NO3−-N (mg/kg) | NH4+-N (mg/kg) | AP (mg/kg) | AK (mg/kg) |
---|---|---|---|---|---|---|---|
PE-Ctr | 8.62 ± 0.05 | 150.83 ± 12.19 | 15.40 ± 2.33 | 4.61 ± 0.33 | 8.44 ± 0.18 | 78.14 ± 3.59 | 135.17 ± 4.62 |
PBAT bio | 8.40 ± 0.12 | 138.57 ± 6.67 | 16.21 ± 2.38 | 17.46 ± 1.91 | 9.27 ± 0.37 | 49.27 ± 4.26 | 94.83 ± 6.51 |
RPE | 8.49 ± 0.20 | 439.30 ± 52.06 | 16.06 ± 2.92 | 26.96 ± 3.62 | 9.23 ± 1.26 | 51.16 ± 6.36 | 78.83 ± 6.66 |
t0 | 8.29 ± 0.18 | 450.2 ± 61.24 | 14.97 ± 2.53 | 27.86 ± 3.18 | 8.63 ± 1.34 | 41.7 ± 6.15 | 82.3 ± 8.29 |
WSCa (mg/kg) | WSMg (mg/kg) | AFe (mg/kg) | AMn (mg/kg) | ACu (mg/kg) | AZn (mg/kg) | AB (mg/kg) | AMo (mg/kg) |
41.88 ± 3.93 | 15.05 ± 2.31 | 3.61 ± 0.91 | 1.47 ± 0.29 | 1.43 ± 0.06 | 3.59 ± 0.71 | 0.67 ± 0.23 | 0.09 ± 0.01 |
42.42 ± 7.00 | 14.20 ± 2.38 | 4.17 ± 0.49 | 1.70 ± 0.10 | 1.59 ± 0.07 | 8.26 ± 0.10 | 0.45 ± 0.06 | 0.09 ± 0.01 |
50.95 ± 6.23 | 23.95 ± 3.67 | 2.27 ± 0.72 | 1.12 ± 0.10 | 1.44 ± 0.20 | 2.69 ± 0.87 | 0.55 ± 0.14 | 0.08 ± 0.01 |
91.05 ± 8.36 | 37.14 ± 3.10 | 7.59 ± 1.18 | 3.7 ± 0.16 | 1.99 ± 0.24 | 3.05 ± 1.15 | 0.91 ± 0.10 | 0.09 ± 0.02 |
Microbes | Treatments | Ace | Chao | Sobs | Shannon | Simpson |
---|---|---|---|---|---|---|
Bacteria | PE-Ctr | 6544 ± 103.7 a | 6285 ± 170.8 ab | 4418 ± 58.35 a | 7.148 ± 0.058 b | 0.002 ± 0.0004 a |
PBAT bio | 6823 ± 402.5 a | 6581 ± 327.8 a | 4628 ± 242.1 a | 7.289 ± 0.079 a | 0.002 ± 0.0001 a | |
RPE | 6294 ± 357.4 a | 5993 ± 290.4 b | 4323 ± 225.9 a | 7.097 ± 0.07 b | 0.003 ± 0.0002 a | |
Fungi | T1 | 248.8 ± 45.89 A | 249.6 ± 46.4 A | 240.3 ± 42.45 A | 3.908 ± 0.08 A | 0.045 ± 0.007 A |
PBAT bio | 298.9 ± 23.74 A | 299.4 ± 20.2 A | 285.7 ± 22.5 A | 3.634 ± 0.794 A | 0.099 ± 0.106 A | |
RPE | 231.5 ± 31.19 A | 230.9 ± 29.14 A | 221.3 ± 26.5 A | 3.755 ± 0.484 A | 0.063 ± 0.05 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; He, N.; Li, Y.; Huang, W.; Cao, Y.; Wang, J.; Qian, X.; Yin, L.; Zeng, X. The Effects of Different Plastic Film Mulches on the Physicochemical and Microbiological Properties of Soils for Protected Pepper Cultivation. Horticulturae 2025, 11, 710. https://doi.org/10.3390/horticulturae11060710
Wang G, He N, Li Y, Huang W, Cao Y, Wang J, Qian X, Yin L, Zeng X. The Effects of Different Plastic Film Mulches on the Physicochemical and Microbiological Properties of Soils for Protected Pepper Cultivation. Horticulturae. 2025; 11(6):710. https://doi.org/10.3390/horticulturae11060710
Chicago/Turabian StyleWang, Guiliang, Nannan He, Yulin Li, Wen Huang, Yifan Cao, Juanjuan Wang, Xiaoqing Qian, Li Yin, and Xiaoping Zeng. 2025. "The Effects of Different Plastic Film Mulches on the Physicochemical and Microbiological Properties of Soils for Protected Pepper Cultivation" Horticulturae 11, no. 6: 710. https://doi.org/10.3390/horticulturae11060710
APA StyleWang, G., He, N., Li, Y., Huang, W., Cao, Y., Wang, J., Qian, X., Yin, L., & Zeng, X. (2025). The Effects of Different Plastic Film Mulches on the Physicochemical and Microbiological Properties of Soils for Protected Pepper Cultivation. Horticulturae, 11(6), 710. https://doi.org/10.3390/horticulturae11060710