Revealing the Influence of Rootstock Choice on Clementine Mandarin Leaves and Peel Volatile Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction of EOs
2.2. Gas Chromatography–Mass Spectroscopy (GC-MS) Analysis
3. Results
3.1. Isolation and Yields of EOs
3.2. Chemical Composition of Clementine Peel EOs
3.3. Chemical Composition of Clementine Leaves’ EOs
4. Discussion
4.1. Yields of EOs
4.2. Analysis of Clementine Peel EOs
4.3. Analysis of Clementine Leaves’ EOs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinidou, E.; Michailidis, M.; Ziogas, V.; Masuero, D.; Angeli, A.; Moysiadis, T.; Martens, S.; Ganopoulos, I.; Molassiotis, A.; Sarrou, E. Comparative Evaluation of Secondary Metabolite Chemodiversity of Citrus Genebank Collection in Greece: Can the Peel Be More than Waste? J. Agric. Food Chem. 2024, 72, 9019–9032. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Nicolosi, E. Citrus origin, diffusion, and economic importance. In The Citrus Genome; Gentile, A., La Malfa, S., Deng, Z., Eds.; Compendium of Plant Genomes; Springer International Publishing: Cham, Switzerland, 2020; pp. 5–21. ISBN 978-3-030-10799-4. [Google Scholar]
- Pasdaran, A.; Hamedi, A.; Shiehzadeh, S.; Hamedi, A. A Review of Citrus Plants as Functional Foods and Dietary Supplements for Human Health, with an Emphasis on Meta-Analyses, Clinical Trials, and Their Chemical Composition. Clin. Nutr. ESPEN 2023, 54, 311–336. [Google Scholar] [CrossRef] [PubMed]
- Ελληνική Στατιστική Aρχή (ELSTAT) Στατιστικές Γεωργίας—Κτηνοτροφίας (Agricultural Statistics). Available online: https://www.statistics.gr/el/statistics/-/publication/SPG06/- (accessed on 28 March 2025).
- Leporini, M.; Loizzo, M.R.; Sicari, V.; Pellicanò, T.M.; Reitano, A.; Dugay, A.; Deguin, B.; Tundis, R. Citrus × clementina Hort. Juice Enriched with Its By-Products (Peels and Leaves): Chemical Composition, In Vitro Bioactivity, and Impact of Processing. Antioxidants 2020, 9, 298. [Google Scholar] [CrossRef] [PubMed]
- Germanà, M.A.; Palazzolo, E.; Chiancone, B.; Saiano, F. Characterization of Leaf Essential Oil Composition of Homozygous and Heterozygous Citrus clementina Hort. Extan. and Its Ancestors. J. Essent. Oil-Bear. Plants 2013, 16, 92–101. [Google Scholar] [CrossRef]
- Cebadera, L.; Dias, M.I.; Barros, L.; Fernández-Ruiz, V.; Cámara, R.M.; Del Pino, Á.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Morales, P.; Cámara, M. Characterization of Extra Early Spanish Clementine Varieties (Citrus clementina Hort Ex Tan) as a Relevant Source of Bioactive Compounds with Antioxidant Activity. Foods 2020, 9, 642. [Google Scholar] [CrossRef]
- Panwar, D.; Saini, A.; Panesar, P.S.; Chopra, H.K. Unraveling the Scientific Perspectives of Citrus By-Products Utilization: Progress towards Circular Economy. Trends Food Sci. Technol. 2021, 111, 549–562. [Google Scholar] [CrossRef]
- Sharma, P.; Vishvakarma, R.; Gautam, K.; Vimal, A.; Kumar Gaur, V.; Farooqui, A.; Varjani, S.; Younis, K. Valorization of Citrus Peel Waste for the Sustainable Production of Value-Added Products. Bioresour. Technol. 2022, 351, 127064. [Google Scholar] [CrossRef]
- Hejazi, M.; Grant, J.H.; Peterson, E. Trade Impact of Maximum Residue Limits in Fresh Fruits and Vegetables. Food Policy 2022, 106, 102203. [Google Scholar] [CrossRef]
- Zema, D.A.; Calabrò, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Valorisation of Citrus Processing Waste: A Review. Waste Manag. 2018, 80, 252–273. [Google Scholar] [CrossRef]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef]
- Silvestre, W.P.; Sachett, F.H.; Agostini, F.; Boettcher, G.N.; Sulzbach, M.; Gonzatto, M.P.; Schwarz, S.F.; Pauletti, G.F. Chemical Composition of Petitgrain (Leaf) Essential Oil of Different Citrus Rootstocks and Scion Cultivars. J. Essent. Oil Res. 2020, 32, 394–406. [Google Scholar] [CrossRef]
- Darjazi, B.B. The Effect of Rootstocks on Peel Components and Juice Quality of Clementine Mandarin (Citrus clementina). J. Med. Plants By-Prod. 2016, 2, 227–233. [Google Scholar]
- González-Mas, M.C.; Rambla, J.L.; López-Gresa, M.P.; Blázquez, M.A.; Granell, A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef]
- Kumar, V.; Kaur, R.; Aggarwal, P.; Singh, G. Underutilized Citrus Species: An Insight of Their Nutraceutical Potential and Importance for the Development of Functional Food. Sci. Hortic. 2022, 296, 110909. [Google Scholar] [CrossRef]
- Bora, H.; Kamle, M.; Mahato, D.K.; Tiwari, P.; Kumar, P. Citrus Essential Oils (CEOs) and Their Applications in Food: An Overview. Plants 2020, 9, 357. [Google Scholar] [CrossRef]
- Sharmeen, J.; Mahomoodally, F.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef]
- Noshad, M.; Alizadeh Behbahani, B.; Nikfarjam, Z. Chemical Composition, Antibacterial Activity and Antioxidant Activity of Citrus bergamia Essential Oil: Molecular Docking Simulations. Food Biosci. 2022, 50, 102123. [Google Scholar] [CrossRef]
- Tejada, S.; Pinya, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Potential Anti-Inflammatory Effects of Hesperidin from the Genus Citrus. Curr. Med. Chem. 2019, 25, 4929–4945. [Google Scholar] [CrossRef]
- Prommaban, A.; Chaiyana, W. Microemulsion of Essential Oils from Citrus Peels and Leaves with Anti-Aging, Whitening, and Irritation Reducing Capacity. J. Drug Deliv. Sci. Technol. 2022, 69, 103188. [Google Scholar] [CrossRef]
- Luro, F.; Garcia Neves, C.; Costantino, G.; Da Silva Gesteira, A.; Paoli, M.; Ollitrault, P.; Tomi, F.; Micheli, F.; Gibernau, M. Effect of Environmental Conditions on the Yield of Peel and Composition of Essential Oils from Citrus Cultivated in Bahia (Brazil) and Corsica (France). Agronomy 2020, 10, 1256. [Google Scholar] [CrossRef]
- Ji, X.H.; Liu, F.Z.; Shi, X.B.; Wang, B.L.; Liu, P.P.; Wang, H.B. The Effects of Different Training Systems and Shoot Spacing on the Fruit Quality of’Kyoho’grape. Sci. Agric. Sin. 2019, 52, 1164–1172. [Google Scholar]
- Aguilar-Hernández, M.G.; Sánchez-Bravo, P.; Hernández, F.; Carbonell-Barrachina, Á.A.; Pastor-Pérez, J.J.; Legua, P. Determination of the Volatile Profile of Lemon Peel Oils as Affected by Rootstock. Foods 2020, 9, 241. [Google Scholar] [CrossRef]
- Barboni, T.; Muselli, A.; Luro, F.; Desjobert, J.-M.; Costa, J. Influence of Processing Steps and Fruit Maturity on Volatile Concentrations in Juices from Clementine, Mandarin, and Their Hybrids. Eur. Food Res. Technol. 2010, 231, 379–386. [Google Scholar] [CrossRef]
- Ziogas, V.; Ganos, C.; Graikou, K.; Cheilari, A.; Chinou, I. Chemical Analyses of Volatiles from Kumquat Species Grown in Greece—A Study of Antimicrobial Activity. Horticulturae 2024, 10, 131. [Google Scholar] [CrossRef]
- Babazadeh-Darjazi, B. Comparison of Peel Components of Sweet Orange (Citrus sinensis) Obtained Using Cold-Press and Hydro Distillation Method. Int. J. Agric. Biosci. 2014, 3, 13–17. [Google Scholar]
- Ferrer, V.; Paymal, N.; Quinton, C.; Costantino, G.; Paoli, M.; Froelicher, Y.; Ollitrault, P.; Tomi, F.; Luro, F. Influence of the Rootstock and the Ploidy Level of the Scion and the Rootstock on Sweet Orange (Citrus sinensis) Peel Essential Oil Yield, Composition and Aromatic Properties. Agriculture 2022, 12, 214. [Google Scholar] [CrossRef]
- Benjamin, G.; Tietel, Z.; Porat, R. Effects of Rootstock/Scion Combinations on the Flavor of Citrus Fruit. J. Agric. Food Chem. 2013, 61, 11286–11294. [Google Scholar] [CrossRef]
- Castle, W.S. A Career Perspective on Citrus Rootstocks, Their Development, and Commercialization. HortScience 2010, 45, 11–15. [Google Scholar] [CrossRef]
- Moreno, P.; Ambrós, S.; Albiach-Martí, M.R.; Guerri, J.; Peña, L. Citrus Tristeza Virus: A Pathogen That Changed the Course of the Citrus Industry. Mol. Plant Pathol. 2008, 9, 251–268. [Google Scholar] [CrossRef]
- Morales Alfaro, J.; Bermejo, A.; Navarro, P.; Quiñones, A.; Salvador, A. Effect of Rootstock on Citrus Fruit Quality: A Review. Food Rev. Int. 2023, 39, 2835–2853. [Google Scholar] [CrossRef]
- Gonzatto, M.P.; Kovaleski, A.P.; Böettcher, G.N.; Bender, R.J.; Oliveira, R.P.D.; Schwarz, S.F. Horticultural Performance of Lee Tangelo Grafted onto Six Rootstocks in South Brazil. Citrus Res. Technol. 2016, 37, 47–55. [Google Scholar] [CrossRef]
- Anastasopoulou, E.; Graikou, K.; Ziogas, V.; Ganos, C.; Calapai, F.; Chinou, I. Chemical Profiles and Antimicrobial Properties of Essential Oils from Orange, Pummelo, and Tangelo Cultivated in Greece. Horticulturae 2024, 10, 792. [Google Scholar] [CrossRef]
- Pedruzzi, L. Influence of Rootstock on Essential Oil Composition of Mandarins. Acta Farm. Bonaer. 2004, 23, 498–502. [Google Scholar]
- Darjazi, B.B. The Effects of Rootstock on the Volatile Flavor Components of Page Mandarin [(Citrus reticulata var dancy × Citrus paradisi var dancan) × Citrus clemantina] Flower and Leaf. Afr. J. Agric. Res. 2011, 6, 1884–1896. [Google Scholar]
- Sharma, R.M.; Dubey, A.K.; Awasthi, O.P.; Kaur, C. Growth, Yield, Fruit Quality and Leaf Nutrient Status of Grapefruit (Citrus paradisi Macf.): Variation from Rootstocks. Sci. Hortic. 2016, 210, 41–48. [Google Scholar] [CrossRef]
- Bozinou, E.; Athanasiadis, V.; Chatzimitakos, T.; Ganos, C.; Gortzi, O.; Diamantopoulou, P.; Papanikolaou, S.; Chinou, I.; Lalas, S.I. Essential Oil of Greek Citrus sinensis cv New Hall—Citrus aurantium Pericarp: Effect upon Cellular Lipid Composition and Growth of Saccharomyces cerevisiae and Antimicrobial Activity against Bacteria, Fungi, and Human Pathogenic Microorganisms. Processes 2023, 11, 394. [Google Scholar] [CrossRef]
- Brahmi, F.; Mokhtari, O.; Legssyer, B.; Hamdani, I.; Asehraou, A.; Hasnaoui, I.; Rokni, Y.; Diass, K.; Oualdi, I.; Tahani, A. Chemical and Biological Characterization of Essential Oils Extracted from Citrus Fruits Peels. Mater. Today Proc. 2021, 45, 7794–7799. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, Y.; Liu, C.; Chen, S.; Hu, S.; Xie, Z.; Deng, X.; Xu, J. Comprehensive Comparative Analysis of Volatile Compounds in Citrus Fruits of Different Species. Food Chem. 2017, 230, 316–326. [Google Scholar] [CrossRef]
- Gad, H.A.; El Hassab, M.A.; Elhady, S.S.; Fahmy, N.M. Insights on Citrus clementina Essential Oil as a Potential Antiaging Candidate with a Comparative Chemometric Study on Different Cultivars. Ind. Crops Prod. 2023, 194, 116349. [Google Scholar] [CrossRef]
- Bowman, K.D.; Joubert, J. Citrus Rootstocks. In The Genus Citrus; Elsevier: Amsterdam, The Netherlands, 2020; pp. 105–127. ISBN 978-0-12-812163-4. [Google Scholar]
- Dutta, S.K.; Gurung, G.; Yadav, A.; Laha, R.; Mishra, V.K. Factors Associated with Citrus Fruit Abscission and Management Strategies Developed so Far: A Review. N. Z. J. Crop Hortic. Sci. 2023, 51, 467–488. [Google Scholar] [CrossRef]
- M’Hiri, N.; Ioannou, I.; Ghoul, M.; Boudhrioua, M. Proximate Chemical Composition of Orange Peel and Variation of Phenols and Antioxidant Activity during Convective Air Drying. J. New Sci. 2015, 9, 881–890. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Türkmen, M.; Kamiloğlu, M.; Kaya, D.A.; Toplu, C. Effects of Different Rootstocks on the Essential Oil Composition in the Peel and Leaf of Rio Red Grapefruit. Int. J. Chem. Technol. 2024, 8, 213–217. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.-Y.; Jang, S.-K.; Kim, K.-J.; Park, M.-J. Anti-Inflammatory Effects of Essential Oils from the Peels of Citrus Cultivars. Pharmaceutics 2023, 15, 1595. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, D.P.; Poudel, D.K.; Satyal, P.; Khadayat, K.; Dhami, S.; Aryal, D.; Chaudhary, P.; Ghimire, A.; Parajuli, N. Volatile Compounds and Antioxidant and Antimicrobial Activities of Selected Citrus Essential Oils Originated from Nepal. Molecules 2021, 26, 6683. [Google Scholar] [CrossRef]
- Shin, S.-D.; Kim, C.-S.; Lee, J.-H. Compositional Characteristics and Antibacterial Activity of Essential Oils in Citrus Hybrid Peels. Food Sci. Technol. 2022, 42, e95921. [Google Scholar] [CrossRef]
- Heydari Koochi, Z.; Jahromi, K.G.; Kavoosi, G.; Babaei, S. Citrus Peel Waste Essential Oil: Chemical Composition along with Anti-amylase and Anti-glucosidase Potential. Int. J. Food Sci. Technol. 2022, 57, 6795–6804. [Google Scholar] [CrossRef]
- Forner-Giner, M.Á.; Sánchez-Bravo, P.; Hernández, F.; Primo-Capella, A.; Cano-Lamadrid, M.; Legua, P. Effect of Rootstock on the Volatile Profile of Mandarins. Foods 2023, 12, 1599. [Google Scholar] [CrossRef]
- Georgiou, A. Evaluation of Rootstocks for ‘Clementine’ Mandarin in Cyprus. Sci. Hortic. 2002, 93, 29–38. [Google Scholar] [CrossRef]
- Darjazi, B. The Effects of Rootstock on the Volatile Flavour Components of Page Mandarin [(C. reticulata var dancy × C. paradisi var dancan) × C. clemantina] Juice and Peel. Iran. J. Chem. Chem. Eng. 2009, 28, 99–111. [Google Scholar]
- Khan, M.N.; Asim, M.; Ashraf, T.; Ahmed, W.; Abbas, T.; Malik, A.U.; Anwar, R.; Ul-Haq, E. Effect of Rootstocks on Quantity and Quality of Essential Peel Oil of ‘Kinnow’ Mandarin (Citrus reticulata Blanco). Acta Hortic. 2020, 1299, 85–92. [Google Scholar] [CrossRef]
- Tundis, R.; Xiao, J.; Silva, A.S.; Carreiró, F.; Loizzo, M.R. Health-Promoting Properties and Potential Application in the Food Industry of Citrus medica L. and Citrus × clementina Hort. Ex Tan. Essential Oils and Their Main Constituents. Plants 2023, 12, 991. [Google Scholar] [CrossRef] [PubMed]
- Thi Nguyen, T.-T.; Thi Tran, T.-T.; Hua, T.-M.; Diep, T.-T.; Chau, D.-K.N.; Duus, F.; Le, T.N. Investigation of Peel and Leaf Essential Oils of Citrus clementina Hort. Ex Tan. Growing in the South of Vietnam. J. Essent. Oil Res. 2016, 28, 96–103. [Google Scholar] [CrossRef]
- Leporini, M.; Tundis, R.; Sicari, V.; Pellicanò, T.M.; Dugay, A.; Deguin, B.; Loizzo, M.R. Impact of Extraction Processes on Phytochemicals Content and Biological Activity of Citrus × clementina Hort. Ex Tan. Leaves: New Opportunity for under-Utilized Food by-Products. Food Res. Int. 2020, 127, 108742. [Google Scholar] [CrossRef] [PubMed]
- Killiny, N.; Valim, M.F.; Jones, S.E.; Hijaz, F. Effect of Different Rootstocks on the Leaf Metabolite Profile of ‘Sugar Belle’ Mandarin Hybrid. Plant Signal. Behav. 2018, 13, e1445934. [Google Scholar] [CrossRef]
- Hojjati, M.; Barzegar, H. Chemical Composition and Biological Activities of Lemon (Citrus limon) Leaf Essential Oil. Nutr. Food Sci. Res. 2017, 4, 15–24. [Google Scholar] [CrossRef]
- Elhawary, E.A.; Nilofar, N.; Zengin, G.; Eldahshan, O.A. Variation of the Essential Oil Components of Citrus aurantium Leaves upon Using Different Distillation Techniques and Evaluation of Their Antioxidant, Antidiabetic, and Neuroprotective Effect against Alzheimer’s Disease. BMC Complement. Med. Ther. 2024, 24, 73. [Google Scholar] [CrossRef]
- Kasuan, N.; Muhammad, Z.; Yusoff, Z.; Rahiman, M.H.F.; Taib, M.N.; Haiyee, Z.A. Extraction of Citrus hystrix D.C. (Kaffir Lime) Esssential Oil Using Automated Steam Distillation Process: Analysis of Volatile Compounds. Malays. J. Anal. Sci. 2013, 17, 359–369. [Google Scholar]
- Susandarini, R.; Rugayah; Nugroho, L.H.; Subandiyah, S. Chemotaxonomy of Indonesian Citrus maxima Based on Leaf Essential Oils. OnLine J. Biol. Sci. 2016, 16, 26–33. [Google Scholar] [CrossRef]
- Tao, N.; Liu, Y.; Zhang, J.; Zeng, H.; Tang, Y.; Zhang, M. Chemical Composition of Essential Oil from the Peel of Satsuma Mandarin. Afr. J. Biotechnol. 2008, 7, 1261–1264. [Google Scholar]
- Jones, S.E.; Killiny, N. Influence of Rootstock on the Leaf Volatile Organic Compounds of Citrus Scion Is More Pronounced after the Infestation with Diaphorina citri. Plants 2021, 10, 2422. [Google Scholar] [CrossRef]
- Castle, W.S.; Baldwin, J.C. Rootstock Effects On ‘Hamlin’ and ‘Valencia’ Orange Trees Growing at Central Ridge and Flatwoods Locations. Proc. Fla. State Hort. Soc. 2005, 118, 4–14. [Google Scholar]
- Gaikwad, P.N.; Sidhu, G.S.; Brar, N.S.; Singh, J.; Tokala, V.Y.; Sharma, A.; Manchanda, P. Roles of Metabolites in Fruit Maturation, HLB-Defense Regulation and Crosstalk between Phytohormone Signalling Pathways in Citrus. Plant Growth Regul. 2025. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, C. Long-Distance Movement of mRNAs in Plants. Plants 2020, 9, 731. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; De Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Pesticidal Activity of Citrus Fruits for the Development of Sustainable Fruit-Processing Waste Management and Agricultural Production. Plants 2025, 14, 754. [Google Scholar] [CrossRef]
S-R1 | S-R2 | S-R3 | S-R4 | |
---|---|---|---|---|
Peels’ EO (%, v/w) | 0.25 | 0.83 | 0.62 | 0.40 |
Leaves’ EO (%, v/w) | 0.91 | 0.67 | 1.20 | 0.43 |
Chemical Group | Compounds | KI | S-R1 | S-R2 | S-R3 | S-R4 |
---|---|---|---|---|---|---|
MHs | α-pinene | 939 | 1.26 ± 0.12 | 3.18 ± 0.13 | 2.47 ± 0.19 | 1.36 ± 0.11 |
MHs | sabinene | 975 | 0.43 ± 0.03 | 0.79 ± 0.06 | - | 1.52 ± 0.12 |
MHs | myrcene | 991 | 4.53 ± 0.18 | 8.34 ± 0.33 | 4.51 ± 0.18 | 6.09 ± 0.24 |
MHs | α-terpinene | 1017 | 0.11 ± 0.01 | - | - | - |
MHs | limonene | 1029 | 80.37 ± 1.61 | 65.63 ± 1.31 | 56.47 ± 1.13 | 82.45 ± 2.01 |
MHs | trans-β-ocimene | 1050 | - | 0.24 ± 0.05 | - | 0.10 ± 0.01 |
MHs | γ-terpinene | 1060 | 0.18 ± 0.01 | 0.49 ± 0.01 | 0.53 ± 0.02 | 0.23 ± 0.02 |
Alcohol | n-octanol | 1068 | 0.51 ± 0.04 | 0.91 ± 0.06 | 0.85 ± 0.07 | 0.15 ± 0.03 |
OMs | linalool oxide | 1087 | 0.28 ± 0.02 | 0.67 ± 0.04 | - | - |
OMs | terpinolene | 1089 | - | 0.22 ± 0.01 | 0.69 ± 0.08 | 0.11 ± 0.00 |
OMs | linalool | 1097 | 5.26 ± 0.21 | 4.88 ± 0.30 | 3.75 ± 0.15 | 2.41 ± 0.50 |
MHs | 1,3,8-p-menthatriene | 1110 | - | - | 0.46 ± 0.06 | - |
OMs | 2,8-trans-p-menthadien-1-ol | 1123 | 0.19 ± 0.10 | 0.23 ± 0.02 | 0.47 ± 0.04 | - |
OMs | limonene oxide | 1137 | 0.18 ± 0.00 | 0.11 ± 0.00 | - | - |
OMs | β-terpineol | 1144 | - | - | 0.38 ± 0.02 | - |
OMs | citronellal | 1153 | 0.38 ± 0.01 | 0.37 ± 0.07 | 0.35 ± 0.01 | 0.26 ± 0.08 |
OMs | terpinen-4-ol | 1177 | 0.35 ± 0.01 | 1.06 ± 0.11 | 1.31 ± 0.03 | 0.60 ± 0.00 |
OMs | α-terpineol | 1189 | 3.1 ± 0.67 | 3.19 ± 0.18 | 13.24 ± 0.12 | 0.59 ± 0.03 |
Aldehyde | decanal | 1202 | - | 1.92 ± 0.04 | 0.94 ± 0.01 | 1.00 ± 0.00 |
Ester | octanol acetate | 1214 | - | 0.15 ± 0.00 | 0.24 ± 0.07 | - |
OMs | trans-carveol | 1217 | - | - | 0.81 ± 0.02 | - |
OMs | citronellol | 1226 | - | 0.49 ± 0.01 | 0.76 ± 0.04 | 0.10 ± 0.03 |
OMs | cis-carveol | 1229 | 0.21 ± 0.05 | 0.54 ± 0.03 | 0.33 ± 0.01 | - |
OMs | carvone | 1243 | 0.15 ± 0.00 | 0.18 ± 0.12 | 0.32 ± 0.03 | - |
OMs | geraniol | 1253 | - | 0.12 ± 0.03 | 0.17 ± 0.06 | - |
Aldehyde | trans-2-decenal | 1264 | - | 0.13 ± 0.05 | 0.21 ± 0.00 | - |
OMs | perillaldehyde | 1272 | - | 0.42 ± 0.02 | - | 0.23 ± 0.03 |
OMs | limonen-10-ol | 1290 | - | 0.11 ± 0.12 | 0.28 ± 0.01 | - |
Aldehyde | 2,4-decadienal | 1317 | - | 0.17 ± 0.06 | 0.29 ± 0.01 | - |
OMs | α-terpinyl acetate | 1349 | - | 0.11 ± 0.02 | 0.25 ± 0.03 | - |
SHs | α-copaene | 1377 | 0.16 ± 0.07 | 0.25 ± 0.04 | 0.39 ± 0.09 | 0.19 ± 0.03 |
SHs | β-elemene | 1391 | - | - | 0.22 ± 0.11 | 0.09 ± 0.02 |
Aldehyde | dodecanal | 1409 | - | 0.12 ± 0.02 | 0.63 ± 0.04 | - |
SHs | β-copaene | 1432 | - | 0.15 ± 0.01 | 0.12 ± 0.03 | 0.13 ± 0.01 |
SHs | trans-α-bergamotene | 1435 | - | - | 0.23 ± 0.14 | - |
SHs | α-humulene | 1455 | - | 0.13 ± 0.04 | - | - |
Aldehyde | trans-2-dodecenal | 1466 | - | 0.12 ± 0.01 | 0.22 ± 0.04 | 0.31 ± 0.04 |
SHs | germacrene D | 1485 | 0.13 ± 0.00 | 0.17 ± 0.04 | 0.39 ± 0.01 | 0.20 ± 0.02 |
SHs | valencene | 1496 | - | 0.14 ± 0.05 | 0.27 ± 0.05 | |
SHs | α-farnesene | 1506 | - | - | 0.23 ± 0.01 | 0.09 ± 0.02 |
SHs | γ-cadinene | 1514 | - | - | 0.24 ± 0.09 | - |
SHs | δ-cadinene | 1523 | - | 0.4 ± 0.01 | 0.65 ± 0.02 | 0.27 ± 0.13 |
OSs | elemol | 1550 | - | 0.12 ± 0.00 | 0.15 ± 0.02 | 0.12 ± 0.01 |
Fatty Acid | dodecanoic acid | 1567 | - | - | 0.32 ± 0.03 | - |
OSs | caryophyllene oxide | 1583 | 0.14 ± 0.05 | - | 0.14 ± 0.03 | - |
OSs | γ-eudesmol | 1632 | - | 0.18 ± 0.01 | 0.25 ± 0.10 | - |
OSs | α-cadinol | 1654 | 0.12 ± 0.06 | - | 0.14 ± 0.02 | - |
OSs | T-muurolol | 1646 | - | 0.19 ± 0.01 | - | - |
OSs | α-sinensal | 1757 | 0.2 ± 0.03 | 1.1 ± 0.02 | 1.37 ± 0.06 | 0.47 ± 0.06 |
Fatty Acid | hexadecanoic acid | 1922 | - | - | 0.21 ± 0.03 | - |
Total | 97.8 | 97.72 | 96.25 | 99.07 |
Chemical Groups | Relative Concentration (Area %) | |||
---|---|---|---|---|
S-R1 | S-R2 | S-R3 | S-R4 | |
MHs | 86.88 | 78.67 | 64.44 | 91.75 |
OMs | 10.1 | 12.7 | 23.11 | 4.3 |
SHs | 0.29 | 1.24 | 2.74 | 0.97 |
OSs | 0.46 | 1.59 | 2.05 | 0.59 |
Aldehydes | - | 2.46 | 2.29 | 1.31 |
Alcohols | 0.51 | 0.91 | 0.85 | 0.15 |
Esters | - | 0.15 | 0.24 | - |
Fatty acids | - | - | 0.53 | - |
Chemical Group | Compounds | KI | S-R1 | S-R2 | S-R3 | S-R4 |
---|---|---|---|---|---|---|
MHs | α-thujene | 930 | 0.35 ± 0.12 | 0.59 ± 0.09 | 0.42 ± 0.16 | - |
MHs | α-pinene | 939 | 1.7 ± 0.01 | 2.49 ± 0.16 | 2.25 ± 0.07 | 6.25 ± 0.35 |
MHs | camphene | 954 | - | 0.14 ± 0.03 | 0.15 ± 0.05 | - |
MHs | sabinene | 975 | 21.71 ± 1.08 | 17.99 ± 1.06 | 16.23 ± 0.07 | 28.40 ± 1.84 |
MHs | myrcene | 991 | 3.49 ± 0.15 | 3.86 ± 0.21 | 2.62 ± 0.36 | 4.39 ± 0.08 |
MHs | α-phellandrene | 1003 | 0.72 ± 0.05 | 0.77 ± 0.02 | - | - |
MHs | δ-2-carene | 1002 | 7.65 ± 0.66 | 7.45 ± 0.18 | 5.49 ± 1.65 | 7.32 ± 0.22 |
MHs | α-terpinene | 1017 | 0.41 ± 0.02 | 0.67 ± 0.02 | 0.12 ± 0.03 | 1.81 ± 0.00 |
MHs | p-cymene | 1025 | 0.35 ± 0.03 | 0.48 ± 0.01 | - | - |
MHs | limonene | 1029 | 10.41 ± 1.00 | 13.19 ± 1.29 | 17.38 ± 1.04 | 6.42 ± 0.93 |
MHs | cis-ocimene | 1034 | - | 0.49 ± 0.05 | - | 0.55 |
MHs | trans-β-ocimene | 1050 | 6.15 ± 0.06 | 6.53 ± 0.51 | 0.94 ± 0.11 | 8.31 ± 0.29 |
MHs | γ-terpinene | 1060 | 1.05 ± 0.04 | 1.5 ± 0.09 | 0.2 ± 0.08 | 2.49 ± 0.17 |
OMs | cis-sabinene hydrate | 1070 | 0.61 ± 0.02 | - | - | 0.74 ± 0.05 |
OMs | trans-linalool oxide | 1073 | - | - | 0.82 ± 0.04 | - |
OMs | cis-linalool oxide | 1087 | - | - | 0.76 ± 0.01 | - |
OMs | terpinolene | 1089 | 1.55 ± 0.02 | 2.36 ± 0.51 | 0.35 ± 0.04 | 2.43 ± 0.41 |
OMs | linalool | 1097 | 12.11 ± 1.20 | 14.42 ± 0.98 | 14.68 ± 0.81 | 5.62 ± 0.16 |
OMs | trans-sabinene hydrate | 1098 | - | 0.88 ± 0.03 | 1.15 ± 0.07 | 0.22 ± 0.01 |
OMs | cis-p-menth-2-en-1-ol | 1122 | - | - | - | 0.22 ± 0.01 |
OMs | trans-p-menth-2-en-1-ol | 1140 | - | - | - | 0.11 ± 0.02 |
OMs | 1-terpineol | 1134 | - | 0.16 ± 0.03 | - | - |
OMs | limonene oxide | 1142 | - | 0.49 ± 0.07 | 1.15 ± 0.09 | - |
OMs | citronellal | 1153 | 2.33 ± 0.14 | 1.71 ± 0.22 | 4.31 ± 1.07 | 1.12 ± 0.09 |
OMs | terpinen-4-ol | 1177 | 1.92 ± 0.20 | 4.55 ± 0.36 | 1.92 ± 0.15 | 3.24 ± 0.55 |
OMs | p-cymen-8-ol | 1183 | - | 0.29 ± 0.03 | 0.45 ± 0.02 | - |
OMs | α-terpineol | 1189 | 0.36 ± 0.06 | 0.74 ± 0.01 | 0.97 ± 0.05 | 0.30 ± 0.02 |
Aldehyde | decanal | 1202 | - | - | 0.89 ± 0.10 | - |
OMs | carveol | 1217 | - | 0.24 ± 0.05 | 0.87 ± 0.03 | - |
OMs | citronellol | 1226 | 1.13 ± 0.04 | 1.1 ± 0.08 | 1.84 ± 0.07 | 0.20 ± 0.04 |
OMs | carvone | 1243 | - | 0.14 ± 0.03 | 0.96 ± 0.08 | - |
OMs | α-terpinyl acetate | 1349 | - | 0.19 ± 0.02 | 0.34 ± 0.05 | 0.10 ± 0.02 |
OMs | neryl acetate | 1362 | - | 0.12 ± 0.00 | 0.2 ± 0.01 | - |
SHs | α-copaene | 1377 | - | - | 0.15 ± 0.03 | - |
OMs | geranyl acetate | 1381 | 0.67 ± 0.05 | 0.61 ± 0.04 | 1.25 ± 0.0 2 | 0.44 ±0.03 |
SHs | β-caryophyllene | 1419 | 2.61 ± 0.52 | 1.37 ± 0.16 | 1.84 ± 0.19 | 1.45 ± 0.11 |
SHs | α-humulene | 1455 | - | 0.2 ± 0.07 | - | 0.19 ± 0.05 |
SHs | trans-β-farnesene | 1457 | 0.79 ± 0.04 | 0.31 ± 0.02 | 1.2 ± 0.05 | 0.66 ± 0.06 |
SHs | sesquisabinene | 1458 | - | - | - | 0.17 ± 0.01 |
SHs | germacrene D | 1485 | - | - | 0.12 ± 0.02 | - |
SHs | valencene | 1496 | - | 0.12 ± 0.01 | - | - |
SHs | bicyclo-germacrene | 1500 | 0.61 ± 0.07 | 0.33 ± 0.08 | 0.19 ± 0.05 | 0.59 ± 0.05 |
SHs | α-farnesene | 1506 | 0.4 ± 0.01 | 0.21 ± 0.03 | 0.37 ± 0.03 | 0.34 ± 0.04 |
SHs | sesquiphellandrene-β | 1522 | - | - | - | 0.15 ± 0.00 |
SHs | δ-cadinene | 1523 | - | 0.2 ± 0.01 | - | 0.10 ± 0.02 |
OSs | elemol | 1550 | - | 0.21 ± 0.03 | 0.18 ± 0.01 | 0.09 ± 0.02 |
OSs | nerolidol | 1563 | - | 0.35 ± 0.05 | 0.56 ± 0.02 | 0.38 ± 0.04 |
OSs | spathulenol | 1578 | - | 0.23 ± 0.06 | - | - |
OSs | caryophyllene oxide | 1583 | - | 0.32 ± 0.01 | 2.55 ± 0.11 | 0.07 ± 0.06 |
OSs | trans-sesquisabinene hydrate | 1579 | - | 0.18 ± 0.02 | - | 0.18 ± 0.03 |
OSs | α-cadinol | 1640 | - | 0.25 ± 0.01 | - | 0.12 ± 0.00 |
OSs | T-muurolol | 1646 | - | 0.15 ± 0.02 | 0.19 ± 0.03 | - |
OSs | β-sinensal | 1700 | 8.51 ± 0.99 | 5.82 ± 0.63 | 5.87 ± 0.87 | 7.82 ± 0.36 |
OSs | α-sinensal | 1757 | 7.49 ± 0.04 | 0.21 ± 0.03 | 1.79 ± 0.09 | 0.20 ± 0.06 |
Total | 95.08 | 94.87 | 93.87 | 93.19 |
Chemical Groups | Relative Concentration (Area %) | |||
---|---|---|---|---|
S-R1 | S-R2 | S-R3 | S-R4 | |
MHs | 53.99 | 56.15 | 45.8 | 65.94 |
OMs | 20.68 | 28 | 32.02 | 14.74 |
SHs | 4.41 | 2.74 | 3.87 | 3.65 |
OSs | 16.0 | 7.72 | 11.14 | 8.86 |
Aldehydes | - | - | 0.89 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziogas, V.; Panou, E.; Graikou, K.; Ganos, C.; Ntamposi, E.; Chinou, I. Revealing the Influence of Rootstock Choice on Clementine Mandarin Leaves and Peel Volatile Profile. Horticulturae 2025, 11, 523. https://doi.org/10.3390/horticulturae11050523
Ziogas V, Panou E, Graikou K, Ganos C, Ntamposi E, Chinou I. Revealing the Influence of Rootstock Choice on Clementine Mandarin Leaves and Peel Volatile Profile. Horticulturae. 2025; 11(5):523. https://doi.org/10.3390/horticulturae11050523
Chicago/Turabian StyleZiogas, Vasileios, Evgenia Panou, Konstantia Graikou, Christos Ganos, Evgenia Ntamposi, and Ioanna Chinou. 2025. "Revealing the Influence of Rootstock Choice on Clementine Mandarin Leaves and Peel Volatile Profile" Horticulturae 11, no. 5: 523. https://doi.org/10.3390/horticulturae11050523
APA StyleZiogas, V., Panou, E., Graikou, K., Ganos, C., Ntamposi, E., & Chinou, I. (2025). Revealing the Influence of Rootstock Choice on Clementine Mandarin Leaves and Peel Volatile Profile. Horticulturae, 11(5), 523. https://doi.org/10.3390/horticulturae11050523