Effects of Light Quantity and Quality on Horticultural Crops
1. Introduction
2. Overview of Published Articles
2.1. LEDs as a Sole Source of Light
2.2. Shading Net Experiments
2.3. Supplementary LED Lighting
3. Conclusions
Conflicts of Interest
List of Contributors
- Hernández-Adasme, C.; Guevara, M.J.; Faicán-Benenaula, M.A.; Neira, R.; Delgadillo, D.; Muñoz, V.; Salazar-Parra, C.; Sun, B.; Yang, X.; Escalona, V.H. Effect of Light Conditions on Growth and Antioxidant Parameters of Two Hydroponically Grown Lettuce Cultivars (Green and Purple) in a Vertical Farm System. Horticulturae 2025, 11, 220. https://doi.org/10.3390/horticulturae11020220.
- Maru, R.N.; Wesonga, J.; Okazawa, H.; Kavoo, A.; Neondo, J.O.; Mazibuko, D.M.; Maskey, S.; Orsini, F. Evaluation of Growth, Yield and Bioactive Compounds of Ethiopian Kale (Brassica carinata A. Braun) Microgreens under Different LED Light Spectra and Substrates. Horticulturae 2024, 10, 436. https://doi.org/10.3390/horticulturae10050436.
- Liu, S.; Lu, J.; Tian, J.; Cao, P.; Li, S.; Ge, H.; Han, M.; Zhong, F. Effect of Photoperiod and Gibberellin on the Bolting and Flowering of Non-Heading Chinese Cabbage. Horticulturae 2023, 9, 1349. https://doi.org/10.3390/horticulturae9121349.
- Jiménez-Viveros, Y.; Valiente-Banuet, J.I. Colored Shading Nets Differentially Affect the Phytochemical Profile, Antioxidant Capacity, and Fruit Quality of Piquin Peppers (Capsicum Annuum L. Var. glabriusculum). Horticulturae 2023, 9, 1240. https://doi.org/10.3390/horticulturae9111240.
- Balázs, L.; Kovács, G.P.; Gyuricza, C.; Piroska, P.; Tarnawa, Á.; Kende, Z. Quantifying the Effect of Light Intensity Uniformity on the Crop Yield by Pea Microgreens Growth Experiments. Horticulturae 2023, 9, 1187. https://doi.org/10.3390/horticulturae9111187.
- Delgado-Vargas, V.A.; Hernández-Bolio, G.I.; Hernández-Núñez, E.; Gautier, H.; Ayala-Garay, O.J.; Garruña, R. Mesh Crop Cover Optimizes the Microenvironment in a Tropical Region and Modifies the Physiology and Metabolome in Tomato. Horticulturae 2023, 9, 636. https://doi.org/10.3390/horticulturae9060636.
- An, X.; Tan, T.; Zhang, X.; Guo, X.; Zhu, Y.; Song, Z.; Wang, D. Effects of Light Intensity on Endogenous Hormones and Key Enzyme Activities of Anthocyanin Synthesis in Blueberry Leaves. Horticulturae 2023, 9, 618. https://doi.org/10.3390/horticulturae9060618.
- Daud, Z.M.; Ismail, M.F.; Hakiman, M. Effects of LED Red and Blue Spectra Irradiance Levels and Nutrient Solution EC on the Growth, Yield, and Phenolic Content of Lemon Basil (Ocimum citriodurum Vis.). Horticulturae 2023, 9, 416. https://doi.org/10.3390/horticulturae9040416.
- Appolloni, E.; Paucek, I.; Pennisi, G.; Stringari, G.; Gabarrell Durany, X.; Orsini, F.; Gianquinto, G. Supplemental LED Lighting Improves Fruit Growth and Yield of Tomato Grown under the Sub-Optimal Lighting Condition of a Building Integrated Rooftop Greenhouse (i-RTG). Horticulturae 2022, 8, 771. https://doi.org/10.3390/horticulturae8090771.
- Jiménez-Viveros, Y.; Núñez-Palenius, H.G.; Fierros-Romero, G.; Valiente-Banuet, J.I. Modification of Light Characteristics Affect the Phytochemical Profile of Peppers. Horticulturae 2023, 9, 72. https://doi.org/10.3390/horticulturae9010072.
References
- Stirbet, A.; Lazár, D.; Guo, Y.; Govindjee, G. Photosynthesis: Basics, History and Modelling. Ann. Bot. 2020, 126, 511–537. [Google Scholar] [CrossRef] [PubMed]
- Thoma, F.; Somborn-Schulz, A.; Schlehuber, D.; Keuter, V.; Deerberg, G. Effects of Light on Secondary Metabolites in Selected Leafy Greens: A Review. Front. Plant Sci. 2020, 11, 497. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Iqbal, M.; Rasheed, R.; Hussain, I.; Riaz, M.; Arif, M.S. Chapter 8—Environmental Stress and Secondary Metabolites in Plants: An Overview. In Plant Metabolites and Regulation Under Environmental Stress; Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni, M.N., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 153–167. ISBN 978-0-12-812689-9. [Google Scholar]
- Sipos, L.; Boros, I.F.; Csambalik, L.; Székely, G.; Jung, A.; Balázs, L. Horticultural Lighting System Optimalization: A Review. Sci. Hortic. 2020, 273, 109631. [Google Scholar] [CrossRef]
- Pinho, P.; Jokinen, K.; Halonen, L. Horticultural Lighting—Present and Future Challenges. Light. Res. Technol. 2012, 44, 427–437. [Google Scholar] [CrossRef]
- Kochetova, G.V.; Avercheva, O.V.; Bassarskaya, E.M.; Zhigalova, T.V. Light Quality as a Driver of Photosynthetic Apparatus Development. Biophys. Rev. 2022, 14, 779–803. [Google Scholar] [CrossRef] [PubMed]
- Shelford, T.; Wallace, C.; Both, A.J. Calculating and Reporting Key Light Ratios for Plant Research. Acta Hortic. 2020, 1296, 559–566. [Google Scholar] [CrossRef]
- Hernández-Andrés, J.; Romero, J.; Nieves, J.L.; Lee, R.L. Color and Spectral Analysis of Daylight in Southern Europe. J. Opt. Soc. Am. A JOSAA 2001, 18, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Castellano, S.; Mugnozza, G.S.; Russo, G.; Briassoulis, D.; Mistriotis, A.; Hemming, S.; Waaijenberg, D. Plastic Nets in Agriculture: A General Review of Types and Applications. Appl. Eng. Agric. 2008, 24, 799–808. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Pantaleo, M.A.; Santamaria, P. Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes. Agronomy 2021, 11, 835. [Google Scholar] [CrossRef]
- Kozai, T.; Amagai, Y.; Hayashi, E. Towards Sustainable Plant Factories with Artificial Lighting (PFALs): From Greenhouses to Vertical Farms. In Achieving Sustainable Greenhouse Cultivation; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; ISBN 978-0-429-26674-4. [Google Scholar]
# | Light Quantity | Light Quality | Crop | Effect |
---|---|---|---|---|
1 | PPFD: 90, 180 µmol m−2 s−1 Photoperiod: 12 h | R/B: 2.1, 3.1, 5.0 | lettuce | growth traits nutrient profile |
2 | PPFD: 160 µmol m−2 s−1 Photoperiod: 12 h | B, R, W, B + R + W | Ethiopian kale | growth traits nutrient profile |
3 | PPFD: 200 µmol m−2 s−1 Photoperiod: 12, 14, 16, 18 h | W | Chinese cabbage | bolting and flowering time, gibberellin conc. |
4 | Relative solar irradiance: 75–100% Photoperiod: 10–14 h (daytime) | Control: no shade Gray, blue, black | piquin pepper | phytochemical profile |
5 | PPFD: 33–390 µmol m−2 s−1 Photoperiod: 16 h | R/B: 2.01–2.78 R/FR: 2.57–4.27 | pea | growth traits |
6 | Relative solar irradiance: 50%, 75%, 80%, 100% Photoperiod: (daytime) | Control: no shade Black shading nets | tomato | biomass, photosynthesis rate, metabolism |
7 | Relative solar irradiance: 25%, 50%, 75%, 100% Photoperiod: (daytime) | Control: no shade Black shading nets | blueberry | hormone and enzyme activities |
8 | PPFD: 80, 160 µmol m−2 s−1 Photoperiod: 14 h | R/B = 4.1 | lemon basil | growth traits, phenolic content |
9 | Supplementary LED light PPFD: 40, 170 µmol m−2 s−1 Photoperiod: 16 h, 0.5 h EOD | R/B = 3 FR R/B = 3 + FR | tomato | crop yield and quality |
10 | Review paper covering a broad range of light parameters | pepper | phytochemical profile |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balázs, L.; Kovács, G.P. Effects of Light Quantity and Quality on Horticultural Crops. Horticulturae 2025, 11, 512. https://doi.org/10.3390/horticulturae11050512
Balázs L, Kovács GP. Effects of Light Quantity and Quality on Horticultural Crops. Horticulturae. 2025; 11(5):512. https://doi.org/10.3390/horticulturae11050512
Chicago/Turabian StyleBalázs, László, and Gergő Péter Kovács. 2025. "Effects of Light Quantity and Quality on Horticultural Crops" Horticulturae 11, no. 5: 512. https://doi.org/10.3390/horticulturae11050512
APA StyleBalázs, L., & Kovács, G. P. (2025). Effects of Light Quantity and Quality on Horticultural Crops. Horticulturae, 11(5), 512. https://doi.org/10.3390/horticulturae11050512