Phytochemical Characterization of Humulus lupulus L. Varieties Cultivated in Brazil: Agricultural Zoning for the Crop in Tropical Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Experimental Design
2.3. Cultivation Characterization
2.4. Harvest and Sample Processing
2.5. Essential Oil Extraction
2.6. Chemical Composition Analysis of Essential Oils by Gas Chromatography–Mass Spectrometry and Flame Ionization (GC-MS/FID)
2.7. Total α- and β-Acid Content (%)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Bitter Acids
3.2. Essential Oil Yield and Composition
3.3. Climate Adaptation Implications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Lúpulo no Brasil: Perspectivas e Realidades; Ministério da Agricultura, Pecuária e Abastecimento; Secretaria de Agricultura Familiar e Cooperativismo: Brasília, Brazil, 2022; 175p, ISBN 978-65-86803-89-1.
- Gutiérrez, R.M.; de Oliveira, R.R.; Ribeiro, T.H.; de Oliveira, K.K.; Silva, J.V.; Alves, T.C.; do Amaral, L.R.; de Souza Gomes, M.; de Souza Gomes, M.; Chalfun-Junior, A. Unveiling the phenology and associated floral regulatory pathways of Humulus lupulus L. in subtropical conditions. Planta 2024, 259, 150. [Google Scholar] [CrossRef] [PubMed]
- Spósito, M.B.; Ismael, R.V.; Barbosa, C.D.A.; Tagliaferro, A.L. A cultura do lúpulo. In Série Produtor Rural, 68; ESALQ-Divisão de Biblioteca: Piracicaba, Brazil, 2019. [Google Scholar]
- Durello, R.S.; Silva, L.M.; Bogusz, S. Química do lúpulo. Quim. Nova 2019, 42, 900–919. [Google Scholar] [CrossRef]
- Kowalska, G.; Bouchentouf, S.; Kowalski, R.; Wyrostek, J.; Pankiewicz, U.; Mazurek, A.; Włodarczyk-Stasiak, M. The hop cones (Humulus lupulus L.): Chemical composition, antioxidant properties and molecular docking simulations. J. Herb. Med. 2022, 33, 100566. [Google Scholar] [CrossRef]
- Astray, G.; Gullón, P.; Gullón, B.; Munekata, P.E.S.; Lorenzo, J.M. Humulus lupulus L. as a Natural Source of Functional Biomolecules. Appl. Sci. 2020, 10, 5074. [Google Scholar] [CrossRef]
- IHGC—International Hop Growers Convention. 2023. Available online: https://www.ihgc.org/wp-content/uploads/IHGC_CountryReportsSummary.pdf (accessed on 12 January 2025).
- Jastrombek, J.M.; Fagherazzi, M.M.; de Cássio Pierezan, H.; Rufato, L.; Sato, A.J.; da Silva Ricce, W.; Marques, V.V.; Leles, N.R.; Roberto, S.R. Hop: An emerging crop in subtropical areas in Brazil. Horticulturae 2022, 8, 393. [Google Scholar] [CrossRef]
- Pavolovic, V.; Cerenak, A.; Pavolovic, M.; Kosir, I.J.; Rozman, C.; Bohanec, M.; Ceh, B.; Naglic, B. Modelling of quality prediction for hops (Humulus lupulus L.) in relation to meteorological variables. In Proceedings of the Balwois Conference Proceedings, Ohrid, North Macedonia, 25–29 May 2010; pp. 1–10. [Google Scholar]
- Mongelli, A.; Rodolfi, M.; Ganino, T.; Marieschi, M.; Caligiani, A.; Dall’Asta, C.; Bruni, R. Are Humulus lupulus L. ecotypes and cultivars suitable for the cultivation of aromatic hop in Italy? A phytochemical approach. Ind. Crops Prod. 2016, 83, 693–700. [Google Scholar] [CrossRef]
- Ruggeri, R.; Rossini, F.; Roberto, S.R.; Sato, A.J.; Perrine, L.; Laban, K.R.; Agehara, S. Development of hop cultivation in new growing areas: The state of the art and the way forward. Eur. J. Agron. 2024, 161, 127335. [Google Scholar] [CrossRef]
- Kubes, J. Changing Geography of Hop Regions in the World 1990–2022. J. Am. Soc. Brew. Chem. 2024, 83, 238–247. [Google Scholar] [CrossRef]
- Mozny, M.; Trnka, M.; Vlach, V.; Zalud, Z.; Cejka, T.; Hajkova, L.; Potopova, V.; Semenov, M.A.; Semeradova, D.; Büntgen, U. Climate-induced decline in the quality and quantity of European hops calls for immediate adaptation measures. Nat. Commun. 2023, 14, 6028. [Google Scholar] [CrossRef]
- Peragine, J.N. The Complete Guide to Growing Your Own Hops, Malts, and Brewing Herbs: Everything You Need to Know Explained Simply; Atlantic Publishing Company: Ocala, FL, USA, 2011. [Google Scholar]
- Gingrich, C.; Hart, J.; Christensen, N. Hops Fertilizer Guide; OSU Extension Catalog, Oregon State University: Corvallis, OR, USA, 2018. [Google Scholar]
- Dodds, K. Hops—A Guide for New Growers; NSW Department of Primary Industries: Orange, NSW, Australia, 2017; ISBN 978-1-76058-007-0. [Google Scholar]
- Darby, H.; Madden, R. The UVM Mobile Hop Harvester; University of Vermont: Burlington, VT, USA, 2012. [Google Scholar]
- Lagos, F.S.; Deschamps, C.; Zuffellato-Ribas, K.C.; Antoniazzi, N. Biomass and essential oil production of hops cv Chinook in response to nitrogen fertilization. Rev. Ceres. 2023, 70, e70509. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2017; pp. 46–52. [Google Scholar]
- van Den Dool, H.A.N.D.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Egts, H.; Durben, D.J.; Dixson, J.A.; Zehfus, M.H.A. Multicomponent UV Analysis of α- and β-Acids in Hops. J. Chem. Educ. 2012, 89, 117–120. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: Um sistema computacional de análise estatística. Ciência Agrotecnol. 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Pang, Z.; Xu, L.; Viau, C.; Lu, Y.; Salavati, R.; Basu, N.; Xia, J. MetaboAnalystR 4.0: A unified LC-MS workflow for global metabolomics. Nat. Commun. 2024, 15, 3675. [Google Scholar] [CrossRef]
- Van Cleemput, M.; Cattoor, K.; De Bosscher, K.; Haegeman, G.; De Keukeleire, D.; Heyerick, A. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J. Nat. Prod. 2009, 72, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Verzele, M.; De Keukeleire, D. Chemistry and Analysis of Hop and Beer Bitter Acids; Elsevier: Amsterdam, The Netherlands, 1991; Volume 27, pp. 1–411. [Google Scholar]
- Haas, J.I. Barth-Haas Hops Companion: A Guide to the Varieties of Hops and Hop Products. Barth-Haas Group. 2009. Available online: https://www.johnihaas.com/wp-content/uploads/2021/11/HAAS_HopsCompanion-Final-ForWeb.pdf (accessed on 12 January 2025).
- Huang, X.Q.; Dudareva, N. Plant specialized metabolism. Curr. Biol. 2023, 33, R473–R478. [Google Scholar] [CrossRef]
- Contin, D.R.; Habermann, E.; de Souza, B.C.; de Oliveira, E.A.; Martinez, C.A.; Vieira, P.C.; Da Costa, F.B. Exploring the tropical acclimation of European and American hop cultivars (Humulus lupulus L.): Focus on physiology, productivity, and chemical composition. Eur. J. Agron. 2023, 151, 126990. [Google Scholar] [CrossRef]
- Fortuna, G.C.; Neves, C.S.; Campos, O.P.; Gomes, J.A.O.; Silva, J.C.R.L.; Souza, A.A.; Funari, C.S.; Marques, M.O.M.; Bonfim, F.P.G. Hop Tropicalization: Chemical Compositions of Varieties Grown under Organic and Conventional Systems in Subtropical Conditions. Horticulturae 2023, 9, 855. [Google Scholar] [CrossRef]
- McAdam, E.L.; Vaillancourt, R.E.; Koutoulis, A.; Whittock, S.P. Quantitative genetic parameters for yield, plant growth and cone chemical traits in hop (Humulus lupulus L.). BMC Genet. 2014, 15, 22. [Google Scholar] [CrossRef]
- Gallardo, M.; Agehara, S.; Rechcigl, J. Optimization of trellis design and height for double-season hop (Humulus lupulus L.) production in a subtropical climate: Growth, morphology, yield, and cone quality during establishment years. Eur. J. Agron. 2025, 162, 127415. [Google Scholar] [CrossRef]
- Dos Santos, F.C.; Dos Santos, M.; Huezsmann, R.D.; Ceola, D.; De Souza, E.M.; Junior, C.F.; Guidolin, A.F.; Coimbra, J.L. Phenotypic variability in the induction of alpha acids in hops (Humulus lupulus L.) in Brazil. J. Agric. Sci. 2022, 14, 198–205. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, N.; Yang, A.; Huang, J.; Ren, X.; Xian, M.; Zou, H. Hop bitter acids: Resources, biosynthesis, and applications. Appl. Microbiol. Biotechnol. 2021, 105, 4343–4356. [Google Scholar] [CrossRef] [PubMed]
- Czubacka, A.; Skomra, U.; Agacka-Mołdoch, M.; Koziara-Ciupa, M. The Expression of Genes Involved in Synthesis of Bitter Acids and Xanthohumol and the Content of These Compounds in Aroma and Bitter Hop under Reduced Nitrogen Fertilisation. Agronomy 2024, 14, 1680. [Google Scholar] [CrossRef]
- Rutnik, K.; Ocvirk, M.; Košir, I.J. The stability of hop (Humulus lupulus L.) resins during long-period storage. Plants 2023, 12, 936. [Google Scholar] [CrossRef]
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A story that begs to be told. A review. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar] [CrossRef]
- Duarte, P.F.; do Nascimento, L.H.; Bandiera, V.J.; Fischer, B.; Fernandes, I.A.; Paroul, N.; Alexander, J. Exploring the versatility of hop essential oil (Humulus lupulus L.): Bridging brewing traditions with modern industry applications. Ind. Crops Prod. 2024, 218, 118974. [Google Scholar] [CrossRef]
- Morcol, T.B.; Negrin, A.; Matthews, P.D.; Kennelly, E.J. Hop (Humulus lupulus L.) terroir has large effect on a glycosylated green leaf volatile but not on other aroma glycosides. Food Chem. 2020, 321, 126644. [Google Scholar] [CrossRef]
- Guimarães, B.P.; Nascimento, P.G.B.D.; Ghesti, G.F. Intellectual property and plant variety protection: Prospective study on Hop (Humulus lupulus L.) cultivars. World Pat. Inf. 2021, 65, 102041. [Google Scholar] [CrossRef]
- Duarte, L.M.; Amorim, T.L.; Grazul, R.M.; de Oliveira, M.A.L. Differentiation of aromatic, bittering and dual-purpose commercial hops from their terpenic profiles: An approach involving batch extraction, GC–MS and multivariate analysis. Food Res. Int. 2020, 138, 109768. [Google Scholar] [CrossRef]
- Gresta, F.; Calvi, A.; Santonoceto, C.; Strano, T.; Ruberto, G. Agronomic traits and essential oil profiles of Humulus lupulus L. cultivated in southern Italy. J. Esssent. Oil Res. 2022, 35, 60–70. [Google Scholar] [CrossRef]
- Alfaro-Saiz, E.; Cámara-Leret, S.; González-González, M.; Fernández-Álvarez, O.; Rodríguez-Fernández, S.; López-López, D.; Paniagua-García, A.I.; Acedo, C.; Díez-Antolínez, R. The Memory of Hops: Rural Bioculture as a Collective Means of Reimagining the Future. Sustainability 2024, 16, 2470. [Google Scholar] [CrossRef]
- Acosta-Rangel, A.; Agehara, S.; Rechcigl, J. Double-season production of hops (Humulus lupulus L.) with photoperiod manipulation in a subtropical climate. Sci. Hortic. 2024, 332, 113177. [Google Scholar] [CrossRef]
- Dias, G.S.; Gallon, M.E.; Gobbo-Neto, L. Comparative analysis of four hop cultivars grown in Brazil and the USA by GC-MS-based metabolomics. J. Inst. Brew. 2024, 130, 238–249. [Google Scholar] [CrossRef]
- Cabral, M.N.F. Óleos Essenciais e Hidrolatos de Humulus lupulus L.: Caracterização Química de Variedades Cultivadas No Estado de São Paulo. Master’s Thesis, Faculdade de Ciências Agronômicas UNESP, Botucatu, Brazil, 2023. [Google Scholar]
- Korpelainen, H.; Pietiläinen, M. Hop (Humulus lupulus L.): Traditional and present use, and future potential. Econ. Bot. 2021, 75, 302–322. [Google Scholar] [CrossRef]
- Mozny, M.; Tolasz, R.; Nekovar, J.; Sparks, T.; Trnka, M.; Zalud, Z. The impact of climate change on the yield and quality of Saaz hops in the Czech Republic. Agric. For. Meteorol. 2009, 149, 913–919. [Google Scholar] [CrossRef]
- Donner, P.; Pokorný, J.; Ježek, J.; Krofta, K.; Patzak, J.; Pulkrábek, J. Influence of weather conditions, irrigation and plant age on yield and alpha-acids content of Czech hop (Humulus lupulus L.) cultivars. Plant Soil Environ. 2020, 66, 41–46. [Google Scholar] [CrossRef]
- Torbenson, M.C.A.; Esper, J.; Brázdil, R.; Büntgen, U.; Olesen, J.E.; Semarádová, D.; Vlach, M.; Urban, O.; Balek, J.; Kolar, T.; et al. Past and future climate-driven changes of agricultural land in central Europe. Geophys. Res. Lett. 2024, 51, e2024GL112363. [Google Scholar] [CrossRef]
- Almeida, A.d.R.; de Conto, L.C. Lúpulo no Brasil: Uma cultura promissora em ascensão. Food Sci. Technol. 2024, 3, 1–7. [Google Scholar] [CrossRef]
- Neves, C.S.; Aires, E.S.; Campos, O.P.; Fortuna, G.C.; de Oliveira Gomes, J.A.; Callili, D.; Ono, E.O.; Rodrigues, J.D.; Bonfim, F.P.G. Physiological and productive performance of hop (‘Humulus lupulus L.’) varieties grown under subtropical conditions in Brazil. Aust. J. Crop Sci. 2020, 18, 280–287. [Google Scholar] [CrossRef]
Date | Depth (cm) | pH | OM | P | K | Ca | Mg | CEC | V% | S | B | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CaCl2 | G·dm−3 | mg·dm−3 | mmolc·dm−3 | % | mg/dm3 | ||||||||||
March 2020 | 0–20 | 5.0 | 25 | 56 | 3.4 | 39 | 11 | 77 | 70 | 71 | 1.00 | 4.7 | 19 | 5.1 | 3.8 |
20–40 | 4.8 | 19 | 30 | 2.2 | 23 | 10 | 70 | 50 | 52 | 0.90 | 5.4 | 17 | 3.0 | 1.7 |
Variety | Total α-Acids (%) | Total β-Acids (%) |
---|---|---|
Comet | 10.54 a | 4.30 |
Columbus | 4.25 b | 2.69 |
Fuggle | 2.86 c | 1.92 |
Chinook | 1.41 d | 1.79 |
Centennial | 1.35 e | 2.15 |
Nugget | 1.15 f | 1.82 |
Cascade | 0.98 g | 1.30 |
Comet | Columbus | Fuggle | Chinook | Centennial | Nugget | Cascade | |
---|---|---|---|---|---|---|---|
Yield (%) | 2.36 a | 1.17 b | 0.70 d | 0.94 c | 1.13 bc | 1.07 bc | 0.70 d |
Substance | LRI Calc. | LRI Lit. | Relative Content (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Chinook | Fuggle | Nugget | Cascade | Centennial | Comet | Columbus | |||
isobutyl isobutyrate | 915 | 908 | ─ | ─ | 0.37 | ─ | ─ | ─ | ─ |
α-pinene | 936 | 932 | ─ | 0.08 | ─ | ─ | ─ | ─ | ─ |
isoamyl propionate | 973 | 960 | ─ | ─ | 0.67 | 0.22 | ─ | 0.43 | 0.35 |
β-pinene | 985 | 974 | 0.37 | 0.85 | 0.63 | 0.67 | ─ | 0.58 | 0.43 |
β-myrcene | 992 | 988 | 34.44 | 62.05 | 57.375 | 51.82 | 7.98 | 56.8 | 56.5 |
isoamyl isobutyrate | 1015 | 1007 | ─ | ─ | 1.34 | 0.36 | ─ | ─ | ─ |
isopentyl isobutyrate | 1018 | 1014 * | 0.41 | ─ | 2.2 | 0.70 | ─ | 0.48 | 0.64 |
methyl heptanoate | 1028 | 1021 | 0.27 | 0.22 | 1.73 | 0.23 | ─ | 0.20 | |
limonene | 1034 | 1024 | ─ | 0.19 | 0.12 | ─ | ─ | ─ | ─ |
β-phellandrene | 1037 | 1025 | ─ | 0.25 | ─ | ─ | ─ | ─ | 0.27 |
(E)-β-ocimene | 1048 | 1044 | ─ | ─ | ─ | ─ | ─ | 2.65 | ─ |
linalol | 1095 | 1095 * | 0.47 | 0.50 | 1.54 | 0.30 | 0.31 | 0.90 | 0.99 |
n-nonanal | 1113 | 1100 | 0.57 | 0.41 | 0.88 | 1.65 | 0.44 | ─ | 0.36 |
methyl octanoate | 1129 | 1123 | ─ | ─ | 0.94 | 0.23 | 0.38 | 0.32 | ─ |
2-decanone | 1200 | 1190 | 0.50 | 0.27 | ─ | ─ | 0.71 | ─ | ─ |
methyl-(2E)-nonenoate | 1217 | 1221 | ─ | ─ | 0.46 | ─ | ─ | ─ | ─ |
methyl nonanoate | 1229 | 1223 | 0.26 | ─ | 1.35 | 0.36 | 0.92 | 0.35 | ─ |
3Z, 6Z, 9Z-tridecatriene | 1288 | 1286 | ─ | ─ | ─ | ─ | 0.18 | ─ | ─ |
2-undecanone | 1300 | 1291 * | 0.46 | 0.27 | 1.19 | 1.67 | 4.43 | 0.34 | ─ |
methyl geranate | 1329 | 1322 | 1.08 | 0.24 | ─ | ─ | ─ | 0.94 | 0.66 |
methyl decanoate | 1329 | 1323 | ─ | ─ | 0.84 | ─ | 0.46 | ─ | ─ |
geranyl acetate | 1384 | 1379 | 0.53 | ─ | ─ | 0.98 | ─ | 1.60 | 2.96 |
2-dodecanone | 1401 | 1388 | ─ | 0.11 | ─ | ─ | 0.88 | ─ | ─ |
(E)-caryophyllene | 1425 | 1417 | 6.65 | 4.15 | 3.42 | 3.98 | 2.38 | 9.7 | 5.18 |
β-copaene | 1436 | 1430 | ─ | ─ | ─ | ─ | ─ | ─ | 0.17 |
(E)-α-bergamotene | 1436 | 1432 | 0.81 | 0.56 | ─ | ─ | 1.39 | ─ | ─ |
(E)-β-farnesene | 1456 | 1454 | 16.73 | 14.49 | ─ | 4.36 | 31.09 | ─ | ─ |
α-humulene | 1462 | 1455 * | 5.49 | 0.12 | 9.64 | 11.34 | 2.00 | 0.51 | 6.14 |
geranyl propanoate | 1475 | 1476 | ─ | ─ | ─ | ─ | ─ | 1.37 | 1.76 |
β-chamigrene | 1479 | 1476 | 1.08 | 0.75 | ─ | ─ | 0.73 | 0.69 | ─ |
γ-muurolene | 1481 | 1478 | 0.29 | ─ | ─ | ─ | ─ | ─ | 0.32 |
β-selinene | 1497 | 1489 | 7.26 | 5.67 | 1.89 | 0.82 | 7.79 | 5.98 | 0.28 |
2-tridecanone | 1502 | 1495 | ─ | ─ | 0.34 | 2.49 | ─ | ─ | ─ |
α-selinene | 1503 | 1505 * | 9.41 | 6.45 | 1.27 | 0.68 | 11.18 | 3.78 | 0.95 |
(E,E)-α-farnesene | 1513 | 1505 | ─ | 0.10 | ─ | ─ | 0.58 | ─ | ─ |
geranyl isobutanoate | 1513 | 1514 | 1.29 | ─ | ─ | 1.37 | ─ | 4.89 | 2.43 |
γ-cadinene | 1521 | 1514 * | 0.35 | 0.17 | ─ | ─ | ─ | ─ | 0.42 |
δ-cadinene | 1525 | 1522 | 0.66 | 0.16 | ─ | 0.44 | ─ | ─ | 0.60 |
selina-3,7(11)-diene | 1549 | 1545 | ─ | ─ | ─ | ─ | 1.07 | 0.85 | 0.21 |
germacrene B | 1568 | 1559 | ─ | ─ | ─ | ─ | 1.79 | 0.26 | 0.28 |
(2E)-tridecenol | 1577 | 1568 | ─ | ─ | ─ | ─ | 1.06 | 0.58 | ─ |
caryophyllene oxide | 1593 | 1593 | ─ | 0.10 | ─ | ─ | ─ | ─ | 0.24 |
humulene epoxide II | 1622 | 1608 | ─ | ─ | 0.55 | 0.95 | ─ | ─ | ─ |
neo-intermedeol | 1668 | 1658 | ─ | 0.23 | ─ | ─ | ─ | ─ | ─ |
14-hydroxy-(Z)-caryophyllene | 1668 | 1666 | 1.50 | ─ | 1.37 | ─ | 5.45 | 2.20 | 2.12 |
intermedeol | 1672 | 1666 | 2.04 | 1.17 | ─ | ─ | 3.28 | 1.74 | 0.81 |
14-hydroxy-9-epi-(E)-caryophyllene | 1673 | 1668 | ─ | ─ | 0.28 | ─ | ─ | ─ | ─ |
(6Z)-pentadecen-2-one | 1677 | 1667 | ─ | ─ | 0.20 | ─ | 1.69 | 0.24 | 0.16 |
2-pentadecanone | 1705 | 1697 | ─ | ─ | ─ | ─ | 0.36 | ─ | ─ |
monoterpene hydrocarbons | 34.81 | 63.42 | 58.13 | 52.49 | 7.98 | 60.03 | 57.20 | ||
oxygenated monoterpenes | 0.47 | 0.50 | 1.54 | 0.30 | 0.31 | 0.90 | 1.02 | ||
sesquiterpene hydrocarbons | 48.73 | 32.62 | 16.22 | 21.62 | 60.00 | 21.77 | 14.55 | ||
oxygenated sesquiterpenes | 5.50 | 1.70 | 3.57 | 0.95 | 14.56 | 6.14 | 5.53 | ||
ketones | 0.96 | 0.65 | 1.73 | 4.16 | 8.07 | 0.58 | 0.16 | ||
esters | 3.84 | 0.46 | 9.90 | 4.45 | 1.76 | 10.58 | 8.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabino, B.C.C.; Bonfim, F.P.G.; Cabral, M.N.F.; Viriato, V.; Pak Campos, O.; Neves, C.S.; Fernandes, G.d.C.; Gomes, J.A.O.; Facanali, R.; Marques, M.O.M. Phytochemical Characterization of Humulus lupulus L. Varieties Cultivated in Brazil: Agricultural Zoning for the Crop in Tropical Areas. Horticulturae 2025, 11, 470. https://doi.org/10.3390/horticulturae11050470
Sabino BCC, Bonfim FPG, Cabral MNF, Viriato V, Pak Campos O, Neves CS, Fernandes GdC, Gomes JAO, Facanali R, Marques MOM. Phytochemical Characterization of Humulus lupulus L. Varieties Cultivated in Brazil: Agricultural Zoning for the Crop in Tropical Areas. Horticulturae. 2025; 11(5):470. https://doi.org/10.3390/horticulturae11050470
Chicago/Turabian StyleSabino, Bárbara Cristina Claro, Filipe Pereira Giardini Bonfim, Mariana Nunes Ferreira Cabral, Viviany Viriato, Olivia Pak Campos, Caio Scardini Neves, Gustavo do Carmo Fernandes, Jordany Aparecida Oliveira Gomes, Roselaine Facanali, and Marcia Ortiz Mayo Marques. 2025. "Phytochemical Characterization of Humulus lupulus L. Varieties Cultivated in Brazil: Agricultural Zoning for the Crop in Tropical Areas" Horticulturae 11, no. 5: 470. https://doi.org/10.3390/horticulturae11050470
APA StyleSabino, B. C. C., Bonfim, F. P. G., Cabral, M. N. F., Viriato, V., Pak Campos, O., Neves, C. S., Fernandes, G. d. C., Gomes, J. A. O., Facanali, R., & Marques, M. O. M. (2025). Phytochemical Characterization of Humulus lupulus L. Varieties Cultivated in Brazil: Agricultural Zoning for the Crop in Tropical Areas. Horticulturae, 11(5), 470. https://doi.org/10.3390/horticulturae11050470