Simultaneous Quantification of Phenolic Compounds in the Leaves and Roots of Peucedanum japonicum Thunb. Using HPLC-PDA with Various Extraction Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Instrumentation
2.3. Chemicals and Reagents
2.4. Sample Extraction
2.5. Total Phenolic Content Assay
2.6. Total Coumarin Content Assay
2.7. HPLC Conditions
2.8. Calibration Curves
2.9. Statistical Analysis
3. Results
3.1. Extraction Yield
3.2. TPC of the Different Extracts
3.3. The TCC of the Different Extracts
3.4. Content of Compounds 1–6 by HPLC Quantitative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Chen, K.; Rose, P.; Zhu, Y.Z. Natural products in drug discovery and development: Synthesis and medicinal perspective of leonurine. Front. Chem. 2022, 10, 1036329. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Baranwal, J.; Pati, S.; Barse, B.; Khan, R.H.; Kumar, A. Application of plant products in the synthesis and functionalisation of biopolymers. Int. J. Biol. Macromol. 2023, 237, 124174. [Google Scholar] [CrossRef] [PubMed]
- Asiminicesei, D.-M.; Fertu, D.I.; Gavrilescu, M. Impact of heavy metal pollution in the environment on the metabolic profile of medicinal plants and their therapeutic potential. Plants 2024, 13, 913. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, M.; Vassileva, V. Stress management in plants: Examining provisional and unique dose-dependent responses. Int. J. Mol. Sci. 2023, 24, 5105. [Google Scholar] [CrossRef]
- Ozyigit, I.I.; Dogan, I.; Hocaoglu-Ozyigit, A.; Yalcin, B.; Erdogan, A.; Yalcin, I.E.; Cabi, E.; Kaya, Y. Production of secondary metabolites using tissue culture-based biotechnological applications. Front. Chem. 2023, 14, 1132555. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Rispo, F.; De Negri Atanasio, G.; Demori, I.; Costa, G.; Marchese, E.; Perera-Del-Rosario, S.; Serrano-Candelas, E.; Palomino-Schätzlein, M.; Perata, E.; Robino, F.; et al. An extensive review on phenolic compounds and their potential estrogenic properties on skin physiology. Front. Cell Dev. Biol. 2024, 11, 1305835. [Google Scholar] [CrossRef]
- Hano, C.; Tungmunnithum, D. Plant polyphenols, more than just simple natural antioxidants: Oxidative stress, aging and age-related diseases. Medicines 2020, 7, 26. [Google Scholar] [CrossRef]
- Mutha, R.E.; Tatiya, A.U.; Surana, S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Future J. Pharm. Sci. 2021, 7, 25. [Google Scholar] [CrossRef]
- Kruk, J.; Aboul-Enein, B.H.; Duchnik, E.; Marchlewicz, M. Antioxidative properties of phenolic compounds and their effect on oxidative stress induced by severe physical exercise. J. Physiol. Sci. 2022, 72, 19. [Google Scholar] [CrossRef]
- Chintha, P.; Sarkar, D.; Pecota, K.; Dogramaci, M.; Hatterman-Valenti, H.; Shetty, K. Phenolic bioactive-linked antioxidant, anti-hyperglycemic, and antihypertensive properties of sweet potato cultivars with different flesh color. Hortic. Environ. Biotechnol. 2023, 64, 877–893. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Cruz-Martins, N.; López-Jornet, P.; Lopez, E.P.-F.; Harun, N.; Yeskaliyeva, B.; Beyatli, A.; Sytar, O.; Shaheen, S.; Sharopov, F.; et al. Natural coumarins: Exploring the pharmacological complexity and underlying molecular mechanisms. Oxid. Med. Cell. Longev. 2021, 2021, 6492346. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.; Saha, S. Coumarins: An important phytochemical with therapeutic potential. In Plant-Derived Bioactives; Springer: Singapore, 2020; pp. 205–222. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, G.; Shi, Q.; Zhu, H.; Zhou, N.; Kong, X.; Jiang, D.; Liu, C. Identification of a novel coumarins biosynthetic pathway in the endophytic fungus Fusarium oxysporum GU-7 with antioxidant activity. Appl. Environ. Microbiol. 2023, 89, e0160122. [Google Scholar] [CrossRef] [PubMed]
- Balewski, Ł.; Szulta, S.; Jalińska, A.; Kornicka, A. A mini-review: Recent advances in coumarin-metal complexes with biological properties. Front. Chem. 2021, 9, 781779. [Google Scholar] [CrossRef]
- Park, Y.J.; Choi, Y.B.; Oh, S.B.; Moon, J.; Truong, T.Q.; Huynh, P.K.; Kim, S.M. Development and application of a high-performance liquid chromatography diode-array detection (HPLC–DAD) method for the simultaneous quantification of phenolic compounds in the aerial part of Glehnia littoralis. Appl. Biol. Chem. 2024, 67, 34. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Do, T.H.; Nguyen, T.T.; Vu, T.D.; Tran, T.H.; Nguyen, H.T.; Doan, T.P.; Oh, W.K.; Park, J.H. Effects of coumarins from roots of Paramignya scandens (Griff.) Craib on LPS-induced IL-1β and IL-10 cytokine production in RAW 264.7 macrophages. Nat. Prod. Sci. 2024, 30, 30–38. [Google Scholar] [CrossRef]
- Zou, Y.; Teng, Y.; Li, J.; Yan, Y. Recent advances in the biosynthesis of coumarin and its derivatives. Green Chem. Eng. 2023, 5, 150–154. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L. Progress in the chemistry of naturally occurring coumarins. In Progress in the Chemistry of Organic Natural Products; Springer-Verlag: New York, NY, USA, 2017; pp. 241–304. [Google Scholar] [CrossRef]
- Khandy, M.T.; Grigorchuk, V.P.; Sofronova, A.K.; Gorpenchenko, T.Y. The different composition of coumarins and antibacterial activity of Phlojodicarpus sibiricus and Phlojodicarpus villosus root extracts. Plants 2024, 13, 601. [Google Scholar] [CrossRef]
- Min, S.J.; Lee, H.; Shin, M.-S.; Lee, J.W. Synthesis and biological properties of pyranocoumarin derivatives as potent anti-inflammatory agents. Int. J. Mol. Sci. 2023, 24, 10026. [Google Scholar] [CrossRef]
- Lee, C.-D.; Cho, H.; Shim, J.; Tran, G.H.; Lee, H.-D.; Ahn, K.H.; Yoo, E.; Chung, M.J.; Lee, S. Characteristics of phenolic compounds in Peucedanum japonicum according to various stem and seed colors. Molecules 2023, 28, 6266. [Google Scholar] [CrossRef]
- Joh, H.J.; Park, Y.S.; Kang, J.-S.; Kim, J.T.; Lado, J.P.; Han, S.I.; Chin, Y.-W.; Park, H.-S.; Park, J.Y.; Yang, T.-J. A recent large-scale intraspecific IR expansion and evolutionary dynamics of the plastome of Peucedanum japonicum. Sci. Rep. 2025, 15, 104. [Google Scholar] [CrossRef] [PubMed]
- Hai, T.Q.; Huong, N.T.; Son, N. The medicinal plant Peucedanum japonicum Thunberg: A review of traditional use, phytochemistry, and pharmacology. Fitoterapia 2024, 179, 106270. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, Y.; Yang, X. Qianhu (Peucedanum praeruptorum Dunn) improves exercise capacity in mice by regulating Nrf2/HO-1 oxidative stress signaling pathway. Appl. Biol. Chem. 2023, 66, 26. [Google Scholar] [CrossRef]
- Singh, K.; Gupta, J.K.; Chanchal, D.K.; Shinde, M.G.; Kumar, S.; Jain, D.; Almarhoon, Z.M.; Alshahrani, A.M.; Calina, D.; Sharifi-Rad, J.; et al. Natural products as drug leads: Exploring their potential in drug discovery and development. Naunyn Schmiedebergs Arch. Pharmacol. 2024. [Google Scholar] [CrossRef]
- Choi, J.; Lee, H.D.; Cho, H.; Lee, C.D.; Tran, G.H.; Kim, H.; Moon, S.K.; Lee, S. Antioxidative phenolic compounds from the aerial parts of Cyperus exaltatus var. iwasakii and their HPLC analysis. Appl. Biol. Chem. 2023, 66, 61. [Google Scholar] [CrossRef]
- Yang, Z.; Yue, S.-J.; Gao, H.; Zhang, Q.; Xu, D.-Q.; Zhou, J.; Li, J.-J.; Tang, Y.-P. Natural deep eutectic solvent-ultrasound assisted extraction: A green approach for ellagic acid extraction from Geum japonicum. Front. Nutr. 2023, 9, 1079767. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, J.H.; Shin, J.Y.; Kang, E.S.; Cho, B.O. Anti-inflammatory effects of Peucedanum japonicum Thunberg leaves extract in Lipopolysaccharide-stimulated RAW264.7 cells. J. Ethnopharmacol. 2023, 309, 116362. [Google Scholar] [CrossRef]
- Tran, G.H.; Cho, H.; Lee, H.-D.; Lee, C.-D.; Shim, J.; Ahn, K.W.; Sung, J.S.; Yoo, E.; Lee, S. Analysis of the total polyphenol, flavonoid, and phenolic acid contents in three different leaf types of Lepidium sativum. Nat. Prod. Sci. 2023, 29, 235–241. [Google Scholar] [CrossRef]
- De Carvalho Osório, A.; Martins, J.L.S. Determinação de cumarina em extrato fluido e tintura de guaco por espectrofotometria derivada de primeira ordem. Braz. J. Pharm. Sci. 2004, 40, 481–486. [Google Scholar] [CrossRef]
- Wakeel, A.; Jan, S.A.; Ullah, I.; Shinwari, Z.K.; Xu, M. Solvent polarity mediates phytochemical yield and antioxidant capacity of Isatis tinctoria. PeerJ 2019, 7, e7857. [Google Scholar] [CrossRef]
- Lee, J.-E.; Jayakody, J.; Kim, J.-I.; Jeong, J.-W.; Choi, K.-M.; Kim, T.-S.; Seo, C.; Azimi, I.; Hyun, J.; Ryu, B. The influence of solvent choice on the extraction of bioactive compounds from Asteraceae: A comparative review. Foods 2024, 13, 3151. [Google Scholar] [CrossRef] [PubMed]
- Bitwell, C.; Indra, S.S.; Luke, C.; Kakoma, M.K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci. Afr. 2023, 19, e01585. [Google Scholar] [CrossRef]
- Sajjadi, S.E.; Shokoohinia, Y.; Hemmati, S. Isolation and identification of furanocoumarins and a phenylpropanoid from the acetone extract and identification of volatile constituents from the essential oil of Peucedanum pastinacifolium. Chem. Nat. Compd. 2012, 48, 668–671. [Google Scholar] [CrossRef]
- Khalil, N.; Bishr, M.; El-Degwy, M.; Abdelhady, M.; Amin, M.; Salama, O. Assessment of conventional solvent extraction vs. supercritical fluid extraction of Khella (Ammi visnaga L.) furanochromones and their cytotoxicity. Molecules 2021, 26, 1290. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Liu, L.; Xu, Z.; Kong, Q.; Feng, S.; Chen, T.; Zhou, L.; Yang, H.; Xiao, Y.; Ding, C. Solvent effects on the phenolic compounds and antioxidant activity associated with Camellia polyodonta flower extracts. ACS Omega 2024, 9, 27192–27203. [Google Scholar] [CrossRef]
- Niro, E.; Marzaioli, R.; De Crescenzo, S.; D’Abrosca, B.; Castaldi, S.; Esposito, A.; Fiorentino, A.; Rutigliano, F.A. Effects of the allelochemical coumarin on plants and soil microbial community. Soil Biol. Biochem. 2015, 95, 30–39. [Google Scholar] [CrossRef]
- Shan, Z.; Zhou, S.; Shah, A.; Arafat, Y.; Rizvi, S.A.H.; Shao, H. Plant allelopathy in response to biotic and abiotic factors. Agronomy 2023, 13, 2358. [Google Scholar] [CrossRef]
- Truong, D.-H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 8178294. [Google Scholar] [CrossRef]
- Borges, A.; José, H.; Homem, V.; Simões, M. Comparison of techniques and solvents on the antimicrobial and antioxidant potential of extracts from Acacia dealbata and Olea europaea. Antibiotics 2020, 9, 48. [Google Scholar] [CrossRef]
- Mokaizh, A.A.B.; Nour, A.H.; Ali, G.A.M.; Ukaegbu, C.I.; Hawege, E.F. Eco-friendly and efficient extraction of phenolic compounds from Commiphora gileadensis bark using microwave-assisted extraction. J. Ind. Eng. Chem. 2024, 142, 321–328. [Google Scholar] [CrossRef]
- Margraf, T.; Karnopp, A.R.; Rosso, N.D.; Granato, D. Comparison between Folin-Ciocalteu and Prussian Blue assays to estimate the total phenolic content of juices and teas using 96-well microplates. J. Food Sci. 2015, 80, C2397–C2403. [Google Scholar] [CrossRef] [PubMed]
- Upton, R.; David, B.; Gafner, S.; Glasl, S. Botanical ingredient identification and quality assessment: Strengths and limitations of analytical techniques. Phytochem. Rev. 2019, 19, 1157–1177. [Google Scholar] [CrossRef]
- Alam, M.A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.M.; Ullah, M.O. Hydroxycinnamic acid derivatives: A potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. 2016, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Uy, N.P.; Kim, J.T.; Lee, S.; Yang, T.J.; Lee, S. Comprehensive determination of the phenolic compound contents and antioxidant potentials of leaves and roots of Peucedanum japonicum harvested from different accessions and growth periods. ACS Omega 2024, 9, 41616–41628. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Sun, H.; Du, G.; Wang, X.; Lyu, D. Exogenous chlorogenic acid alleviates oxidative stress in apple leaves by enhancing antioxidant capacity. Sci. Hortic. 2020, 274, 109676. [Google Scholar] [CrossRef]
Organ | Solvent | Sample Name | Extract Weight (g) | Extraction Yield (%) |
---|---|---|---|---|
Leaf | EtOH | BEL | 3.5 | 35.0 |
Root | BER | 3.0 | 42.0 | |
Leaf | MeOH | BML | 4.0 | 40.0 |
Root | BMR | 3.7 | 40.3 | |
Leaf | Ace | BAL | 0.2 | 5.0 |
Root | BAR | 0.2 | 3.8 |
Compound | a tR (min) | Regression Equation | Linear Range (μg/mL) | bR2 | c LOD (μg/mL) | d LOQ (μg/mL) |
---|---|---|---|---|---|---|
1 | 18.25 | y = 25247x + 181615 | 7.81–1000 | 0.9997 | 26.042 | 9.3049 |
2 | 23.66 | y = 22755x + 73614 | 15.62–250 | 0.9999 | 0.0002 | 0.0008 |
3 | 23.99 | y = 16706x + 69167 | 31.25–500 | 1.0000 | 0.0004 | 0.0012 |
4 | 24.72 | y = 28123x + 290667 | 31.25–500 | 0.9996 | 0.0008 | 0.0025 |
5 | 25.07 | y = 20700x + 167938 | 31.25–500 | 0.9999 | 0.0006 | 0.0018 |
6 | 25.42 | y = 17273x + 134116 | 31.25–500 | 0.9999 | 0.0007 | 0.0021 |
Sample | Content (mg/g) | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | Total | |
BEL | 28.76 ± 0.07 a | 5.25 ± 0.01 a | 0.47 ± 0.01 b | 0.04 ± 0.00 a | 2.66 ± 0.01 a | 5.15 ± 0.02 a | 13.33 |
BER | 0.90 ± 0.03 b | 8.59 ± 0.26 b | 5.37 ± 0.15 a | 7.11 ± 0.21 b | 14.78 ± 0.21 b | 8.46 ± 0.24 b | 47.41 |
BML | 24.29 ± 0.12 c | 0.64 ± 0.00 c | 5.25 ± 0.01 a | 0.36 ± 0.00 c | 2.81 ± 0.01 a | 5.39 ± 0.02 a | 14.45 |
BMR | 0.60 ± 0.01 d | 5.08 ± 0.09 a | 8.59 ± 0.26 c | 5.69 ± 0.01 d | 11.40 ± 0.01 c | 6.09 ± 0.01 c | 36.86 |
BAL | 3.64 ± 0.09 e | 5.72 ± 0.09 d | 31.89 ± 0.27 d | 4.01 ± 0.08 e | 25.49 ± 0.17 d | 35.11 ± 0.26 d | 105.86 |
BAR | 2.96 ± 0.02 f | 18.02 ± 0.04 e | 33.87 ± 0.89 e | 22.79 ± 0.06 f | 39.92 ± 0.11 f | 27.25 ± 0.05 f | 144.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uy, N.P.; Lee, S.Y.; Kim, J.H.; Yoon, Y.H.; Lee, S. Simultaneous Quantification of Phenolic Compounds in the Leaves and Roots of Peucedanum japonicum Thunb. Using HPLC-PDA with Various Extraction Solvents. Horticulturae 2025, 11, 334. https://doi.org/10.3390/horticulturae11030334
Uy NP, Lee SY, Kim JH, Yoon YH, Lee S. Simultaneous Quantification of Phenolic Compounds in the Leaves and Roots of Peucedanum japonicum Thunb. Using HPLC-PDA with Various Extraction Solvents. Horticulturae. 2025; 11(3):334. https://doi.org/10.3390/horticulturae11030334
Chicago/Turabian StyleUy, Neil Patrick, Sang Yun Lee, Jang Hoon Kim, Young Ho Yoon, and Sanghyun Lee. 2025. "Simultaneous Quantification of Phenolic Compounds in the Leaves and Roots of Peucedanum japonicum Thunb. Using HPLC-PDA with Various Extraction Solvents" Horticulturae 11, no. 3: 334. https://doi.org/10.3390/horticulturae11030334
APA StyleUy, N. P., Lee, S. Y., Kim, J. H., Yoon, Y. H., & Lee, S. (2025). Simultaneous Quantification of Phenolic Compounds in the Leaves and Roots of Peucedanum japonicum Thunb. Using HPLC-PDA with Various Extraction Solvents. Horticulturae, 11(3), 334. https://doi.org/10.3390/horticulturae11030334