The Extended Photoperiod Impacts on Sweet Basil (Ocimum basilicum) in a Natural Tropical Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Cultivation Methods
2.2. Light Treatments
2.3. Measurements of Leaf Traits, Shoot, and Root Productivity
2.4. Measurement of Chlorophyll (Chl) and Carotenoids (Car)
2.5. Measurement of Midday Chl Fluorescence Fv/Fm Ratio
2.6. Measurements of Electron Transport Rate (ETR), Effective Photochemical Quantum Yield of PSII [Y(II)], Photochemical Quenching (qP), and Non-Photochemical Quenching (NPQ)
2.7. Determination of Nitrate (NO3−)
2.8. Determination of Total Reduced Nitrogen (TRN)
2.9. Determination of Total Leaf Soluble Protein
2.10. Measurement of Ascorbic Acid
2.11. Measurement of Total Phenolic Compounds
2.12. Measurement of Inorganic Dietary Minerals
2.13. Statistical Analysis
3. Results
3.1. Leaf Growth, Root and Shoot Productivity, and Root Morphology
3.2. Photosynthetic Pigment and Photosynthetic Light Use Efficiency
3.3. NO3−, TRN Concentration, and Total Leaf TSP
3.4. Total Ascorbic Acid, Total Phenolic Compounds, and Dietary Minerals
4. Discussion
4.1. Leaf Growth, Root and Shoot Productivity, and Root Morphology
4.2. Photosynthetic Pigment and Photosynthetic Light Use Efficiency
4.3. Nitrogen Metabolism
4.4. Nutritional Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singapore Food Agency. 30 by 30—Our Food Future. 2019. Available online: https://www.sfa.gov.sg/fromSGtoSG/our-sg-food-story (accessed on 23 October 2023).
- He, J. Enhancing productivity and improving nutritional quality of subtropical and temperate leafy vegetables in tropical greenhouses and indoor farming systems. Horticulturae 2024, 10, 306. [Google Scholar] [CrossRef]
- He, J.; Qin, L. Growth and photosynthetic characteristics of sweet potato (Ipomoea batatas) leaves grown under natural sunlight with supplemental LED lighting in a tropical greenhouse. J. Plant Physiol. 2020, 252, 153–239. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Bte Jawahir, N.K.; Qin, L. Quantity of supplementary LED lightings regulates photosynthetic apparatus, improves photosynthetic capacity and enhances productivity of Cos lettuce grown in a tropical greenhouse. Photosynth. Res. 2021, 149, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Poorter, H.; Niinemets, Ü.; Ntagkas, N.; Siebenkäs, A.; Mäenpää, M.; Matsubara, S.; Pons, T.L. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytol. 2019, 223, 1073–1105. [Google Scholar] [CrossRef]
- Azizah, N.S.; Irawan, B.; Kusmoro, J.; Safriansyah, W.; Farabi, K.; Oktavia, D.; Doni, F.; Miranti, M. Sweet Basil (Ocimum basilicum L.). A review of its botany, phytochemistry, pharmacological activities, and biotechnological development. Plants 2023, 12, 4148. [Google Scholar] [CrossRef] [PubMed]
- Charles, S. Sweet basil: An increasingly popular culinary herb. Int. J. Gastron. Food Sci. 2024, 36, 100927. [Google Scholar]
- Sipos, L.; Balázs, L.; Székely, G.; Jung, A.; Sárosi, S.; Radácsi, P.; Csambalik, L. Optimization of basil (Ocimum basilicum L.) production in LED light environments—A Review. Sci. Hortic. 2021, 289, 110486. [Google Scholar] [CrossRef]
- Kumar, S.S.; Arya, M.; Mahadevappa, P.; Giridhar, P. Influence of photoperiod on growth, bioactive compounds and antioxidant activity in callus cultures of Basella rubra L. J. Photochem. Photobiol. B Biol. 2020, 209, 11193. [Google Scholar] [CrossRef]
- He, J.; Gan, J.H.; Qin, L. Productivity, photosynthetic light-use efficiency, nitrogen metabolism and nutritional quality of C4 halophyte Portulaca oleracea L. grown indoors under different light intensities and durations. Front. Plant Sci. 2023, 14, 1106394. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; Rouphael, Y.; De Pascale, S.; Kacira, M. Effects of daily light integral and photoperiod with successive harvests on basil yield, morpho-physiological characteristics, and mineral composition in vertical farming. Sci. Hortic. 2023, 322, 112396. [Google Scholar] [CrossRef]
- Putievsky, E.; Galambosi, B. Production systems of basils. In Basil: The Genus Ocimum; Hiltunen, R., Holm, Y., Eds.; Harwood Academic Publishers: Reading, UK, 1999; pp. 39–65. [Google Scholar]
- Rahman, M.M.; Vasiliev, M.; Alameh, K. LED illumination spectrum manipulation for increasing the yield of sweet basil (Ocimum basilicum L.). Plants 2021, 10, 344. [Google Scholar] [CrossRef] [PubMed]
- Chutimanukul, P.; Wanichananan, P.; Janta, S.; Toojinda, T.; Darwell, C.T.; Mosaleeyanon, K. The influence of different light spectra on physiological responses, antioxidant capacity and chemical compositions in two holy basil cultivars. Sci. Rep. 2022, 12, 588. [Google Scholar] [CrossRef]
- Larsen, D.H.; Woltering, E.J.; Nicole, C.C.; Marcelis, L.F. Response of basil growth and morphology to light intensity and spectrum in a vertical farm. Front. Plant Sci. 2020, 11, 597906. [Google Scholar] [CrossRef]
- Douglas, J.S. Advanced Guide to Hydroponics; Natraj Publishers: Dehradun, India, 1982. [Google Scholar]
- Hunt, R.; Causton, D.R.; Shipley, B.; Askew, A.P. A modern tool for classical plant growth analysis. Ann. Bot. 2002, 90, 485–488. [Google Scholar] [CrossRef]
- Welburn, A.R. The spectral determination of chlorophylls a and b, as well as carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- He, J.; Tan, B.H.G.; Qin, L. Source-to-sink relationship between green leaves and green pseudobulbs of C3 orchid in regulation of photosynthesis. Photosynthetica 2011, 49, 209–218. [Google Scholar] [CrossRef]
- He, J.; Qin, L.; Chong, E.L.C.; Choong, T.W.; Lee, S.K. Plant growth and photosynthetic characteristics of Mesembryanthemum crystallinum grown aeroponically under different blue- and red-LEDs. Front. Plant Sci. 2017, 8, 361. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with Folin-phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Leipner, J.; Fracheboud, Y.; Stamp, P. Acclimation by suboptimal temperature diminishes photooxidative damage in maize leaves. Plant Cell Environ. 1997, 20, 366–372. [Google Scholar] [CrossRef]
- Ragee, S.; Abdel-Aal, E.M.; Noaman, M. Antioxidant Activity and Nutrient Composition of Selected Cereals for Food Use. Food Chem. 2006, 98, 32–38. [Google Scholar] [CrossRef]
- Dou, H.; Niu, G.; Gu, M.; Masabni, J.G. Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality. HortScience 2018, 53, 496–503. [Google Scholar] [CrossRef]
- Hernández, R.; Kubota, C. Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. Sci. Hortic. 2014, 173, 92–99. [Google Scholar] [CrossRef]
- Wang, S.; Fang, H.; Xie, J.; Wu, Y.; Tang, Z.; Liu, Z.; Lv, J.; Yu, J. Physiological responses of cucumber seedlings to different supplemental light duration of red and blue LED. Front. Plant Sci. 2021, 12, 709313. [Google Scholar] [CrossRef] [PubMed]
- Millar, A.J. Input signals to the plant circadian clock. J. Exp. Bot. 2004, 55, 277–283. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Mincke, J.; Vermeiren, J.; Courtyn, J.; Vanhove, C.; Vandenberghe, S.; Kawachi, N.; Steppe, K. Translocation of 11C-labelled photosynthates to strawberry fruits depends on leaf transpiration during twilight. Environ. Exp. Bot. 2023, 211, 105353. [Google Scholar] [CrossRef]
- Jin, W.; Ji, Y.; Larsen, D.H.; Huang, Y.; Heuvelink, E.; Marcelis, L.F.M. Gradually increasing light intensity during the growth period increases dry weight production compared to constant or gradually decreasing light intensity in lettuce. Sci. Hortic. 2023, 311, 111807. [Google Scholar] [CrossRef]
- Wang, F.; Gao, Q.; Ji, G.; Wang, J.; Ding, Y.; Wang, S. Effects of light intensity and photoperiod on morphological development and photosynthetic characteristics of coriander. Horticulturae 2024, 10, 215. [Google Scholar] [CrossRef]
- van Gelderen, K.; Kang, C.; Pierik, R. Light signaling, root development, and plasticity. Plant Physiol. 2018, 176, 1049–1060. [Google Scholar] [CrossRef]
- Miotto, Y.E.; da Costa, C.T.; Offringa, R.; Kleine-Vehn, J.; Maraschin, F.d.S. Effects of light intensity on root development in a D-root growth system. Front. Plant Sci. 2021, 12, 778382. [Google Scholar] [CrossRef]
- Kang, Y.; Wu, Q.; Pan, G.; Yang, H.; Li, J.; Yang, X.; Zhong, M. High daily light integral positively regulate photosynthetic capacity through mediating nitrogen partitioning and leaf anatomical characteristic in flowering Chinese cabbage. Sci. Hortic. 2024, 326, 112715. [Google Scholar] [CrossRef]
- Fu, W.; Li, P.; Wu, Y. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci. Hortic. 2012, 135, 45–51. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, J.; Ju, J.; Hu, Y.; Liu, X.; He, R.; Song, J.; Huang, Y.; Liu, H. The impact of daily light integral from artificial lighting on tomato seedling cultivation in plant factory. Agronomy 2025, 15, 70. [Google Scholar] [CrossRef]
- Yao, X.Y.; Liu, X.Y.; Xu, Z.G.; Jiao, X.L. Effects of light intensity on leaf microstructure and growth of rape seedlings cultivated under a combination of red and blue LEDs. J. Integr. Agric. 2017, 16, 97–105. [Google Scholar] [CrossRef]
- Kume, A.; Akitsu, T.; Nasahara, K.N. Why is chlorophyll b only used in light-harvesting systems? J. Plant Res. 2018, 131, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Im, N.H.; An, S.K.; Lee, H.B.; Kim, K.S. Daily light integral affects photosynthesis, growth, and flowering of Korean native Veronica rotunda and V. longifolia. Hortic. Environ. Biotechnol. 2022, 63, 13–22. [Google Scholar] [CrossRef]
- Murakami, A.; Kim, E.; Minagawa, J.; Takizawa, K. How much heat does nonphotochemical quenching produce? Front. Plant Sci. 2024, 15, 1367795. [Google Scholar] [CrossRef] [PubMed]
- Solis-Toapanta, E.; Retana-Cordero, M.; Gómez, C. Effects of daily light integral on growth and nitrate content of basil grown for indoor gardening. Acta Hortic. 2022, 1337, 165–170. [Google Scholar] [CrossRef]
- Sheikhi, H.; Delshad, M.; Aliniaeifard, S.; Babalar, M.; Nasiri, R.; Shojaei, S.H.; Haghbeen, K. Trait component analysis of lettuce in response to daily light integrals at two growth stages. Agrosystems Geosci. Environ. 2024, 7, e20579. [Google Scholar] [CrossRef]
- Fasciolo, B.; van Brenk, J.; Verdonk, J.C.; Bakker, E.-J.; van Mourik, S. Quantifying the impact of light on ascorbic acid content in lettuce: A model proposal. Sustainability 2024, 16, 7470. [Google Scholar] [CrossRef]
- Ishikawa, T.; Dowdle, J.; Smirnoff, N. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol. Plant. 2006, 126, 343–355. [Google Scholar] [CrossRef]
- He, J.; Chua, E.L.; Qin, L. Drought does not induce crassulacean acid metabolism (CAM) but regulates photosynthesis and enhances nutritional quality of Mesembryanthemum crystallinum. PLoS ONE 2020, 15, e0229897. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Chang, C.; Qin, L.; Lai, C.H. Impacts of deficit irrigation on photosynthetic performance, productivity and nutritional quality of aeroponically grown Tuscan Kale (Brassica oleracea L.) in a tropical greenhouse. Int. J. Mol. Sci. 2023, 24, 2014. [Google Scholar] [CrossRef] [PubMed]
- Kivimäenpä, M.; Mofikoya, A.; Abd El-Raheem, A.M.; Riikonen, J.; Julkunen-Tiitto, R.; Holopainen, J.K. Alteration in light spectra causes opposite responses in volatile phenylpropanoids and terpenoids compared with phenolic acids in sweet basil (Ocimum basilicum) leaves. J. Agric. Food Chem. 2022, 70, 12287–12296. [Google Scholar] [CrossRef] [PubMed]
- Irshad, M.; Firdous, W.I.; Parmar, N.S. Nutritional composition and health benefits of sweet basil: A Review. Pharm. Innov. J. 2023, 12, 1279–1285. [Google Scholar]
Treatment | Duration of SL (h) | Duration of LED Light (h) | Time of LED Exposure (24 h Clock) | Abbreviation |
---|---|---|---|---|
L1 | 12 | 0 | - | 12 h SL |
L2 | 12 | 6 | 04:00 to 07:00, and 19:00 to 22:00 | 3 h LED → 12 h SL → 3 LED |
L3 | 12 | 6 | 19:00 to 01:00 | 12 h SL → 6 h LED |
L4 | 12 | 6 | 01:00 to 07:00 | 6 h LED → 12 h SL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Nair, A.; Qin, L. The Extended Photoperiod Impacts on Sweet Basil (Ocimum basilicum) in a Natural Tropical Greenhouse. Horticulturae 2025, 11, 324. https://doi.org/10.3390/horticulturae11030324
He J, Nair A, Qin L. The Extended Photoperiod Impacts on Sweet Basil (Ocimum basilicum) in a Natural Tropical Greenhouse. Horticulturae. 2025; 11(3):324. https://doi.org/10.3390/horticulturae11030324
Chicago/Turabian StyleHe, Jie, Amrita Nair, and Lin Qin. 2025. "The Extended Photoperiod Impacts on Sweet Basil (Ocimum basilicum) in a Natural Tropical Greenhouse" Horticulturae 11, no. 3: 324. https://doi.org/10.3390/horticulturae11030324
APA StyleHe, J., Nair, A., & Qin, L. (2025). The Extended Photoperiod Impacts on Sweet Basil (Ocimum basilicum) in a Natural Tropical Greenhouse. Horticulturae, 11(3), 324. https://doi.org/10.3390/horticulturae11030324