A Comprehensive Morphological, Biochemical, and Sensory Study of Traditional and Modern Apple Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. The Conditions Under Which the Fruits Used as Biological Material Were Obtained
2.3. Analyses Performed on Fruits
2.4. Organoleptic Evaluation of Fruits
2.5. Statistical Analyses
3. Results
3.1. Physicochemical Properties of Fruits
3.2. Results of Multivariate Analyses
3.3. Organoleptic Properties of Fruits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ignatov, A.; Bodishevskaya, A. Malus. In Wild Crop Relatives: Genomic and Breeding Resources: Temperate Fruits; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 45–64. [Google Scholar]
- Cornille, A.; Gladieux, P.; Smulders, M.J.M.; Roldán-Ruiz, I.; Laurens, F.; Le Cam, B.; Nersesyan, A.; Clavel, J.; Olonova, M.; Feugey, L.; et al. New insight into the history of domesticated apple: Secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet. 2012, 8, e1002703. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, Z.; Zhang, D.; Shen, W.; Xie, Y.; Zhang, J.; Jiang, L.; Li, X.; Shen, X.; Geng, D.; et al. Insights into the effect of human civilization on Malus evolution and domestication. Plant Biotechnol. J. 2021, 19, 2206–2220. [Google Scholar] [CrossRef]
- Volk, G.M.; Cornille, A.; Durel, C.-E.; Gutierrez, B. Botany, Taxonomy, and Origins of the Apple. In The Apple Genome; Korban, S.S., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 19–32. [Google Scholar]
- Ferree, D.C.; Warrington, I.J. Apples: Botany, Production, and Uses; CABI Publishing: Wallingford, UK, 2003. [Google Scholar]
- O’Rourke, D. Economic Importance of the World Apple Industry. In The Apple Genome; Korban, S.S., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–18. [Google Scholar]
- OECD. Biology of apple (Malus domestica). In Safety Assessment of Transgenic Organisms in the Environment; Volume 9: OECD Consensus Documents on the Biology of Crops: Apple, Safflower, Rice; OECD Publishing: Paris, France, 2022. [Google Scholar]
- Pandohee, J.; Kaur, P.; Sharma, A.; Ali, A.; Yasmin, S.; Kulshreshtha, S. Apple. In Fruits and Their Roles in Nutraceuticals and Functional Foods; CRC Press: Boca Raton, FL, USA, 2023; pp. 69–85. [Google Scholar]
- Mushtaq, R.; Wani, A.W.; Nayik, G.A. Apple. In Antioxidants in Fruits: Properties and Health Benefits; Nayik, G.A., Gull, A., Eds.; Springer: Singapore, 2020; pp. 507–521. [Google Scholar]
- Mierczak, K.; Garus-Pakowska, A. An overview of apple varieties and the importance of apple consumption in the prevention of non-communicable diseases—A narrative review. Nutrients 2024, 16, 3307. [Google Scholar] [CrossRef]
- O’Neil, C.E.; Nicklas, T.A.; Fulgoni, V.L. Consumption of apples is associated with a better diet quality and reduced risk of obesity in children: National Health and Nutrition Examination Survey (NHANES) 2003–2010. Nutr. J. 2015, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Natić, M.; Dabić Zagorac, D.; Jakanovski, M.; Smailagić, A.; Čolić, S.; Meland, M.; Fotirić Akšić, M. Fruit quality attributes of organically grown norwegian apples are affected by cultivar and location. Plants 2024, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical compositional characterization of some apple cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Gašić, U.; Dojčinović, B.; Lončar, B.; Meland, M. Polyphenolics and chemical profiles of domestic Norwegian apple (Malus × domestica Borkh.) cultivars. Front. Nutr. 2022, 9, 941487. [Google Scholar] [CrossRef]
- Acquavia, M.A.; Pascale, R.; Foti, L.; Carlucci, G.; Scrano, L.; Martelli, G.; Brienza, M.; Coviello, D.; Bianco, G.; Lelario, F. Analytical methods for extraction and identification of primary and secondary metabolites of apple (Malus domestica) fruits: A review. Separations 2021, 8, 91. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Dabić Zagorac, D.; Gašić, U.; Tosti, T.; Natić, M.; Meland, M. Analysis of apple fruit (Malus × domestica Borkh.) quality attributes obtained from organic and integrated production systems. Sustainability 2022, 14, 5300. [Google Scholar] [CrossRef]
- Fabiani, R.; Minelli, L.; Rosignoli, P. Apple intake and cancer risk: A systematic review and meta-analysis of observational studies. Public Health Nutr. 2016, 19, 2603–2617. [Google Scholar] [CrossRef]
- Tu, S.-H.; Chen, L.-C.; Ho, Y.-S. An apple a day to prevent cancer formation: Reducing cancer risk with flavonoids. J. Food Drug Anal. 2017, 25, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Volk, G.M.; Henk, A.D. Historic American apple cultivars: Identification and availability. J. Am. Soc. Hortic. Sci. 2016, 141, 292–301. [Google Scholar] [CrossRef]
- Robinson, T. Advances in apple culture worldwide. Rev. Bras. Frutic. 2011, 33, 37–47. [Google Scholar] [CrossRef]
- O’Rourke, D. World production, trade, consumption and economic outlook for apples. In Apples: Botany, Production and Uses; Ferree, D.C., Warrington, I.J., Eds.; CABI Publishing: Wallingford, UK, 2003; pp. 15–29. [Google Scholar]
- Downing, D.L. Processed Apple Products; AVI Publishing Co.: New York, NY, USA, 1989. [Google Scholar]
- Patocka, J.; Bhardwaj, K.; Klimova, B.; Nepovimova, E.; Wu, Q.; Landi, M.; Kuca, K.; Valis, M.; Wu, W. Malus domestica: A review on nutritional features, chemical composition, traditional and medicinal value. Plants 2020, 9, 1408. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Ramos-Cabrer, A.M.; Fischer, M. Breeding apple (Malus × domestica Borkh). In Breeding Plantation Tree Crops: Temperate Species; Jain, S.M., Priyadarshan, P.M., Eds.; Springer Science & Business Media: New York, NY, USA, 2009; pp. 33–81. [Google Scholar]
- Oyenihi, A.B.; Belay, Z.A.; Mditshwa, A.; Caleb, O.J. “An apple a day keeps the doctor away”: The potentials of apple bioactive constituents for chronic disease prevention. J. Food Sci. 2022, 87, 2291–2309. [Google Scholar] [CrossRef] [PubMed]
- Ilin-Grozoiu, L.-M. The apple/the apple branch—Symbolism in the traditions of the calendar and life cycles. In Proceedings of the power of dialogue in a globalized world, Tîrgu Mureș, Romania; 2024; pp. 192–198. [Google Scholar]
- Sestras, R. Ameliorarea Speciilor Horticole; Academic Press: Cluj-Napoca, Romania, 2004. [Google Scholar]
- Stefan, N. Pomologia României; INVEL-Multimedia: Otopeni, Romania, 2013; Volume I-IX, p. 7058. [Google Scholar]
- Nagy, I.K. Handling old Transylvanian apple variety names in translation. Acta Univ. Sapientiae Philol. 2016, 8, 61–83. [Google Scholar] [CrossRef]
- Militaru, M.; Maresi, E.; Iancu, A.; Sestras, A.F.; Petre, G.; Guzu, G. Methods and results of Romanian apple breeding. Acta Hortic. 2024, 1412, 227–232. [Google Scholar] [CrossRef]
- Mitre, I.; Mitre, V.; Ardelean, M.; Sestras, R.E.; Sestras, A.F. Evaluation of old apple cultivars grown in Central Transylvania, Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 235–237. [Google Scholar]
- Iwanami, H. Breeding for Fruit Quality in Apple. In Breeding for Fruit Quality; Jenks, M.A., Bebeli, P.J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 173–200. [Google Scholar]
- Laurens, F. Current apple breeding programs to release apple scab resistant scion cultivars. In Principles of Plant Genetics and Breeding; Acquaah, G., Ed.; Blackwell Publishing Ltd: Malden, MA, USA, 2007; pp. 207–2011. [Google Scholar]
- Akagic, A.; Oras, A. Traditional versus commercial apple varieties: Chemical composition and implications for processing. In Malus domestica—New Insights; İmrak, B., Kafkas, N.E.Y., Eds.; IntechOpen: Rijeka, Croatia, 2025. [Google Scholar]
- Mureșan, A.E.; Sestras, A.F.; Militaru, M.; Păucean, A.; Tanislav, A.E.; Pușcaș, A.; Mateescu, M.; Mureșan, V.; Marc, R.A.; Sestras, R.E. Chemometric comparison and classification of 22 apple genotypes based on texture analysis and physico-chemical quality attributes. Horticulturae 2022, 8, 64. [Google Scholar] [CrossRef]
- Laurens, F.; Aranzana, M.J.; Arus, P.; Bassi, D.; Bink, M.; Bonany, J.; Caprera, A.; Corelli-Grappadelli, L.; Costes, E.; Durel, C.-E.; et al. An integrated approach for increasing breeding efficiency in apple and peach in Europe. Hortic. Res. 2018, 5, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Peil, A.; Kellerhals, M.; Höfer, M.; Flachowsky, H. Apple breeding—From the origin to genetic engineering. Fruit Veg. Cer. Sci. Biotechn. 2011, 5, 118–138. [Google Scholar]
- Sansavini, S.; Donati, F.; Costa, F.; Tartarini, S. Advances in apple breeding for enhanced fruit quality and resistance to biotic stresses: New varieties for the European market. J. Fruit Ornam. Plant Res. 2004, 12, 13–52. [Google Scholar]
- Khan, A.; Korban, S.S. Breeding and genetics of disease resistance in temperate fruit trees: Challenges and new opportunities. Theor. Appl. Genet. 2022, 135, 3961–3985. [Google Scholar] [CrossRef]
- Janick, J.; Cummins, J.N.; Brown, S.K.; Hemmat, M. Apples. In Fruit Breeding: Volume 1, Tree and Tropical Fruits; Janick, J., Moore, J.N., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1996; Volume 1, pp. 1–78. [Google Scholar]
- Janick, J. History of the PRI apple breeding program. Acta Hortic. 2002, 595, 55–60. [Google Scholar] [CrossRef]
- Dayton, D.; Mowry, J. Prima-the first commercial scab-resistant apple variety. Fruit Var. Hortic. Dig. 1970, 12, 1–7. [Google Scholar]
- Gessler, C.; Pertot, I. Vf scab resistance of Malus. Trees 2012, 26, 95–108. [Google Scholar] [CrossRef]
- Masny, S. Occurrence of Venturia inaequalis races in Poland able to overcome specific apple scab resistance genes. Eur. J. Plant Pathol. 2017, 147, 313–323. [Google Scholar] [CrossRef]
- Muder, A.; Garming, H.; Dreisiebner-Lanz, S.; Kerngast, K.; Rosner, F.; Kličková, K.; Kurthy, G.; Cimer, K.; Bertazzoli, A.; Altamura, V.; et al. Apple production and apple value chains in Europe. Eur. J. Hort. Sci. 2022, 87, 1–22. [Google Scholar] [CrossRef]
- Teh, S.L.; Kostick, S.; Brutcher, L.; Schonberg, B.; Barritt, B.; Evans, K. Trends in fruit quality improvement from 15 years of selection in the apple breeding program of Washington State University. Front. Plant Sci. 2021, 12, 714325. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Z.; Jiang, S.; Wang, Y.; Fang, H.; Zhang, Z.; Chen, X.; Wang, N. Research progress on genetic basis of fruit quality traits in apple (Malus × domestica). Front. Plant Sci. 2022, 13, 918202. [Google Scholar] [CrossRef] [PubMed]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Harker, F.R.; Gunson, F.A.; Jaeger, S.R. The case for fruit quality: An interpretive review of consumer attitudes, and preferences for apples. Postharvest Biol. Technol. 2003, 28, 333–347. [Google Scholar] [CrossRef]
- Teh, S.L.; Kostick, S.A.; Evans, K.M. Genetics and Breeding of Apple Scions. In The Apple Genome; Korban, S.S., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 73–103. [Google Scholar]
- Mohsenin, N.N. Physical Properties of Plant and Animal Materials; Gordon and Breach Science: New York, NY, USA, 1986. [Google Scholar]
- Qiu, X.; Zhang, H.; Zhang, H.; Duan, C.; Xiong, B.; Wang, Z. Fruit textural characteristics of 23 plum (Prunus salicina Lindl) cultivars: Evaluation and cluster analysis. HortScience 2021, 56, 816–823. [Google Scholar] [CrossRef]
- Bejaei, M.; Stanich, K.; Cliff, M.A. Modelling and classification of apple textural attributes using sensory, instrumental and compositional analyses. Foods 2021, 10, 384. [Google Scholar] [CrossRef]
- Dan, C.; Șerban, C.; Sestras, A.F.; Militaru, M.; Morariu, P.; Sestras, R.E. Consumer perception concerning apple fruit quality, depending on cultivars and hedonic scale of evaluation—A case study. Not. Sci. Biol. 2015, 7, 140–149. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 4–9. [Google Scholar]
- Goland, C.; Bauer, S. When the apple falls close to the tree: Local food systems and the preservation of diversity. Renew. Agric. Food Syst. 2004, 19, 228–236. [Google Scholar] [CrossRef]
- Van der Merwe, A. Quantification of Genotypic Variation and Consumer Segmentation Related to Fruit Quality Attributes in Apple (Malus × domestica Borkh.). Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2013. [Google Scholar]
- van der Merwe, A.; Muller, M.; van der Rijst, M.; Labuschagné, I.F.; Næs, T.; Steyn, W.J. Impact of appearance on degree of liking and eating quality expectations of selected apple cultivars. Int. J. Food Sci. Technol. 2015, 50, 492–499. [Google Scholar] [CrossRef]
- Hamadziripi, E.T.; Theron, K.I.; Muller, M.; Steyn, W.J. Apple compositional and peel color differences resulting from canopy microclimate affect consumer preference for eating quality and appearance. HortScience 2014, 49, 384–392. [Google Scholar] [CrossRef]
- Seppä, L.; Peltoniemi, A.; Tahvonen, R.; Tuorila, H. Flavour and texture changes in apple cultivars during storage. LWT-Food Sci. Technol. 2013, 54, 500–512. [Google Scholar] [CrossRef]
- Johnston, J.W.; Hewett, E.W.; Hertog, M.L.A.T.M. Postharvest softening of apple (Malus domestica) fruit: A review. N. Z. J. Crop Hort. Sci. 2002, 30, 145–160. [Google Scholar] [CrossRef]
- Kumar, P.; Sethi, S.; Sharma, R.R.; Singh, S.; Saha, S.; Sharma, V.K.; Verma, M.K.; Sharma, S.K. Nutritional characterization of apple as a function of genotype. J. Food Sci. Technol. 2018, 55, 2729–2738. [Google Scholar] [CrossRef]
- Popova, V.; Yaroshenko, O.; Sergeeva, N. The effect of foliar feeding on physiological condition of apple trees and chemical content of fruits. Potravin. Slovak J. Food Sci. 2018, 12, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Ličina, V.; Krogstad, T.; Fotirić Akšić, M.; Meland, M. Apple growing in Norway—Ecologic factors, current fertilization practices and fruit quality: A case study. Horticulturae 2024, 10, 233. [Google Scholar] [CrossRef]
- Yoon, H.-K.; Kleiber, T.; Zydlik, Z.; Rutkowski, K.; Woźniak, A.; Świerczyński, S.; Bednarski, W.; Kęsy, J.; Marczak, Ł.; Seo, J.-H.; et al. A comparison of selected biochemical and physical characteristics and yielding of fruits in apple cultivars (Malus domestica Borkh.). Agronomy 2020, 10, 458. [Google Scholar] [CrossRef]
- Kalinowska, M.; Bielawska, A.; Lewandowska-Siwkiewicz, H.; Priebe, W.; Lewandowski, W. Apples: Content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiol. Biochem. 2014, 84, 169–188. [Google Scholar] [CrossRef]
- Henríquez, C.; Almonacid, S.; Chiffelle, I.; Valenzuela, T.; Araya, M.; Cabezas, L.; Simpson, R.; Speisky, H. Determination of antioxidant capacity, total phenolic content and mineral composition of different fruit tissue of five apple cultivars grown in Chile. Chil. J. Agric. Res. 2011, 70, 523–536. [Google Scholar] [CrossRef]
- Arnold, M.; Gramza-Michalowska, A. Recent development on the chemical composition and phenolic extraction methods of apple (Malus domestica)—A review. Food Bioprocess Technol. 2024, 17, 2519–2560. [Google Scholar] [CrossRef]
- Hyson, D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef]
- Péneau, S.; Hoehn, E.; Roth, H.R.; Escher, F.; Nuessli, J. Importance and consumer perception of freshness of apples. Food Qual. Prefer. 2006, 17, 9–19. [Google Scholar] [CrossRef]
- Feng, S.; Yi, J.; Li, X.; Wu, X.; Zhao, Y.; Ma, Y.; Bi, J. Systematic review of phenolic compounds in apple fruits: Compositions, distribution, absorption, metabolism, and processing stability. J. Agric. Food Chem. 2021, 69, 7–27. [Google Scholar] [CrossRef] [PubMed]
- Urrestarazu, J.; Denancé, C.; Ravon, E.; Guyader, A.; Guisnel, R.; Feugey, L.; Poncet, C.; Lateur, M.; Houben, P.; Ordidge, M.; et al. Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biol. 2016, 16, 130. [Google Scholar] [CrossRef]
- Strohm, K. Of the 30,000 Apple Varieties Found All over the World Only 30 Are Used and Traded Commercially. Available online: http://www.agribenchmark.org/agri-benchmark/did-you-know/einzelansicht/artikel//only-5500-wi.html (accessed on 11 January 2023).
- Sestras, R.E.; Sestras, A.F. Quantitative traits of interest in apple breeding and their implications for selection. Plants 2023, 12, 903. [Google Scholar] [CrossRef]
- Sedov, E.N. Apple breeding programs and methods, their development and improvement. Russ. J. Genet. Appl. Res. 2014, 4, 43–51. [Google Scholar] [CrossRef]
- Kellerhals, M.; Spuhler, M.; Duffy, B.; Patocchi, A.; Frey, J.E. Selection efficiency in apple breeding. Acta Hortic. 2009, 814, 177–184. [Google Scholar] [CrossRef]
- Bramel, P.; Volk, G. A Global Strategy for the Conservation and Use of Apple Genetic Resources; Global Crop Diversity Trust: Bonn, Germany, 2019. [Google Scholar]
- Militaru, M.; Sestras, A.; Calinescu, M.; Maresi, E.; Mihaescu, C. Genetic diversity of Romanian apple cultivars released in the last 20 years. Fruit Grow. Res. 2019, 25, 6–12. [Google Scholar] [CrossRef]
- Papp, D.; Singh, J.; Gadoury, D.; Khan, A. New North American isolates of Venturia inaequalis can overcome apple scab resistance of Malus floribunda 821. Plant Dis. 2020, 104, 649–655. [Google Scholar] [CrossRef]
- Bannier, H.-J. Modern apple breeding: Genetic narrowing and inbreeding tendencies. Erwerbs-Obstbau 2011, 52, 85–110. [Google Scholar] [CrossRef]
- Way, R.; Aldwinckle, H.S.; Lamb, R.; Rejman, A.; Sansavini, S.; Shen, T.; Watkins, R.; Westwood, M.; Yoshida, Y. Apples (Malus). Acta Hortic. 1991, 290, 3–46. [Google Scholar] [CrossRef]
- Volk, G.M.; Chao, C.T.; Norelli, J.; Brown, S.K.; Fazio, G.; Peace, C.; McFerson, J.; Zhong, G.-Y.; Bretting, P. The vulnerability of US apple (Malus) genetic resources. Genet. Resour. Crop Evol. 2015, 62, 765–794. [Google Scholar] [CrossRef]
- Wicklund, T.; Guyot, S.; Le Quéré, J.-M. Chemical composition of apples cultivated in Norway. Crops 2021, 1, 8–19. [Google Scholar] [CrossRef]
- Zhang, M.; Yin, Y.; Li, Y.; Jiang, Y.; Hu, X.; Yi, J. Chemometric classification of apple cultivars based on physicochemical properties: Raw material selection for processing applications. Foods 2023, 12, 3095. [Google Scholar] [CrossRef]
- Corollaro, M.L.; Aprea, E.; Endrizzi, I.; Betta, E.; Demattè, M.L.; Charles, M.; Bergamaschi, M.; Costa, F.; Biasioli, F.; Corelli Grappadelli, L.; et al. A combined sensory-instrumental tool for apple quality evaluation. Postharvest Biol. Technol. 2014, 96, 135–144. [Google Scholar] [CrossRef]
- Mir, J.I.; Ahmed, N.; Singh, D.B.; Padder, B.A.; Shafi, W.; Zaffer, S.; Hamid, A.; Bhat, H.A. Diversity evaluation of fruit quality of apple (Malus × domestica Borkh.) germplasm through cluster and principal component analysis. Indian J. Plant Physiol. 2017, 22, 221–226. [Google Scholar] [CrossRef]
- Luo, F.; Evans, K.; Norelli, J.L.; Zhang, Z.; Peace, C. Prospects for achieving durable disease resistance with elite fruit quality in apple breeding. Tree Genet. Genomes 2020, 16, 21. [Google Scholar] [CrossRef]
- Brown, S. Apple. In Fruit Breeding; Badenes, M.L., Byrne, D.H., Eds.; Springer: Boston, MA, USA, 2012; pp. 329–367. [Google Scholar]
- Harshman, J.M.; Evans, K.M.; Hardner, C.M. Cost and accuracy of advanced breeding trial designs in apple. Hortic. Res. 2016, 3, 16008. [Google Scholar] [CrossRef]
- Miller, A.J.; Gross, B.L. From forest to field: Perennial fruit crop domestication. Am. J. Bot. 2011, 98, 1389–1414. [Google Scholar] [CrossRef]
- Migicovsky, Z.; Gardner, K.M.; Richards, C.; Thomas Chao, C.; Schwaninger, H.R.; Fazio, G.; Zhong, G.-Y.; Myles, S. Genomic consequences of apple improvement. Hortic. Res. 2021, 8, 9. [Google Scholar] [CrossRef]
- Van Tassel, D.L.; DeHaan, L.R.; Cox, T.S. Missing domesticated plant forms: Can artificial selection fill the gap? Evol. Appl. 2010, 3, 434–452. [Google Scholar] [CrossRef]
- Peace, C.P.; Bianco, L.; Troggio, M.; van de Weg, E.; Howard, N.P.; Cornille, A.; Durel, C.-E.; Myles, S.; Migicovsky, Z.; Schaffer, R.J.; et al. Apple whole genome sequences: Recent advances and new prospects. Hortic. Res. 2019, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- Sestras, A.F.; Pamfil, D.; Dan, C.; Bolboaca, S.D.; Jäntschi, L.; Sestras, R.E. Possibilities to improve apple scab (Venturia inaequalis (Cke.) Wint.) and powdery mildew [Podosphaera leucotricha (Ell. et Everh.) Salm.] resistance on apple by increasing genetic diversity using potentials of wild species. Aust. J. Crop Sci. 2011, 5, 748–755. [Google Scholar]
- Dan, C.; Sestras, A.; Bozdog, C.; Sestras, R. Investigation of wild species potential to increase genetic diversity useful for apple breeding. Genetika 2015, 47, 993–1011. [Google Scholar] [CrossRef]
- Kumar, S.; Bink, M.C.A.M.; Volz, R.K.; Bus, V.G.M.; Chagné, D. Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: Prospects, challenges and strategies. Tree Genet. Genomes 2012, 8, 1–14. [Google Scholar] [CrossRef]
- Sestras, R.E.; Pamfil, D.; Ardelean, M.; Botez, C.; Sestras, A.F.; Mitre, I.; Dan, C.; Mihalte, L. Use of phenotypic and MAS selection based on bulk segregant analysis to reveal the genetic variability induced by artificial hybridization in apple. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 273–277. [Google Scholar]
- Meland, M.; Frøynes, O.; Kviklys, D.; Zagorac, D.D.; Akšić, M.F. Pomological, organoleptic, and biochemical values of Norwegian heritage apple cultivars. Acta Agric. Scand.-B Soil Plant Sci. 2024, 74, 2366180. [Google Scholar] [CrossRef]
- Király, I.; Ladányi, M.; Nagyistván, O.; Tóth, M. Assessment of diversity in a Hungarian apple gene bank using morphological markers. Org. Agr. 2015, 5, 143–151. [Google Scholar] [CrossRef]
- Balík, J.; Rop, O.; Mlček, J.; Híc, P.; Horák, M.; Řezníček, V. Assessment of nutritional parameters of native apple cultivars as new gene sources. Acta Univ. Agric. Silvic. Mendel. Brun. 2012, 60, 27–38. [Google Scholar] [CrossRef]
- Jemrić, T.; Babojelić, M.S.; Fruk, G.; Šindrak, Z. Fruit quality of nine old apple cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 504–509. [Google Scholar] [CrossRef]
- Skytte af Sätra, J.; Troggio, M.; Odilbekov, F.; Sehic, J.; Mattisson, H.; Hjalmarsson, I.; Ingvarsson, P.K.; Garkava-Gustavsson, L. Genetic Status of the Swedish Central collection of heirloom apple cultivars. Sci. Hort. 2020, 272, 109599. [Google Scholar] [CrossRef]
- Kumar, S.; Volz, R.K.; Chagné, D.; Gardiner, S. Breeding for apple (Malus × domestica Borkh.) fruit quality traits in the genomics era. In Genomics of Plant Genetic Resources: Volume 2. Crop Productivity, Food Security and Nutritional Quality; Tuberosa, R., Graner, A., Frison, E., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 387–416. [Google Scholar]
- Devi, C.A.; Pandey, A.K.; Mika, K. Genetic Improvement of Apple. In Genetic Engineering of Crop Plants for Food and Health Security: Volume 1; Tiwari, S., Koul, B., Eds.; Springer Nature: Singapore, 2023; pp. 39–55. [Google Scholar]
No * | Cultivar | Fruit Height (mm) | Fruit Width (mm) | Fruit Shape Index | Fruit Weight (g) | Fruit Volume (mL) |
---|---|---|---|---|---|---|
1 | ‘Crețesc Auriu’ | 45.8 ± 4.2 cd | 61.1 ± 4.5 c | 0.75 ± 0.15 f | 172.1 ± 32.9 d | 236.3 ± 37.5 bc |
2 | ‘Domnesc’ | 45.0 ± 5.1 cd | 61.3 ± 7.2 c | 0.73 ± 0.08 f | 159.2 ± 41.0 d | 232.5 ± 55.2 bc |
3 | ‘Patul’ | 39.4 ± 4.6 e | 43.7 ± 2.9 f | 0.90 ± 0.12 c | 92.8 ± 17.7 g | 113.8 ± 22.1 g |
4 | ‘Poinic’ | 51.5 ± 8.3 bc | 57.1 ± 3.4 d | 0.90 ± 0.20 c | 161.8 ± 27.4 d | 217.5 ± 30.7 c |
5 | ‘Sovari’ | 54.0 ± 6.7 b | 65.1 ± 7.9 b | 0.83 ± 0.11 d | 212.9 ± 50.3 b | 268.8 ± 60.5 b |
6 | ‘Belle de Boskoop’ | 22.6 ± 9.3 g | 30.5 ± 13.0 g | 0.74 ± 0.12 f | 202.2 ± 77.2 bc | 252.5 ± 95.5 bc |
7 | ‘Cox’s Orange Pippin’ | 38.1 ± 4.0 e | 48.8 ± 6.5 e | 0.78 ± 0.03 e | 127.8 ± 16.7 f | 166.3 ± 23.9 e |
8 | ‘Golden Delicious’ | 50.5 ± 4.4 bc | 55.4 ± 3.5 d | 0.91 ± 0.14 c | 165.2 ± 16.6 d | 202.5 ± 18.5 c |
9 | ‘Grimes Golden’ | 48.5 ± 4.6 c | 57.0 ± 2.5 d | 0.85 ± 0.09 d | 167.7 ± 20.2 d | 222.5 ± 24.7 bc |
10 | ‘James Grieve’ | 45.5 ± 3.1 cd | 54.1 ± 4.8 d | 0.84 ± 0.12 d | 143.3 ± 16.0 ef | 190.0 ± 29.4 cd |
11 | ‘Jonathan’ | 58.7 ± 2.2 a | 69.3 ± 2.3 a | 0.85 ± 0.11 d | 176.3 ± 16.5 cd | 235.0 ± 20.8 bc |
12 | ‘Kaltherer Böhmer’ | 54.3 ± 3.6 b | 60.9 ± 4.8 c | 0.89 ± 0.12 c | 192.1 ± 33.3 c | 262.5 ± 37.5 b |
13 | ‘Pearmain’ | 40.4 ± 3.9 e | 52.8 ± 3.6 d | 0.77 ± 0.22 e | 148.1 ± 27.8 e | 195.0 ± 42.0 cd |
14 | ‘Reinette de Champagne’ | 46.5 ± 6.5 cg | 58.8 ± 10.3 cd | 0.79 ± 0.11 e | 179.1 ± 54.4 c | 225.0 ± 66.1 c |
15 | ‘Reinette Harbert’ | 49.3 ± 3.6 bc | 61.3 ± 5.9 c | 0.80 ± 0.21 d | 182.8 ± 36.6 c | 240.0 ± 39.2 bc |
16 | ‘Reinette Osnabruck’ | 55.0 ± 3.1 ab | 66.1 ± 3.2 b | 0.83 ± 0.14 d | 182.4 ± 32.5 c | 248.8 ± 43.6 bc |
17 | ‘Reinette du Canada’ | 52.8 ± 5.7 b | 69.7 ± 8.5 a | 0.76 ± 0.15 ef | 243.9 ± 52.6 a | 335.0 ± 71.3 a |
18 | ‘Wagener’ | 45.0 ± 3.5 d | 59.1 ± 3.1 c | 0.76 ± 0.11 ef | 170.8 ± 29.5 cd | 201.3 ± 22.5 c |
19 | ‘Baujade’ | 42.2 ± 2.7 de | 52.8 ± 2.9 d | 0.80 ± 0.20 d | 139.8 ± 16.7 ef | 180.0 ± 21.6 d |
20 | ‘Champion’ | 45.7 ± 5.6 cd | 60.1 ± 6.4 c | 0.76 ± 0.12 ef | 165.7 ± 38.2 cd | 210.0 ± 49.2 c |
21 | ‘Elstar’ | 39.9 ± 2.8 e | 54.0 ± 2.3 d | 0.74 ± 0.09 f | 132.5 ± 11.7 ef | 181.3 ± 16.0 d |
22 | ‘Enterprise’ | 50.1 ± 5.5 bc | 58.6 ± 6.1 c | 0.85 ± 0.08 d | 187.7 ± 29.7 c | 236.3 ± 54.4 bc |
23 | ‘Florina’ | 52.5 ± 4.8 c | 58.8 ± 6.1 c | 0.89 ± 0.11 c | 185.4 ± 35.7 c | 240.0 ± 47.3 bc |
24 | ‘Golden Orange’ | 55.8 ± 0.8 a | 66.4 ± 2.6 b | 0.84 ± 0.12 d | 245.9 ± 12.3 a | 323.8 ± 18.4 a |
25 | ‘Goldrush’ | 49.8 ± 4.9 bc | 52.8 ± 4.4 d | 0.94 ± 0.10 b | 152.3 ± 23.3 e | 252.5 ± 35.0 b |
26 | ‘Granny Smith’ | 53.0 ± 6.4 ab | 58.3 ± 5.3 c | 0.91 ± 0.24 c | 183.6 ± 42.0 c | 238.8 ± 58.5 bc |
27 | ‘Judor’ | 40.7 ± 2.2 e | 49.5 ± 6.3 de | 0.82 ± 0.12 d | 113.9 ± 14.4 f | 161.3 ± 26.6 e |
28 | ‘Juliana’ | 31.6 ± 4.6 f | 42.7 ± 5.5 f | 0.74 ± 0.11 f | 75.6 ± 14.8 h | 100.0 ± 20.4 g |
29 | ‘Jurella’ | 32.6 ± 3.6 f | 44.4 ± 3.9 f | 0.73 ± 0.13 f | 93.6 ± 18.5 g | 132.5 ± 25.3 f |
30 | ‘Red Delicious Redkan’ | 54.8 ± 5.5 ab | 66.1 ± 6.0 b | 0.83 ± 0.20 d | 209.5 ± 37.8 b | 255.0 ± 48.1 b |
31 | ‘Sir Prize’ | 56.9 ± 2.2 a | 53.3 ± 4.4 d | 1.07 ± 0.30 a | 156.9 ± 25.5 e | 210.0 ± 37.0 c |
32 | ‘T107’ | 49.8 ± 4.7 bc | 55.8 ± 5.2 cd | 0.89 ± 0.21 c | 157.4 ± 32.8 e | 206.3 ± 37.9 c |
33 | ‘T194’ | 49.5 ± 4.3 bc | 59.1 ± 3.9 c | 0.84 ± 0.11 d | 182.7 ± 32.4 c | 215.0 ± 43.4 c |
34 | ‘T195’ | 41.2 ± 4.0 e | 53.8 ± 7.3 d | 0.77 ± 0.14 ef | 125.4 ± 29.0 f | 180.0 ± 43.2 d |
No * | Cultivar | Peel Hardness (N) | Toughness (mm) | Flesh Hardness (N) | Hardness Work (mJ) |
---|---|---|---|---|---|
1 | ‘Crețesc Auriu’ | 9.8 ± 1.4 e | 1.6 ± 0.2 c | 2.4 ± 0.3 e | 17.8 ± 1.4 e |
2 | ‘Domnesc’ | 7.7 ± 1.0 f | 1.5 ± 0.3 cd | 2.1 ± 0.3 e | 15.3 ± 0.8 ef |
3 | ‘Patul’ | 11.5 ± 1.2 d | 1.2 ± 0.2 f | 3.6 ± 0.4 c | 21.2 ± 1.8 d |
4 | ‘Poinic’ | 9.1 ± 0.8 e | 1.3 ± 0.2 e | 3.0 ± 0.4 cd | 16.9 ± 1.4 e |
5 | ‘Sovari’ | 7.7 ± 1.1 f | 1.2 ± 0.2 f | 2.0 ± 0.1 ef | 13.7 ± 1.4 f |
6 | ‘Belle de Boskoop’ | 12.3 ± 1.0 cd | 2.1 ± 0.5 a | 5.5 ± 0.9 a | 31.2 ± 2.1 a |
7 | ‘Cox’s Orange Pippin’ | 10.6 ± 1.7 e | 1.5 ± 0.2 cd | 2.3 ± 0.9 e | 18.1 ± 5.0 e |
8 | ‘Golden Delicious’ | 9.9 ± 0.7 e | 1.1 ± 0.1 g | 3.8 ± 0.9 c | 22.3 ± 3.3 d |
9 | ‘Grimes Golden’ | 8.5 ± 0.8 e | 1.3 ± 0.2 e | 2.1 ± 0.5 e | 14.8 ± 1.5 ef |
10 | ‘James Grieve’ | 5.8 ± 2.4 g | 1.7 ± 0.5 b | 1.2 ± 0.7 g | 10.2 ± 4.3 g |
11 | ‘Jonathan’ | 6.8 ± 0.2 fg | 1.3 ± 0.1 e | 2.1 ± 0.5 ef | 13.8 ± 2.2 f |
12 | ‘Kaltherer Böhmer’ | 11.8 ± 1.2 d | 1.8 ± 0.4 b | 3.5 ± 0.4 c | 22.7 ± 1.2 cd |
13 | ‘Pearmain’ | 7.2 ± 0.4 f | 1.1 ± 0.3 g | 2.8 ± 0.5 d | 16.7 ± 2.3 e |
14 | ‘Reinette de Champagne’ | 11.3 ± 1.7 d | 1.2 ± 0.1 f | 3.7 ± 0.3 c | 24.1 ± 0.9 cd |
15 | ‘Reinette Harbert’ | 8.9 ± 2.0 ef | 1.4 ± 0.2 d | 3.0 ± 0.3 d | 18.5 ± 3.0 e |
16 | ‘Reinette Osnabruck’ | 8.6 ± 0.7 ef | 1.2 ± 0.2 f | 4.5 ± 0.4 b | 24.9 ± 0.8 c |
17 | ‘Reinette du Canada’ | 11.6 ± 1.9 d | 1.7 ± 0.5 b | 3.2 ± 1.7 cd | 20.8 ± 5.7 d |
18 | ‘Wagener’ | 12.9 ± 0.7 c | 1.4 ± 0.1 d | 3.2 ± 0.9 cd | 21.6 ± 2.7 cd |
19 | ‘Baujade’ | 16.9 ± 1.2 a | 1.6 ± 0.1 c | 4.0 ± 0.5 c | 27.8 ± 1.8 b |
20 | ‘Champion’ | 13.7 ± 1.1 c | 1.6 ± 0.2 c | 3.2 ± 0.3 cd | 23.5 ± 1.9 cd |
21 | ‘Elstar’ | 6.2 ± 2.0 fg | 1.2 ± 0.2 f | 1.5 ± 0.4 fg | 11.0 ± 2.8 g |
22 | ‘Enterprise’ | 11.0 ± 0.7 d | 1.5 ± 0.1 cd | 2.5 ± 0.5 e | 18.6 ± 1.4 e |
23 | ‘Florina’ | 10.1 ± 0.9 e | 1.3 ± 0.1 e | 2.0 ± 0.1 ef | 16.1 ± 0.7 e |
24 | ‘Golden Orange’ | 8.2 ± 1.2 ef | 1.4 ± 0.2 d | 2.0 ± 0.4 ef | 14.5 ± 1.6 ef |
25 | ‘Goldrush’ | 10.7 ± 2.3 de | 1.3 ± 0.2 e | 3.4 ± 0.8 c | 21.2 ± 4.1 d |
26 | ‘Granny Smith’ | 12.8 ± 2.1 cd | 1.7 ± 0.4 b | 3.1 ± 0.4 cd | 23.3 ± 1.5 cd |
27 | ‘Judor’ | 7.1 ± 1.1 f | 1.1 ± 0.1 g | 2.0 ± 0.1 ef | 14.1 ± 0.4 f |
28 | ‘Juliana’ | 9.6 ± 0.8 e | 1.6 ± 0.2 c | 3.0 ± 0.4 cd | 19.8 ± 1.6 de |
29 | ‘Jurella’ | 14.9 ± 0.4 b | 1.2 ± 0.2 f | 4.6 ± 0.7 b | 28.1 ± 1.8 b |
30 | ‘Red Delicious Redkan’ | 11.9 ± 1.0 d | 1.3 ± 0.1 e | 2.9 ± 0.3 cd | 20.2 ± 0.3 de |
31 | ‘Sir Prize’ | 7.7 ± 0.6 f | 1.3 ± 0.1 e | 1.6 ± 0.4 f | 12.6 ± 1.3 f |
32 | ‘T107’ | 9.7 ± 1.2 e | 1.5 ± 0.2 cd | 3.1 ± 0.7 cd | 20.0 ± 2.4 de |
33 | ‘T194’ | 10.7 ± 0.9 de | 1.1 ± 0.1 g | 2.3 ± 0.3 e | 17.0 ± 2.0 e |
34 | ‘T195’ | 7.8 ± 1.0 f | 1.3 ± 0.2 e | 2.5 ± 0.9 e | 15.5 ± 1.4 ef |
No * | Cultivar | Moisture (%) | Ash Content (%) | TSS ** (%) | TA *** (%) | Carotenoids (mg/100 g) |
---|---|---|---|---|---|---|
1 | ‘Crețesc Auriu’ | 86.3 ± 0.8 b | 0.82 ± 0.2 d | 12.4 ± 0.2 f | 0.49 ± 0.01 cd | 3.00 ± 0.08 d |
2 | ‘Domnesc’ | 82.9 ± 0.4 d | 0.32 ± 0.0 f | 15.3 ± 0.2 de | 0.45 ± 0.03 cd | 1.70 ± 0.03 f |
3 | ‘Patul’ | 82.2 ± 0.8 de | 0.54 ± 0.4 e | 15.9 ± 0.5 d | 0.68 ± 0.20 c | 1.60 ± 0.00 f |
4 | ‘Poinic’ | 82.6 ± 0.3 d | 0.37 ± 0.0 ef | 14.8 ± 0.1 e | 0.22 ± 0.01 e | 0.79 ± 0.03 g |
5 | ‘Sovari’ | 86.2 ± 0.1 b | 0.72 ± 0.0 d | 14.5 ± 0.7 e | 0.21 ± 0.01 e | 2.60 ± 0.01 de |
6 | ‘Belle de Boskoop’ | 80.9 ± 0.1 e | 1.40 ± 0.3 c | 17.7 ± 0.4 c | 0.92 ± 0.07 b | 1.40 ± 0.03 f |
7 | ‘Cox’s Orange Pippin’ | 84.6 ± 0.2 c | 0.50 ± 0.4 e | 18.6 ± 0.6 b | 0.37 ± 0.01 d | 1.70 ± 0.01 f |
8 | ‘Golden Delicious’ | 81.2 ± 0.6 de | 0.31 ± 0.0 ef | 17.1 ± 0.5 c | 0.46 ± 0.01 cd | 1.40 ± 0.01 f |
9 | ‘Grimes Golden’ | 83.9 ± 0.1 c | 0.43 ± 0.0 e | 14.9 ± 1.1 de | 0.34 ± 0.00 d | 2.10 ± 0.01 e |
10 | ‘James Grieve’ | 79.3 ± 0.0 f | 1.86 ± 0.4 b | 20.7 ± 1.3 a | 0.51 ± 0.04 cd | 1.10 ± 0.04 fg |
11 | ‘Jonathan’ | 85.3 ± 0.2 c | 0.58 ± 0.0 e | 15.0 ± 0.7 de | 0.40 ± 0.06 d | 1.50 ± 0.01 f |
12 | ‘Kaltherer Böhmer’ | 83.9 ± 0.6 c | 0.30 ± 0.1 ef | 14.5 ± 0.7 e | 0.40 ± 0.01 d | 1.20 ± 0.08 fg |
13 | ‘Pearmain’ | 80.4 ± 0.3 e | 2.25 ± 0.4 a | 18.4 ± 0.4 b | 0.41 ± 0.05 d | 1.40 ± 0.00 f |
14 | ‘Reinette de Champagne’ | 86.2 ± 0.4 b | 0.60 ± 0.0 e | 12.4 ± 0.1 f | 0.34 ± 0.01 d | 6.60 ± 0.010 a |
15 | ‘Reinette Harbert’ | 87.0 ± 0.2 b | 0.81 ± 0.1 d | 14.2 ± 0.8 e | 0.54 ± 0.04 cd | 2.50 ± 0.04 e |
16 | ‘Reinette Osnabruck’ | 82.8 ± 0.4 d | 0.91 ± 0.0 d | 14.0 ± 0.1 e | 1.16 ± 0.02 a | 2.50 ± 0.02 e |
17 | ‘Reinette du Canada’ | 81.4 ± 0.3 e | 1.68 ± 0.3 bc | 15.5 ± 0.2 d | 0.56 ± 0.03 cd | 2.60 ± 0.02 e |
18 | ‘Wagener’ | 86.3 ± 0.5 b | 0.22 ± 0.1 f | 17.4 ± 1.9 c | 0.40 ± 0.04 d | 1.90 ± 0.01 f |
19 | ‘Baujade’ | 88.3 ± 0.0 ab | 1.34 ± 0.0 c | 10.6 ± 0.5 h | 0.62 ± 0.00 c | 4.60 ± 0.04 b |
20 | ‘Champion’ | 80.7 ± 0.7 e | 0.57 ± 0.1 e | 16.8 ± 1.2 c | 0.36 ± 0.01 d | 1.10 ± 0.01 g |
21 | ‘Elstar’ | 85.3 ± 0.3 c | 0.50 ± 0.0 e | 18.9 ± 2.7 b | 0.43 ± 0.02 d | 0.61 ± 0.11 g |
22 | ‘Enterprise’ | 82.4 ± 0.5 d | 0.51 ± 0.3 e | 14.1 ± 0.1 e | 0.34 ± 0.01 d | 2.60 ± 0.05 de |
23 | ‘Florina’ | 84.9 ± 0.0 c | 1.50 ± 0.1 c | 17.4 ± 1.9 c | 0.34 ± 0.02 d | 1.70 ± 0.06 f |
24 | ‘Golden Orange’ | 82.9 ± 0.4 d | 0.63 ± 0.0 e | 17.1 ± 2.4 c | 0.41 ± 0.01 d | 1.10 ± 0.01 g |
25 | ‘Goldrush’ | 86.2 ± 0.1 b | 0.17 ± 0.0 f | 13.2 ± 0.3 f | 0.36 ± 0.02 d | 1.30 ± 0.01 f |
26 | ‘Granny Smith’ | 86.9 ± 0.0 b | 0.51 ± 0.0 e | 11.8 ± 0.3 g | 0.50 ± 0.01 d | 2.80 ± 0.09 de |
27 | ‘Judor’ | 82.5 ± 0.9 d | 0.60 ± 0.2 e | 19.9 ± 1.1 a | 0.62 ± 0.04 c | 0.35 ± 0.02 g |
28 | ‘Juliana’ | 80.6 ± 0.7 e | 1.61 ± 0.6 bc | 19.4 ± 0.3 ab | 0.71 ± 0.02 c | 2.20 ± 0.00 e |
29 | ‘Jurella’ | 89.5 ± 0.3 a | 0.34 ± 0.2 ef | 13.4 ± 0.1 f | 0.64 ± 0.04 c | 2.00 ± 0.01 ef |
30 | ‘Red Delicious Redkan’ | 85.2 ± 0.4 c | 0.53 ± 0.0 e | 15.0 ± 0.3 d | 0.20 ± 0.02 e | 1.40 ± 0.08 f |
31 | ‘Sir Prize’ | 88.8 ± 0.4 a | 0.94 ± 0.3 d | 12.8 ± 0.5 fg | 1.10 ± 0.04 a | 3.80 ± 0.01 c |
32 | ‘T107’ | 83.2 ± 0.5 d | 1.78 ± 1.1 b | 15.1 ± 0.3 d | 0.42 ± 0.01 d | 0.67 ± 0.01 g |
33 | ‘T194’ | 85.2 ± 0.7 c | 0.82 ± 0.3 d | 17.8 ± 0.6 bc | 0.30 ± 0.01 de | 2.50 ± 0.05 de |
34 | ‘T195’ | 87.6 ± 0.7 b | 0.05 ± 0.0 g | 13.5 ± 1.1 f | 0.21 ± 0.01 e | 0.70 ± 0.01 g |
No * | Cultivar | Chl a (µg/g) | Chl b (µg/g) | Chl Total (µg/g) |
---|---|---|---|---|
1 | ‘Crețesc Auriu’ | 83.2 ± 1.2 cd | 59.3 ± 3.4 cd | 142.4 ± 4.6 c |
2 | ‘Domnesc’ | 45.0 ± 2.4 d | 17.0 ± 0.6 ef | 62.0 ± 3.0 ef |
3 | ‘Patul’ | 92.8 ± 3.2 c | 93.9 ± 7.5 a | 186.7 ± 10.7 b |
4 | ‘Poinic’ | 49.5 ± 3.0 d | 26.1 ± 0.1 e | 69.3 ± 4.9 de |
5 | ‘Sovari’ | 93.1 ± 9.7 c | 66.0 ± 3.8 c | 159.1 ± 13.5 c |
6 | ‘Grimes Golden’ | 95.2 ± 7.9 bc | 40.0 ± 1.5 de | 135.1 ± 9.3 c |
7 | ‘James Grieve’ | 44.9 ± 3.2 d | 21.2 ± 2.2 ef | 66.2 ± 3.3 e |
8 | ‘Kaltherer Böhmer’ | 49.4 ± 4.0 d | 39.6 ± 5.9 de | 89.0 ± 9.9 d |
9 | ‘Reinette de Champagne’ | 105.6 ± 0.1 b | 53.1 ± 4.1 d | 158.7 ± 4.2 c |
10 | ‘Reinette Harbert’ | 88.8 ± 1.1 c | 56.4 ± 1.8 cd | 145.3 ± 2.9 c |
11 | ‘Reinette du Canada’ | 111.6 ± 5.5 b | 39.3 ± 4.3 de | 150.8 ± 9.3 c |
12 | ‘Baujade’ | 144.8 ± 10.2 a | 76.6 ± 8.9 b | 221.4 ± 18.1 a |
13 | ‘Enterprise’ | 68.9 ± 7.0 d | 30.7 ± 1.3 e | 99.6 ± 8.2 d |
14 | ‘Goldrush’ | 35.1 ± 4.0 de | 33.1 ± 1.4 e | 68.2 ± 4.9 e |
15 | ‘Granny Smith’ | 106.6 ± 3.8 b | 62.3 ± 4.5 c | 169.0 ± 7.6 bc |
16 | ‘Judor’ | 56.0 ± 1.6 d | 20.4 ± 4.0 ef | 76.4 ± 5.6 de |
17 | ‘Juliana’ | 30.3 ± 3.9 e | 15.2 ± 3.2 f | 45.5 ± 7.1 f |
18 | ‘Jurella’ | 70.5 ± 8.3 d | 40.6 ± 0.4 de | 111.1 ± 8.7 d |
19 | ‘Sir Prize’ | 61.1 ± 2.9 d | 46.6 ± 8.6 d | 107.7 ± 11.5 d |
20 | ‘T107’ | 27.1 ± 3.9 e | 14.9 ± 4.0 f | 42.0 ± 7.9 f |
21 | ‘T194’ | 88.2 ± 3.2 c | 50.8 ± 5.0 d | 139.1 ± 5.2 c |
22 | ‘T195’ | 36.7 ± 4.6 de | 12.4 ± 3.5 g | 49.1 ± 8.1 f |
No * | Cultivar | Fruit Size | Fruit Shape | Fruit Color | Pulp Color | Consistency | Juiciness | Taste | Aroma |
---|---|---|---|---|---|---|---|---|---|
1 | ‘Crețesc Auriu’ | 2.6 ± 0.2 | 2.6 ± 0.3 | 4.2 ± 0.2 | 3.0 ± 0.3 | 2.6 ± 0.3 | 3.6 ± 0.3 | 10.2 ± 0.8 | 3.0 ± 0.4 |
2 | ‘Domnesc’ | 2.6 ± 0.3 | 2.8 ± 0.4 | 3.0 ± 0.4 | 2.9 ± 0.6 | 2.6 ± 0.3 | 3.0 ± 0.4 | 9.3 ± 0.7 | 3.1 ± 0.5 |
3 | ‘Patul’ | 1.4 ± 0.1 | 2.2 ± 0.2 | 3.4 ± 0.2 | 2.4 ± 0.3 | 2.5 ± 0.4 | 4.0 ± 0.5 | 11.8 ± 0.9 | 4.1 ± 0.3 |
4 | ‘Poinic’ | 2.5 ± 0.3 | 2.3 ± 0.2 | 2.1 ± 0.1 | 1.4 ± 0.1 | 1.6 ± 0.3 | 2.1 ± 0.2 | 6.0 ± 0.5 | 2.5 ± 0.4 |
5 | ‘Sovari’ | 2.3 ± 0.3 | 2.3 ± 0.3 | 3.9 ± 0.6 | 2.8 ± 0.8 | 2.3 ± 0.3 | 3.0 ± 0.3 | 9.0 ± 0.9 | 2.6 ± 0.3 |
6 | ‘Belle de Boskoop’ | 2.8 ± 0.1 | 2.8 ± 0.3 | 4.2 ± 0.7 | 3.0 ± 0.3 | 2.6 ± 0.4 | 3.6 ± 0.5 | 11.2 ± 0.7 | 3.6 ± 0.5 |
7 | ‘Cox’s Orange Pippin’ | 1.9 ± 0.2 | 2.1 ± 0.2 | 3.0 ± 0.3 | 2.6 ± 0.4 | 2.6 ± 0.4 | 4.4 ± 0.4 | 13.3 ± 1.0 | 4.3 ± 0.4 |
8 | ‘Golden Delicious’ | 2.9 ± 0.2 | 3.0 ± 0.3 | 3.6 ± 0.7 | 2.8 ± 0.4 | 2.9 ± 0.5 | 4.5 ± 0.8 | 13.9 ± 0.9 | 4.6 ± 0.4 |
9 | ‘Grimes Golden’ | 2.1 ± 0.1 | 2.4 ± 0.3 | 2.6 ± 0.3 | 2.7 ± 0.9 | 2.8 ± 0.4 | 2.7 ± 0.3 | 9.8 ± 0.7 | 3.6 ± 0.5 |
10 | ‘James Grieve’ | 2.3 ± 0.4 | 2.0 ± 0.3 | 2.2 ± 0.1 | 2.3 ± 0.3 | 2.0 ± 0.3 | 3.3 ± 0.3 | 10.3 ± 0.8 | 3.2 ± 0.5 |
11 | ‘Jonathan’ | 2.8 ± 0.2 | 2.7 ± 0.2 | 4.4 ± 0.5 | 3.0 ± 0.3 | 2.8 ± 0.3 | 4.5 ± 0.5 | 14.0 ± 0.9 | 4.6 ± 0.6 |
12 | ‘Kaltherer Böhmer’ | 3.0 ± 0.5 | 3.0 ± 0.2 | 4.9 ± 0.5 | 3.0 ± 0.3 | 2.9 ± 0.5 | 3.9 ± 0.3 | 13.6 ± 1.1 | 4.3 ± 0.4 |
13 | ‘Pearmain’ | 1.5 ± 0.2 | 2.0 ± 0.4 | 1.3 ± 0.1 | 2.1 ± 0.2 | 2.0 ± 0.3 | 2.5 ± 0.4 | 8.0 ± 0.7 | 3.1 ± 0.5 |
14 | ‘Reinette de Champagne’ | 2.5 ± 0.3 | 2.1 ± 0.3 | 2.3 ± 0.3 | 2.5 ± 0.4 | 2.8 ± 0.3 | 4.5 ± 0.6 | 12.3 ± 0.9 | 4.3 ± 0.7 |
15 | ‘Reinette Harbert’ | 2.0 ± 0.1 | 1.1 ± 0.2 | 2.0 ± 0.4 | 2.2 ± 0.4 | 2.1 ± 0.4 | 2.6 ± 0.3 | 5.1 ± 0.5 | 2.0 ± 0.3 |
16 | ‘Reinette Osnabruck’ | 2.3 ± 0.4 | 2.6 ± 0.4 | 2.5 ± 0.3 | 2.8 ± 0.3 | 2.3 ± 0.3 | 3.7 ± 0.2 | 10.0 ± 0.7 | 3.8 ± 0.6 |
17 | ‘Reinette du Canada’ | 3.0 ± 0.2 | 2.8 ± 0.2 | 2.9 ± 0.2 | 2.1 ± 0.3 | 1.8 ± 0.3 | 2.3 ± 0.3 | 6.1 ± 0.7 | 2.7 ± 0.5 |
18 | ‘Wagener’ | 2.4 ± 0.3 | 2.6 ± 0.3 | 2.9 ± 0.3 | 2.7 ± 0.3 | 2.8 ± 0.3 | 4.0 ± 0.6 | 11.3 ± 0.8 | 3.8 ± 0.5 |
19 | ‘Baujade’ | 2.8 ± 0.5 | 2.9 ± 0.2 | 3.2 ± 0.4 | 2.0 ± 0.3 | 2.0 ± 0.3 | 3.2 ± 0.3 | 7.3 ± 0.6 | 2.3 ± 0.3 |
20 | ‘Champion’ | 2.8 ± 0.4 | 2.6 ± 0.3 | 2.1 ± 0.3 | 2.7 ± 0.3 | 2.7 ± 0.5 | 4.0 ± 0.3 | 11.8 ± 1.1 | 3.9 ± 0.5 |
21 | ‘Elstar’ | 1.5 ± 0.2 | 2.1 ± 0.4 | 3.1 ± 0.4 | 2.5 ± 0.4 | 2.4 ± 0.4 | 3.8 ± 0.5 | 11.9 ± 0.7 | 4.0 ± 0.6 |
22 | ‘Enterprise’ | 1.6 ± 0.2 | 2.0 ± 0.3 | 3.2 ± 0.5 | 2.6 ± 0.3 | 1.8 ± 0.2 | 3.4 ± 0.3 | 8.0 ± 0.7 | 2.6 ± 0.3 |
23 | ‘Florina’ | 2.6 ± 0.3 | 2.8 ± 0.2 | 4.5 ± 0.9 | 2.9 ± 0.5 | 2.5 ± 0.3 | 4.1 ± 0.5 | 13.1 ± 0.9 | 4.5 ± 0.5 |
24 | ‘Golden Orange’ | 2.9 ± 0.2 | 2.9 ± 0.5 | 4.6 ± 0.3 | 3.0 ± 0.3 | 3.0 ± 0.5 | 4.9 ± 0.6 | 15.0 ± 1.1 | 5.0 ± 0.6 |
25 | ‘Goldrush’ | 2.7 ± 0.6 | 2.6 ± 0.4 | 3.4 ± 0.5 | 2.9 ± 0.5 | 2.8 ± 0.5 | 3.4 ± 0.5 | 11.8 ± 0.9 | 3.6 ± 0.6 |
26 | ‘Granny Smith’ | 2.8 ± 0.2 | 2.8 ± 0.2 | 4.4 ± 0.5 | 2.6 ± 0.3 | 2.3 ± 0.4 | 3.4 ± 0.6 | 8.5 ± 0.6 | 3.0 ± 0.5 |
27 | ‘Judor’ | 1.3 ± 0.2 | 2.0 ± 0.3 | 1.7 ± 0.4 | 2.1 ± 0.2 | 2.2 ± 0.3 | 3.0 ± 0.5 | 8.2 ± 0.7 | 2.9 ± 0.3 |
28 | ‘Juliana’ | 1.4 ± 0.3 | 1.9 ± 0.2 | 2.3 ± 0.2 | 1.8 ± 0.2 | 1.3 ± 0.3 | 1.6 ± 0.2 | 4.0 ± 0.3 | 1.5 ± 0.2 |
29 | ‘Jurella’ | 1.3 ± 0.2 | 2.4 ± 0.4 | 2.7 ± 0.5 | 2.2 ± 0.3 | 2.6 ± 0.4 | 2.9 ± 0.4 | 11.1 ± 0.9 | 3.1 ± 0.5 |
30 | ‘Red Delicious Redkan’ | 2.7 ± 0.4 | 3.0 ± 0.2 | 4.2 ± 0.3 | 2.4 ± 0.2 | 2.5 ± 0.2 | 2.6 ± 0.3 | 11.8 ± 0.5 | 3.4 ± 0.3 |
31 | ‘Sir Prize’ | 1.6 ± 0,3 | 2.0 ± 0,3 | 2.4 ± 0.3 | 2.2 ± 0.4 | 1.6 ± 0.4 | 2.8 ± 0.5 | 7.0 ± 0.3 | 3.0 ± 0.5 |
32 | ‘T107’ | 2.3 ± 0.3 | 2.3 ± 0.4 | 3.6 ± 0.5 | 2.9 ± 0.3 | 2.7 ± 0.3 | 3.9 ± 0.4 | 12.4 ± 1.2 | 4.1 ± 0.6 |
33 | ‘T194’ | 2.8 ± 0.2 | 2.7 ± 0.2 | 3.7 ± 0.3 | 2.6 ± 0.4 | 2.7 ± 0.2 | 4.3 ± 0.5 | 14.1 ± 0.9 | 4.5 ± 0.6 |
34 | ‘T195’ | 2.4 ± 0.3 | 2.4 ± 0.3 | 1.8 ± 0.4 | 2.6 ± 0.3 | 1.4 ± 0.3 | 2.8 ± 0.4 | 7.0 ± 0.6 | 1.9 ± 0.3 |
Scoring range | 1−3 | 1−3 | 1−5 | 1−3 | 1−3 | 1−5 | 1−15 | 1−5 | |
Minimum value | 1.3 | 1.1 | 1.3 | 1.4 | 1.3 | 1.6 | 4.0 | 1.5 | |
Maximum value | 3.0 | 3.0 | 4.9 | 3.0 | 3.0 | 4.9 | 15.0 | 5.0 | |
Mean value | 2.3 | 2.4 | 3.1 | 2.5 | 2.4 | 3.4 | 10.2 | 3.4 |
No. | Cultivar—Appearance Score (Mean ± SEM) and Significance | Cultivar—Pulp Score (Mean ± SEM) and Significance | Cultivar—Total Score (Mean ± SEM) and Significance | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | ‘K. Böhmer’ | 3.63 ± 0.30 | a | ‘Golden Orange’ | 6.18 ± 0.38 | a | ‘Golden Orange’ | 5.16 ± 0.30 | a |
2 | ‘Golden Orange’ | 3.47 ± 0.29 | ab | ‘Jonathan’ | 5.78 ± 0.37 | b | ‘Jonathan’ | 4.85 ± 0.31 | b |
3 | ‘Granny Smith’ | 3.33 ± 0.22 | b | ‘Golden D.’ | 5.74 ± 0.35 | b | ‘K. Böhmer’ | 4.83 ± 0.30 | b |
4 | ‘Jonathan’ | 3.30 ± 0.20 | b | ‘T194’ | 5.64 ± 0.32 | b | ‘Golden D.’ | 4.78 ± 0.25 | b |
5 | ‘Florina’ | 3.30 ± 0.22 | b | ‘K. Böhmer’ | 5.54 ± 0.33 | b | ‘T194’ | 4.68 ± 0.27 | b |
6 | ‘R.D. Redkan’ | 3.30 ± 0.21 | b | ‘Cox’s Orange P.’ | 5.44 ± 0.31 | b | ‘Florina’ | 4.63 ± 0.29 | b |
7 | ‘Boskoop’ | 3.27 ± 0.20 | b | ‘Florina’ | 5.42 ± 0.30 | b | ‘Cox’s Orange P.’ | 4.28 ± 0.28 | c |
8 | ‘Golden D.’ | 3.17 ± 0.19 | bc | ‘R. Champagne’ | 5.28 ± 0.32 | bc | ‘T107’ | 4.28 ± 0.24 | c |
9 | ‘Crețesc A.’ | 3.13 ± 0.18 | bc | ‘T107’ | 5.20 ± 0.31 | bc | ‘Boskoop’ | 4.23 ± 0.27 | c |
10 | ‘T194’ | 3.07 ± 0.19 | c | ‘Champion’ | 5.02 ± 0.30 | c | ‘R. Champagne’ | 4.16 ± 0.28 | c |
11 | ‘Baujade’ | 2.97 ± 0.15 | cd | ‘Patul’ | 4.96 ± 0.29 | c | ‘Goldrush’ | 4.15 ± 0.24 | c |
12 | ‘Goldrush’ | 2.90 ± 0.18 | cd | ‘Wagener’ | 4.92 ± 0.28 | c | ‘Champion’ | 4.08 ± 0.29 | c |
13 | ‘R. Canada’ | 2.90 ± 0.14 | cd | ‘Elstar’ | 4.92 ± 0.29 | c | ‘R.D. Redkan’ | 4.08 ± 0.22 | c |
14 | ‘Domnesc’ | 2.80 ± 0.16 | d | ‘Goldrush’ | 4.90 ± 0.27 | c | ‘Wagener’ | 4.06 ± 0.21 | c |
15 | ‘Sovari’ | 2.79 ± 0.15 | d | ‘Boskoop’ | 4.80 ± 0.25 | c | ‘Patul’ | 3.98 ± 0.20 | c |
16 | ‘T107’ | 2.73 ± 0.18 | d | ‘R.D. Redkan’ | 4.54 ± 0.29 | cd | ‘Crețesc A.’ | 3.98 ± 0.23 | c |
17 | ‘Wagener’ | 2.63 ± 0.17 | de | ‘R. Osnabruck’ | 4.52 ± 0.28 | cd | ‘Elstar’ | 3.91 ± 0.24 | cd |
18 | ‘Champion’ | 2.50 ± 0.15 | e | ‘Crețesc A.’ | 4.48 ± 0.30 | cd | ‘R. Osnabruck’ | 3.75 ± 0.25 | d |
19 | ‘R. Osnabruck’ | 2.47 ± 0.14 | e | ‘Jurella’ | 4.38 ± 0.25 | d | ‘Granny Smith’ | 3.73 ± 0.21 | d |
20 | ‘Grimes G.’ | 2.37 ± 0.17 | e | ‘Grimes G.’ | 4.32 ± 0.24 | d | ‘Domnesc’ | 3.66 ± 0.22 | d |
21 | ‘Patul’ | 2.33 ± 0.16 | e | ‘James Grieve’ | 4.22 ± 0.27 | d | ‘Grimes G.’ | 3.59 ± 0.23 | d |
22 | ‘Cox’s Orange P.’ | 2.33 ± 0.15 | e | ‘Domnesc’ | 4.18 ± 0.26 | d | ‘Jurella’ | 3.54 ± 0.21 | d |
23 | ‘Poinic’ | 2.30 ± 0.14 | e | ‘Granny Smith’ | 3.96 ± 0.25 | de | ‘Sovari’ | 3.50 ± 0.20 | d |
24 | ‘R. Champagne’ | 2.30 ± 0.15 | e | ‘Sovari’ | 3.93 ± 0.28 | de | ‘James Grieve’ | 3.45 ± 0.21 | d |
25 | ‘Enterprise’ | 2.27 ± 0.16 | e | ‘Enterprise’ | 3.68 ± 0.27 | e | ‘Baujade’ | 3.21 ± 0.23 | de |
26 | ‘Elstar’ | 2.23 ± 0.15 | e | ‘Judor’ | 3.68 ± 0.29 | e | ‘Enterprise’ | 3.15 ± 0.20 | de |
27 | ‘T195’ | 2.20 ± 0.14 | ef | ‘Pearmain’ | 3.54 ± 0.30 | e | ‘R. Canada’ | 2.96 ± 0.18 | e |
28 | ‘James Grieve’ | 2.17 ± 0.15 | ef | ‘Baujade’ | 3.36 ± 0.16 | e | ‘Judor’ | 2.93 ± 0.19 | e |
29 | ‘Jurella’ | 2.13 ± 0.13 | ef | ‘Sir Prize’ | 3.32 ± 0.19 | e | ‘Sir Prize’ | 2.83 ± 0.18 | e |
30 | ‘Sir Prize’ | 2.00 ± 0.12 | f | ‘T195’ | 3.14 ± 0.17 | f | ‘Pearmain’ | 2.81 ± 0.17 | e |
31 | ‘Juliana’ | 1.87 ± 0.11 | fg | ‘R. Canada’ | 3.00 ± 0.15 | f | ‘T195’ | 2.79 ± 0.14 | e |
32 | ‘R. Harbert’ | 1.70 ± 0.09 | g | ‘R. Harbert’ | 2.80 ± 0.18 | fg | ‘Poinic’ | 2.56 ± 0.12 | ef |
33 | ‘Judor’ | 1.67 ± 0.08 | g | ‘Poinic’ | 2.72 ± 0.11 | g | ‘R. Harbert’ | 2.39 ± 0.11 | f |
34 | ‘Pearmain’ | 1.60 ± 0.09 | g | ‘Juliana’ | 2.04 ± 0.12 | h | ‘Juliana’ | 1.98 ± 0.10 | g |
Minimum value | 1.60 | 2.04 | 1.98 | ||||||
Maximum value | 3.63 | 6.18 | 5.16 | ||||||
Mean value | 2.62 | 4.40 | 3.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morariu, P.A.; Mureșan, A.E.; Sestras, A.F.; Tanislav, A.E.; Dan, C.; Mareși, E.; Militaru, M.; Mureșan, V.; Sestras, R.E. A Comprehensive Morphological, Biochemical, and Sensory Study of Traditional and Modern Apple Cultivars. Horticulturae 2025, 11, 264. https://doi.org/10.3390/horticulturae11030264
Morariu PA, Mureșan AE, Sestras AF, Tanislav AE, Dan C, Mareși E, Militaru M, Mureșan V, Sestras RE. A Comprehensive Morphological, Biochemical, and Sensory Study of Traditional and Modern Apple Cultivars. Horticulturae. 2025; 11(3):264. https://doi.org/10.3390/horticulturae11030264
Chicago/Turabian StyleMorariu, Paula A., Andruța E. Mureșan, Adriana F. Sestras, Anda E. Tanislav, Catalina Dan, Eugenia Mareși, Mădălina Militaru, Vlad Mureșan, and Radu E. Sestras. 2025. "A Comprehensive Morphological, Biochemical, and Sensory Study of Traditional and Modern Apple Cultivars" Horticulturae 11, no. 3: 264. https://doi.org/10.3390/horticulturae11030264
APA StyleMorariu, P. A., Mureșan, A. E., Sestras, A. F., Tanislav, A. E., Dan, C., Mareși, E., Militaru, M., Mureșan, V., & Sestras, R. E. (2025). A Comprehensive Morphological, Biochemical, and Sensory Study of Traditional and Modern Apple Cultivars. Horticulturae, 11(3), 264. https://doi.org/10.3390/horticulturae11030264