The Effects of Processing Treatments on the Quality and Functional Constituents of Crabapple Flower Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Drying
2.3. Sensory Evaluation
2.4. Parametrization of Sample Color
2.5. Measurement of the Content of Functional Constituents
2.6. Statistical Analysis
3. Results
3.1. Sensory Evaluation of Crabapple Flower Tea
3.2. Change in Color Parameters from Dry Flowers to Infusion and Infused Flowers
3.3. Differences in the Constituents of Dry Flower Tea of Different Crabapple Cultivars
3.4. Comparison of the Influence of Different Factors on the Functional Constituent Content of Crabapple Flower Tea
3.5. Correlation Analysis Between Sensory Attributes and Functional Constituents
4. Discussion
4.1. The Cultivar and Drying Temperature Are Important Factors Influencing the Flower Tea Quality of Crabapple
4.2. Functional Constituents in Crabapple Flower Tea
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.N. Researches of Germplasm Resources of Malus Mill; China Agriculture Press: Beijing, China, 2001; pp. 181–183+315–335. [Google Scholar]
- Rehder, A. Manual of Cultivated Trees and Shrubs, 2nd ed.; Environmental Science, Biology: New York, NY, USA, 1940; pp. 389–399. [Google Scholar]
- Fiala, J.L. Flowering Crabapples: The Genus Malus; Timber Press: Portland, OR, USA, 1994; pp. 106–273. [Google Scholar]
- Han, M.; Li, G.; Liu, X.; Li, A.; Mao, P.; Liu, P.; Li, H. Phenolic profile, antioxidant activity and anti-proliferative activity of crabapple fruits. Hortic. Plant J. 2019, 5, 155–163. [Google Scholar] [CrossRef]
- Li, N.; Shi, J.; Wang, K. Profile and antioxidant activity of phenolic extracts from 10 crabapples (Malus wild species). J. Agric. Food Chem. 2014, 62, 574–581. [Google Scholar] [CrossRef]
- Liu, F.; Wang, M.; Wang, M. Phenolic compounds and antioxidant activities of flowers, leaves and fruits of five crabapple cultivars (Malus Mill. species). Sci. Hortic. 2018, 235, 460–467. [Google Scholar] [CrossRef]
- Zeng, X.; Li, H.; Jiang, W.; Li, Q.; Xi, Y.; Wang, X.; Li, J. Phytochemical compositions, health-promoting properties and food applications of crabapples: A review. Food Chem. 2022, 386, 132789. [Google Scholar] [CrossRef]
- Yun, J.; Jiang, H.; Han, W. Analysis and evaluation of free amino acid in different cultivars of crabapple leaf tea. Food Ferment. Ind. 2020, 46, 237–243. [Google Scholar]
- Liu, B.; Zhang, C.; Zhang, J.; Zhao, X. Wu Shan Shen Cha (Malus asiatica Nakai. Leaves)-derived flavonoids alleviate alcohol-induced gastric injury in mice via an anti-oxidative mechanism. Biomolecules 2019, 9, 169. [Google Scholar] [CrossRef]
- Qin, H.; Deng, X.Q.; Li, B.C.; Dai, W.F.; Jiao, S.Y.; Qin, Y.; Zhang, M. Volatiles, polysaccharides and total polyphenols in Chinese rose tea infusions and their antioxidant activities. J. Food Process. Preserv. 2018, 42, e13323.1–e13323.7. [Google Scholar] [CrossRef]
- Li, Y.F.; Yang, P.Y.; Luo, Y.H.; Gao, B.Y.; Sun, J.H.; Lu, W.Y.; Liu, J.; Chen, P.; Zhang, Y.Q.; Yu, L.L. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem. 2019, 286, 8–16. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, C.; Tian, C.; Xu, K.; Lai, Z.; Lin, Y.; Guo, Y. Volatilomics analysis of jasmine tea during multiple rounds of scenting processes. Foods 2023, 12, 812. [Google Scholar] [CrossRef]
- Han, A.R.; Nam, B.; Kim, B.R.; Lee, K.C.; Song, B.S.; Kim, S.H.; Kim, J.B.; Jin, C.H. Phytochemical Composition and Antioxidant Activities of Two Different Color Chrysanthemum Flower Teas. Molecules 2019, 24, 329. [Google Scholar] [CrossRef]
- Zheng, M.; Xia, Q.; Lu, S. Study on drying methods and their influences on effective components of loquat flower tea. LWT Food Sci. Technol. 2015, 63, 14–20. [Google Scholar] [CrossRef]
- Dong, J.; Ma, X.; Fu, Z.; Guo, Y. Effects of microwave drying on the contents of functional constituents of Eucommia ulmoides flower tea. Ind. Crops Prod. 2011, 34, 1102–1110. [Google Scholar] [CrossRef]
- GB/T 23776-2018; Methodology for Sensory Evaluation of Tea. Standard of the People’s Republic of China: Beijing, China, 2018.
- ISO 13299; 2016 Sensory Analysis-Methodology-General Guidance for Establishing a Sensory Profile. International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- GB/T 14487-2017; Tea Vocabulary for Sensory Evaluation. Standard of the People’s Republic of China: Beijing, China, 2018.
- Zhu, J.; Wang, J.; Yuan, H.; Ouyang, W.; Li, J.; Hua, J.; Jiang, Y. Effects of fermentation temperature and time on the color attributes and tea pigments of Yunnan Congou black tea. Foods 2022, 11, 1845. [Google Scholar] [CrossRef]
- Wang, H.F.; Tsai, Y.S.; Lin, M.L.; Ou, A.S.M. Comparison of bioactive components in GABA tea and green tea produced in Taiwan. Food Chem. 2006, 96, 648–653. [Google Scholar] [CrossRef]
- Wu, X.; Leung, D.Y. Optimization of biodiesel production from camelina oil using orthogonal experiment. Appl. Energy 2011, 88, 3615–3624. [Google Scholar] [CrossRef]
- Huang, Y.; Shang, H.; Zhu, J.W.; Liu, P.; Sun, W.J. Effects of processing treatments on quality and antioxidant activity of tea plant flower. Food Sci. 2020, 41, 165–170. [Google Scholar]
- Shi, L.; Gu, Y.; Wu, D.; Wu, X.; Grierson, D.; Tu, Y.; Wu, Y. Hot air drying of tea flowers: Effect of experimental temperatures on drying kinetics, bioactive compounds and quality attributes. Int. J. Food Sci. Technol. 2019, 54, 526–535. [Google Scholar] [CrossRef]
- Zhao, L.; Fan, H.; Zhang, M.; Chitrakar, B.; Bhandari, B.; Wang, B. Edible flowers: Review of flower processing and extraction of bioactive compounds by novel technologies. Food Res. Int. 2019, 126, 108660. [Google Scholar] [CrossRef]
- Valadez-Carmona, L.; Plazola-Jacinto, C.P.; Hernández-Ortega, M.; Hernández-Navarro, M.D.; Villarreal, F.; Necoechea-Mondragón, H.; Ortiz-Moreno, A.; Ceballos-Reyes, G. Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innov. Food Sci. Emerg. Technol. 2017, 41, 378–386. [Google Scholar] [CrossRef]
- Shi, L.; Kim, E.; Yang, L.; Huang, Y.; Ren, N.; Li, B.; He, P.; Tu, Y.; Wu, Y. Effect of a combined microwave-assisted drying and air drying on improving active nutraceutical compounds, flavor quality, and antioxidant properties of Camellia sinensis L. (cv. Longing 43) flowers. Food Qual. Saf. 2021, 5, 1–7. [Google Scholar] [CrossRef]
- Qu, F.; Zhu, X.; Ai, Z.; Ai, Y.; Qiu, F.; Ni, D. Effect of different drying methods on the sensory quality and chemical components of black tea. LWT 2019, 99, 112–118. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.Q.; Granato, D.; Xu, Y.Q.; Ho, C.T. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Irina, I.; Mohamed, G. Biological Activities and Effects of Food Processing on Flavonoids as Phenolic Antioxidants. In Advances in Applied Biotechnology; Petre, M., Ed.; Intech: Rijeka, Croatia, 2012; pp. 101–124. [Google Scholar]
- Horanni, R.; Engelhardt, U.H. Determination of amino acids in white, green, black, oolong, pu-erh teas and tea products. J. Food Compos. Anal. 2013, 31, 94–100. [Google Scholar] [CrossRef]
- Yang, J.; Liu, R.H. The Phenolic Profiles and Antioxidant Activity in Different Types of Tea. Int. J. Food Sci. Technol. 2013, 48, 163–171. [Google Scholar] [CrossRef]
- Shen, X.; Shi, L.; Pan, H.; Li, B.; Wu, Y.; Tu, Y. Identification of triterpenoid saponins in flowers of four Camellia sinensis cultivars from Zhejiang province: Differences between cultivars, developmental stages, and tissues. Ind. Crops Prod. 2017, 95, 140–147. [Google Scholar] [CrossRef]
- Vinokur, Y.; Rodov, V.; Reznick, N.; Goldman, G.; Horev, B.; Umiel, N.; Friedman, H. Rose petal tea as an antioxidant-rich beverage: Cultivar effects. J. Food Sci. 2006, 71, S42–S47. [Google Scholar] [CrossRef]
- Feng, Z.W.; Yang, X.G.; Pan, J.; Ren, G.H.; Zhang, E.X.; Fan, B.Y.; Shi, G.A. Antioxidation analisis of extracts from petals of 6 tree peonies in vitro. J. Northwest A F Univ. Nat. Sci. Ed. 2009, 37, 205–210. [Google Scholar]
- Hussain, N.; Ishak, I.; Harith, N.M.; Kuan, G.L.P. Comparison of bioactive compounds and sensory evaluation on edible flowers tea infusion. Ital. J. Food Sci. 2019, 31, 264–273. [Google Scholar]
- Baldisserotto, A.; Malisardi, G.; Scalambra, E.; Andreotti, E.; Romagnoli, C.; Vicentini, C.B.; Manfredini, S.; Vertuani, S. Synthesis, antioxidant and antimicrobial activity of a new phloridzin derivative for dermo-cosmetic applications. Molecules 2012, 17, 13275–13289. [Google Scholar] [CrossRef] [PubMed]
- Riviere, C. Dihydrochalcones: Occurrence in the plant kingdom, chemistry and biological activities. Stud. Nat. Prod. Chem. 2016, 51, 253–381. [Google Scholar]
- Ben-Othman, S.; Kaldmäe, H.; Rätsep, R.; Bleive, U.; Aluvee, A.; Rinken, T. Optimization of ultrasound-assisted extraction of phloretin and other phenolic compounds from apple tree leaves (Malus domestica Borkh.) and Comparison of Different Cultivars from Estonia. Antioxidants 2021, 10, 189. [Google Scholar] [CrossRef]
- Puel, C.; Quintin, A.; Mathey, J.; Obled, C.; Davicco, M.J.; Lebecque, P.; Kati-Coulibaly, S.; Horcajada, M.N.; Coxam, V. Prevention of bone loss by phloridzin, an apple polyphenol, in ovariectomized rats under inflammation conditions. Calcif. Tissue Int. 2005, 77, 311–318. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Mohareb, F.; Redfern, S.P.; Berry, M.; Simmonds, M.S.; Terry, L.A. Biochemical profile of heritage and modern apple cultivars and application of machine learning methods to predict usage, age, and harvest season. J. Agric. Food. Chem. 2017, 65, 5339–5356. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, B.L.; Zhong, G.Y.; Brown, S.K. Genetic diversity of dihydrochalcone content in Malus germplasm. Genet. Resour. Crop Evol. 2018, 65, 1485–1502. [Google Scholar] [CrossRef]
- Guyot, S.; Marnet, N.; Sanoner, P.; Drilleau, J.F. Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices. J. Agric. Food. Chem. 2003, 51, 6240–6247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Hu, L.; Li, P.; Gong, X.; Ma, F. Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant Sci. 2017, 265, 131–145. [Google Scholar] [CrossRef]
- Chen, H.; Wang, M.; Zhang, L.; Ren, F.; Li, Y.; Chen, Y.; Liu, Y.; Zhang, Z.; Zeng, Q. Anthocyanin profiles and color parameters of fourteen grapes and wines from the eastern foot of Helan Mountain in Ningxia. Food Chem. 2024, 24, 102034. [Google Scholar] [CrossRef]
- Gosch, C.; Halbwirth, H.; Stich, K. Phloridzin: Biosynthesis, distribution and physiological relevance in plants. Phytochemistry 2010, 71, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, Z.; Wu, Y.; Zheng, L.; Zhang, G. Regulatory mechanisms of anthocyanin biosynthesis in apple and pear. Int. J. Mol. Sci. 2021, 22, 8441. [Google Scholar] [CrossRef] [PubMed]
Sensory Properties (Total Score) | Item (Total Score) | Rating (Score) | ||||
---|---|---|---|---|---|---|
I | II | III | IV | V | ||
Appearance of dry flowers (20) | Integrity (10) | Intact (8.1–10.0) | Litter broken (6.1–8.0) | Chop (4.1–6.0) | Crush (2.1–4.0) | Severe crushing (0–2.0) |
Color (10) | Bloom (8.1–10.0) | Smooth and clean (6.1–8.0) | Dry (4.1–6.0) | Dull dry (2.1–4.0) | Dry red (0–2.0) | |
Infusion color (5) | Color (5) | Fresh and brilliant (4.1–5.0) | Bright and clear (3.1–4.0) | Clear (2.1–3.0) | Dull (1.1–2.0) | Suspension (0–1.0) |
Aroma (35) | Fresh (10) | Fresh lovely (8.1–10.0) | Fresh (6.1–8.0) | Low freshness (4.1–6.0) | Ripeness (2.1–4.0) | Odor and boredom (0–2.0) |
Heavy (10) | Strong and lasting (8.1–10.0) | Lasting (6.1–8.0) | Unlasting (4.1–6.0) | Weak (2.1–4.0) | None (0–2.0) | |
Pure (15) | Pure and normal (12.1–15.0) | Normal (9.1–12) | Less pure (6.1–9.0) | Tea aroma dominant with weak floral scent (3.1–6.0) | Tainted odor (0–3.1) | |
Taste (30) | Fresh (10) | Fresh (8.1–10.0) | Low freshness (6.1–8.0) | Plain and thin (4.1–6.0) | Grassy and tainted (2.1–4.0) | Steamed and overcooked (0–2.0) |
Heavy (10) | Strong (8.1–10.0) | Brisk (6.1–8.0) | Normal (4.1–6.0) | Pale and watery (2.1–4.0) | Tainted taste (0–2.0) | |
Mellow (10) | Mellow and sweet (8.1–10.0) | Mellow and normal (6.1–8.0) | Mellow (4.1–6.0) | Plain and thin (2.1–4.0) | Bitter/astringency (0–2.0) | |
Infused flowers (10) | Morphology (10) | Fat and bright (8.1–10.0) | Even and open (6.1–8.0) | Dark and unopen (4.1–6.0) | Shrink (2.1–4.0) | Broken (0–2.0) |
No. | Treatment (Cultivars, Temperature, Duration) | Item Score | Total Score | ||||
---|---|---|---|---|---|---|---|
Appearance of Dry Flowers | Infusion Color | Aroma | Taste | Infused Flowers | |||
A1 | ‘Royalty’, 40 °C, 6 h | 18.40 ± 0.20 ab | 4.57 ± 0.06 bc | 32.20 ± 0.35 b | 27.20 ± 0.17 c | 9.33 ± 0.06 a | 91.70 ± 0.40 ab |
A2 | ‘Royalty’, 50 °C, 4 h | 18.33 ± 0.23 ab | 4.62 ± 0.06 ab | 33.13 ± 0.20 a | 27.30 ± 0.30 c | 9.30 ± 0.10 a | 92.68 ± 0.26 a |
A3 | ‘Royalty’, 60 °C, 5 h | 18.67 ± 0.31 a | 4.67 ± 0.03 ab | 30.22 ± 0.40 d | 27.40 ± 0.17 bc | 9.03 ± 0.06 b | 89.98 ± 0.58 d |
B1 | ‘May’s Delight’, 40 °C, 5 h | 18.07 ± 0.12 bc | 4.27 ± 0.03 d | 30.22 ± 0.40 d | 28.10 ± 0.35 ab | 9.33 ± 0.06 a | 89.98 ± 0.58 d |
B2 | ‘May’s Delight’, 50 °C, 6 h | 18.47 ± 0.12 ab | 4.03 ± 0.06 e | 31.62 ± 0.20 bc | 27.40 ± 0.17 bc | 9.03 ± 0.06 b | 90.55 ± 0.30 cd |
B3 | ‘May’s Delight’, 60 °C, 4 h | 18.87 ± 0.23 a | 4.02 ± 0.03 e | 30.92 ± 0.20 cd | 28.20 ± 0.30 a | 9.43 ± 0.12 a | 91.43 ± 0.40 bc |
C1 | ‘Snowdrift’, 40 °C, 4 h | 14.07 ± 0.12 d | 4.55 ± 0.05 bc | 24.73 ± 0.4 e | 25.60 ± 0.17 d | 9.23 ± 0.06 ab | 78.18 ± 0.38 e |
C2 | ‘Snowdrift’, 50 °C, 5 h | 18.80 ± 0.20 a | 4.73 ± 0.08 a | 32.08 ± 0.20 b | 27.60 ± 0.30 abc | 9.43 ± 0.06 a | 92.65 ± 0.18 a |
C3 | ‘Snowdrift’, 60 °C, 6 h | 17.53 ± 0.12 c | 4.45 ± 0.05 c | 31.62 ± 0.20 bc | 26.90 ± 0.17 c | 9.23 ± 0.06 ab | 89.73 ± 0.12 d |
Mean Score | 17.91 ± 1.45 | 4.43 ± 0.26 | 30.75 ± 2.36 | 27.3 ± 0.76 | 9.26 ± 0.15 | 89.66 ± 4.28 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Fan, J.; Ma, J.; Cai, Y.; Yu, Z.; Zhao, H.; Dong, R. The Effects of Processing Treatments on the Quality and Functional Constituents of Crabapple Flower Tea. Horticulturae 2025, 11, 255. https://doi.org/10.3390/horticulturae11030255
Liu H, Fan J, Ma J, Cai Y, Yu Z, Zhao H, Dong R. The Effects of Processing Treatments on the Quality and Functional Constituents of Crabapple Flower Tea. Horticulturae. 2025; 11(3):255. https://doi.org/10.3390/horticulturae11030255
Chicago/Turabian StyleLiu, Huabin, Junjun Fan, Jingze Ma, Yanan Cai, Zhu Yu, Huawen Zhao, and Ruixia Dong. 2025. "The Effects of Processing Treatments on the Quality and Functional Constituents of Crabapple Flower Tea" Horticulturae 11, no. 3: 255. https://doi.org/10.3390/horticulturae11030255
APA StyleLiu, H., Fan, J., Ma, J., Cai, Y., Yu, Z., Zhao, H., & Dong, R. (2025). The Effects of Processing Treatments on the Quality and Functional Constituents of Crabapple Flower Tea. Horticulturae, 11(3), 255. https://doi.org/10.3390/horticulturae11030255