Improving Sustainable Vegetable Production with Biochar and Chitosan Xerogel Combination Under Water and Fertilizer Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Preparation of Biochar
2.3. Preparation of Chitosan Xerogel
2.4. Experimental Design
2.5. Plant Growth Parameters
2.6. Mineral Element Analysis
2.7. Statistical Analysis
3. Results
3.1. Optimizing Water and Fertilizer Regimes for Control and Deficit Conditions in Water Spinach
3.2. Effect of Biochar Supplementation on Water Spinach Growth Under Water and Fertilizer Deficiency
3.3. Chitosan Xerogel Treatment Mitigates Growth Inhibition in Water Spinach Under Water and Fertilizer Deficit Conditions
3.4. Combined Biochar and Chitosan Xerogel Treatment Restores Water Spinach Growth Under Deficit Conditions
3.5. Effect of Biochar and Chitosan Xerogel Combined Treatment on Elements of Water Spinach
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| RDF | Refuse derived fuels |
| PGPs | Plant growth parameters |
| LSD | Least significant difference |
References
- Kim, Y.; Lee, W.-G. Seawater and Its Resources. In Seawater Batteries: Principles, Materials and Technology; Springer Nature: Singapore, 2022; pp. 1–35. [Google Scholar]
- Flörke, M.; Kynast, E.; Bärlund, I.; Eisner, S.; Wimmer, F.; Alcamo, J. Domestic and Industrial Water Uses of the Past 60 Years as a Mirror of Socio-Economic Development: A Global Simulation Study. Glob. Environ. Change 2013, 23, 144–156. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future Global Urban Water Scarcity and Potential Solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, Nitrogen-Use Efficiency, and Nitrogen Management. AMBIO J. Hum. Environ. 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.L.; Johnston, A.E. Phosphorus Use Efficiency and Management in Agriculture. Resour. Conserv. Recycl. 2015, 105, 275–281. [Google Scholar] [CrossRef]
- Bijay-Singh; Craswell, E. Fertilizers and Nitrate Pollution of Surface and Ground Water: An Increasingly Pervasive Global Problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Kanter, D.R.; Del Grosso, S.; Scheer, C.; Pelster, D.E.; Galloway, J.N. Why future nitrogen research needs the social sciences. Curr. Opin. Environ. Sustain. 2020, 47, 54–60. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Fu, H.; Xie, B.; Ma, S.; Zhu, X.; Fan, G.; Pan, S. Evaluation of Antioxidant Activities of Principal Carotenoids Available in Water Spinach (Ipomoea aquatica). J. Food Compos. Anal. 2011, 24, 288–297. [Google Scholar] [CrossRef]
- Xiao, Q.; Wong, M.H.; Huang, L.; Ye, Z. Effects of Cultivars and Water Management on Cadmium Accumulation in Water Spinach (Ipomoea aquatica Forsk.). Plant Soil 2015, 391, 33–49. [Google Scholar] [CrossRef]
- Jampeetong, A.; Brix, H.; Kantawanichkul, S. Effects of Inorganic Nitrogen Forms on Growth, Morphology, Nitrogen Uptake Capacity and Nutrient Allocation of Four Tropical Aquatic Macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides). Aquat. Bot. 2012, 97, 10–16. [Google Scholar] [CrossRef]
- Harris, P.J.F. Structure of Non-Graphitising Carbons. Int. Mater. Rev. 1997, 42, 206–218. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of Biochar from Slow Pyrolysis of Papermill Waste on Agronomic Performance and Soil Fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M.A.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014, 11, 6613–6621. [Google Scholar] [CrossRef]
- Guo, J.; Chong Lua, A. Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons. J. Anal. Appl. Pyrolysis 1998, 46, 113–125. [Google Scholar] [CrossRef]
- Kammann, C.I.; Linsel, S.; Gößling, J.W.; Koyro, H.-W. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant Soil 2011, 345, 195–210. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 2017, 12, e0179079. [Google Scholar] [CrossRef]
- Sun, Y.; Xiong, X.; He, M.; Xu, Z.; Hou, D.; Zhang, W.; Ok, Y.S.; Rinklebe, J.; Wang, L.; Tsang, D.C.W. Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: A critical review. Chem. Eng. J. 2021, 424, 130387. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Jafari, L.; Shamekh, M.R.; Abdollahi, F.; Hamid, R. Elicitor potential of chitosan and its derivatives to enhancing greenhouse tomato (Lycopersicon esculentum Mill.) performance under deficit irrigation conditions. Sci. Hortic. 2025, 349, 114259. [Google Scholar] [CrossRef]
- Ma, J.; Faqir, Y.; Chai, Y.; Wu, S.; Luo, T.; Liao, S.; Kaleri, A.R.; Tan, C.; Qing, Y.; Kalhoro, M.T.; et al. Chitosan Microspheres-Based Controlled Release Nitrogen Fertilizers Enhance the Growth, Antioxidant, and Metabolite Contents of Chinese Cabbage. Sci. Hortic. 2023, 308, 111542. [Google Scholar] [CrossRef]
- Tamta, S.; Vimal, V.; Verma, S.; Gupta, D.; Verma, D.; Nangan, S. Recent Development of Nanobiomaterials in Sustainable Agriculture and Agrowaste Management. Biocatal. Agric. Biotechnol. 2024, 56, 103050. [Google Scholar] [CrossRef]
- Zhang, H.; He, P.; Kang, H.; Li, X. Antioxidant and Antimicrobial Effects of Edible Coating Based on Chitosan and Bamboo Vinegar in Ready to Cook Pork Chops. LWT 2018, 93, 470–476. [Google Scholar] [CrossRef]
- Mungkunkamchao, T.; Kesmala, T.; Pimratch, S.; Toomsan, B.; Jothityangkoon, D. Wood Vinegar and Fermented Bioextracts: Natural Products to Enhance Growth and Yield of Tomato (Solanum lycopersicum L.). Sci. Hortic. 2013, 154, 66–72. [Google Scholar] [CrossRef]
- Zhu, K.; Gu, S.; Liu, J.; Luo, T.; Khan, Z.; Zhang, K.; Hu, L. Wood vinegar as a complex growth regulator promotes the growth, yield, and quality of rapeseed. Agronomy 2021, 11, 510. [Google Scholar] [CrossRef]
- Hou, X.; Qiu, L.; Luo, S.; Kang, K.; Zhu, M.; Yao, Y. Chemical Constituents and Antimicrobial Activity of Wood Vinegars at Different Pyrolysis Temperature Ranges Obtained from Eucommia Ulmoides Olivers Branches. RSC Adv. 2018, 8, 40941–40949. [Google Scholar] [CrossRef] [PubMed]
- Grewal, A.; Abbey, L.; Gunupuru, L.R. Production, Prospects and Potential Application of Pyroligneous Acid in Agriculture. J. Anal. Appl. Pyrolysis 2018, 135, 152–159. [Google Scholar] [CrossRef]
- Xue, R.; Cui, E.-L.; Hu, G.-Q.; Zhu, M.-Q. The Composition, Physicochemical Properties, Antimicrobial and Antioxidant Activity of Wood Vinegar Prepared by Pyrolysis of Eucommia ulmoides Oliver Branches under Different Refining Methods and Storage Conditions. Ind. Crop. Prod. 2022, 178, 114586. [Google Scholar] [CrossRef]
- Nair, L.S.; Starnes, T.; Ko, J.-W.K.; Laurencin, C.T. Development of injectable thermogelling chitosan–inorganic phosphate solutions for biomedical applications. Biomacromolecules 2007, 8, 3779–3785. [Google Scholar] [CrossRef]
- Rafique, M.I.; Al-Wabel, M.I.; Al-Farraj, A.S.F.; Ahmad, M.; Aouak, T.; Al-Swadi, H.A.; Mousa, M.A. Incorporation of biochar and semi-interpenetrating biopolymer to synthesize new slow release fertilizers and their impact on soil moisture and nutrients availability. Sci. Rep. 2025, 15, 9563. [Google Scholar] [CrossRef]
- Li, S.; Yang, F.; Xiang, K.; Chen, J.; Zhang, Y.; Wang, J.; Sun, J.; Li, Y. A Multifunctional Microspheric Soil Conditioner Based on Chitosan-Grafted Poly(acrylamide-co-acrylic acid)/Biochar. Langmuir 2022, 38, 5717–5729. [Google Scholar] [CrossRef] [PubMed]
- Kayes, A.; Araf, T.; Mustaki, S.; Islam, N.; Choudhury, S. Effects of biochar and chitosan on morpho-physiological, biochemical and yield traits of water-stressed tomato plants. Int. J. Agric. Food Sci. 2024, 8, 01–09. [Google Scholar] [CrossRef]
- Qaisi, A.M.; Al Tawaha, A.R.; Imran; Al-Rifaee, M.d. Effects of Chitosan and Biochar-Mended Soil on Growth, Yield and Yield Components and Mineral Composition of Fenugreek. Gesunde Pflanz. 2023, 75, 625–636. [Google Scholar] [CrossRef]
- Evans, G.C. The Quantitative Analysis of Plant Growth; University of California Press: Oakland, CA, USA, 1972; Volume 1. [Google Scholar]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Reitemeier, R.F. Methods of analysis for soils, plants, and waters. Soil Sci. Soc. Am. J. 1963, 27, iv. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Hodge, J.E. Determination of reducing sugars and carbohydrates. Carbohydr. Chem. 1962, 1, 380–394. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Shanmugam, V.; Lo, J.-C.; Wu, C.-L.; Wang, S.-L.; Lai, C.-C.; Connolly, E.L.; Huang, J.-L.; Yeh, K.-C. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana—The role in zinc tolerance. New Phytol. 2011, 190, 125–137. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Deng, X.; Zhao, J.; Luo, Y.; Novak, J.; Herbert, S.; Xing, B. Characteristics and Nutrient Values of Biochars Produced from Giant Reed at Different Temperatures. Bioresour. Technol. 2013, 130, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.; Hastings, M.G.; Ryals, R. Soil Carbon and nitrogen dynamics in two agricultural soils amended with manure-derived biochar. J. Environ. Qual. 2019, 48, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Barnes, R.T.; Gallagher, M.E.; Masiello, C.A.; Liu, Z.; Dugan, B. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS ONE 2014, 9, e108340. [Google Scholar] [CrossRef] [PubMed]
- Emami Bistgani, Z.; Siadat, S.A.; Bakhshandeh, A.; Ghasemi Pirbalouti, A.; Hashemi, M. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop J. 2017, 5, 407–415. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar adsorbed ammonia is bioavailable. Plant Soil 2012, 350, 57–69. [Google Scholar] [CrossRef]
- Kammann, C.I.; Schmidt, H.-P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Müller, C.; Koyro, H.-W.; Conte, P.; Joseph, S. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 2015, 5, 11080. [Google Scholar] [CrossRef]
- Xu, G.; Sun, J.; Shao, H.; Chang, S.X. Biochar Had Effects on Phosphorus Sorption and Desorption in Three Soils with Differing Acidity. Ecol. Eng. 2014, 62, 54–60. [Google Scholar] [CrossRef]
- Islam, M.; Halder, M.; Siddique, M.A.B.; Razir, S.A.A.; Sikder, S.; Joardar, J.C. Banana peel biochar as alternative source of potassium for plant productivity and sustainable agriculture. Int. J. Recycl. Org. Waste Agric. 2019, 8, 407–413. [Google Scholar] [CrossRef]
- He, J.; Han, W.; Wang, J.; Qian, Y.; Saito, M.; Bai, W.; Song, J.; Lv, G. Functions of Oligosaccharides in Improving Tomato Seeding Growth and Chilling Resistance. J. Plant Growth Regul. 2022, 41, 535–545. [Google Scholar] [CrossRef]
- Sharma, S.; Barman, K.; Siddiqui, M.W. 9—Chitosan: Properties and roles in postharvest quality preservation of horticultural crops. In Eco-Friendly Technology for Postharvest Produce Quality; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 269–296. [Google Scholar]
- Luo, X.; Wang, Z.; Meki, K.; Wang, X.; Liu, B.; Zheng, H.; You, X.; Li, F. Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. J. Soils Sed. 2019, 19, 3934–3944. [Google Scholar] [CrossRef]
- Hosakul, P.; Kantachote, D.; Saritpongteeraka, K.; Phuttaro, C.; Chaiprapat, S. Upgrading industrial effluent for agricultural reuse: Effects of digestate concentration and wood vinegar dosage on biosynthesis of plant growth promotor. Environ. Sci. Pollut. Res. 2020, 27, 14589–14600. [Google Scholar] [CrossRef]
- Laine, J.; Simoni, S.; Calles, R. Preparation of activated carbon from coconut shell in a small scale cocurrent flow rotary kiln. Chem. Eng. Commun. 1991, 99, 15–23. [Google Scholar] [CrossRef]
- Nie, J.; Wang, Z.; Hu, Q. Chitosan Hydrogel Structure Modulated by Metal Ions. Sci. Rep. 2016, 6, 36005. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chen, Y.-H. Thermo and pH-responsive methylcellulose and hydroxypropyl methylcellulose hydrogels containing K2SO4 for water retention and a controlled-release water-soluble fertilizer. Sci. Total Environ. 2019, 655, 958–967. [Google Scholar] [CrossRef]
- Kamari, A.; Pulford, I.D.; Hargreaves, J.S.J. Chitosan as a potential amendment to remediate metal contaminated soil—A characterisation study. Colloids Surf. B. Biointerfaces 2011, 82, 71–80. [Google Scholar] [CrossRef]
- Jóźwiak, T.; Filipkowska, U.; Szymczyk, P.; Mielcarek, A. Sorption of nutrients (orthophosphate, nitrate III and V) in an equimolar mixture of P–PO4, N–NO2 and N–NO3 using chitosan. Arab. J. Chem. 2019, 12, 4104–4117. [Google Scholar] [CrossRef]
- Kapoor, A.; Sharma, R.; Kumar, A.; Sepehya, S. Biochar as a means to improve soil fertility and crop productivity: A review. J. Plant Nutr. 2022, 45, 2380–2388. [Google Scholar] [CrossRef]
- Chun, S.-C.; Chandrasekaran, M. Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhances biotic stress tolerance in tomato. Int. J. Biol. Macromol. 2019, 125, 948–954. [Google Scholar] [CrossRef] [PubMed]









| Group | Code | Treatments | Amendments | ||
|---|---|---|---|---|---|
| Water (mL) | Hakaphos® Blue (%) | Biochar (%) | Xerogel (%) | ||
| T1 | T1-1 | 100 | 0.13 | 0 | 0 |
| T1-2 | 200 | ||||
| T1-3 | 300 | ||||
| T1-4 | 400 | ||||
| T2 | T2-1 | 300 | 0.17 | 0 | 0 |
| T2-2 | 0.11 | ||||
| T2-3 | 0.08 | ||||
| T2-4 | 0.07 | ||||
| T3 | T3-1 | 300 | 0.11 | 0 | 0 |
| T3-2 | 100 | 0 | |||
| T3-3 | 100 | 4 | |||
| T3-4 | 100 | 12 | |||
| T4 | T4-1 | 300 | 0.11 | 0 | 0 |
| T4-2 | 0.07 | 0 | |||
| T4-3 | 0.07 | 4 | |||
| T4-4 | 0.07 | 12 | |||
| T5 | T5-1 | 200 | 0.11 | 0 | 0 |
| T5-2 | 100 | 0 | |||
| T5-3 | 100 | 0.2 | |||
| T5-4 | 100 | 0.4 | |||
| T5-5 | 100 | 0.8 | |||
| T6 | T6-1 | 300 | 0.11 | 0 | 0 |
| T6-2 | 0.07 | 0 | |||
| T6-3 | 0.07 | 0.2 | |||
| T6-4 | 0.07 | 0.4 | |||
| T6-5 | 0.07 | 0.8 | |||
| T7 | T7-1 | 300 | 0.11 | 0 | 0 |
| T7-2 | 100 | 0 | 0 | ||
| T7-3 | 100 | 4 | 0 | ||
| T7-4 | 100 | 0 | 0.4 | ||
| T7-5 | 100 | 4 | 0.4 | ||
| T7-6 | 100 | 4 | 0.8 | ||
| T8 | T8-1 | 300 | 0.11 | 0 | 0 |
| T8-2 | 0.07 | 0 | 0 | ||
| T8-3 | 0.07 | 4 | 0 | ||
| T8-4 | 0.07 | 0 | 0.4 | ||
| T8-5 | 0.07 | 4 | 0.4 | ||
| T8-6 | 0.07 | 4 | 0.8 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, I.-C.; Jiang, C.-A.; Chiou, W.-Y.; Chen, Y.-C. Improving Sustainable Vegetable Production with Biochar and Chitosan Xerogel Combination Under Water and Fertilizer Stress. Horticulturae 2025, 11, 1448. https://doi.org/10.3390/horticulturae11121448
Pan I-C, Jiang C-A, Chiou W-Y, Chen Y-C. Improving Sustainable Vegetable Production with Biochar and Chitosan Xerogel Combination Under Water and Fertilizer Stress. Horticulturae. 2025; 11(12):1448. https://doi.org/10.3390/horticulturae11121448
Chicago/Turabian StylePan, I-Chun, Chen-An Jiang, Wan-Yi Chiou, and Yi-Chun Chen. 2025. "Improving Sustainable Vegetable Production with Biochar and Chitosan Xerogel Combination Under Water and Fertilizer Stress" Horticulturae 11, no. 12: 1448. https://doi.org/10.3390/horticulturae11121448
APA StylePan, I.-C., Jiang, C.-A., Chiou, W.-Y., & Chen, Y.-C. (2025). Improving Sustainable Vegetable Production with Biochar and Chitosan Xerogel Combination Under Water and Fertilizer Stress. Horticulturae, 11(12), 1448. https://doi.org/10.3390/horticulturae11121448

