Initial Compatibility Indicators of Four Coffea arabica Cultivars on Coffea canephora Rootstock
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Nursery Conditions
2.3. Grafting Procedure and Nursery Management
2.4. Experimental Design
2.5. Measurements
2.5.1. Physiological Measurements
2.5.2. Morphological Measurements
2.5.3. Evaluation of Graft Compatibility
2.6. Statistical Analysis
3. Results
3.1. Physiological Parameters of the Grafts
3.2. Morphological Characteristics of the Grafts
3.3. Graft Compatibility: Scion–Rootstock Union
4. Discussion
4.1. Early Compatibility of Popular C. arabica Cultivars Grafted Onto Canephora
4.2. Physiological Performance in Coffea arabica/Coffea canephora Grafts
4.3. Morphological Performance and Visual Compatibility
4.4. Comparison with the Literature
4.5. Physiological and Genetic Causes
4.6. Practical Implications for Coffee Production
4.7. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Treatments (Rows) | Physiological Variables | Morphological Variables | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| E | A | Ci | gs | ΦPSII | ETR | Fv/Fm | GT | VI | H | SD | RL | LN | |
| Bourbon | 1.123752897 | 3.984274709 | 290.4580393 | 0.062898392 | 0.084520555 | 28.49958031 | 0.364424593 | 90 | 8 | 29.5 | 1 | 17 | 10 |
| Bourbon | 0.639047161 | 4.037399842 | 205.5180999 | 0.034413877 | 0.061977736 | 20.8990093 | 0.402354943 | 60 | 6 | 30.5 | 1 | 17 | 10 |
| Bourbon | 0.869073551 | 4.958759573 | 226.3375723 | 0.047753703 | 0.073947513 | 24.93392262 | 0.560836479 | 80 | 6 | 28 | 1.5 | 16 | 10 |
| Geisha | 1.550164989 | 5.671193392 | 287.0069804 | 0.087095697 | 0.079241016 | 26.71976574 | 0.520732124 | 70 | 6 | 30.5 | 1 | 17 | 10 |
| Geisha | 2.106878068 | 5.228091207 | 321.9299015 | 0.121016557 | 0.064375663 | 21.70680134 | 0.459169592 | 80 | 6 | 34.5 | 1.5 | 18 | 12 |
| Geisha | 1.154428483 | 4.850286435 | 269.4868015 | 0.063430674 | 0.068264383 | 23.01818019 | 0.500553993 | 80 | 7 | 30 | 1 | 18 | 10 |
| Catuai | 0.829036925 | 4.00593231 | 251.3421375 | 0.045378028 | 0.085573852 | 28.85549999 | 0.418662675 | 100 | 8 | 33 | 1 | 17 | 10 |
| Catuai | 1.290259719 | 5.155256762 | 275.5585365 | 0.071115293 | 0.076971558 | 25.95407002 | 0.418868346 | 80 | 5 | 27.5 | 1 | 16 | 12 |
| Catuai | 1.084834272 | 4.736376986 | 258.3892841 | 0.056892448 | 0.054310095 | 18.31309286 | 0.490874538 | 70 | 4 | 29.5 | 1.5 | 17 | 10 |
| Villa Sarchí | 1.88282726 | 6.219163447 | 295.189858 | 0.104394982 | 0.103077989 | 34.75683433 | 0.520359559 | 80 | 6 | 31.5 | 1 | 18 | 8 |
| Villa Sarchí | 0.898521112 | 4.096647405 | 258.490047 | 0.048920878 | 0.072367708 | 24.40167208 | 0.479735213 | 80 | 7 | 29 | 1 | 16 | 8 |
| Villa Sarchí | 0.756809676 | 4.666786785 | 208.5954658 | 0.040554735 | 0.086510578 | 29.17299361 | 0.481120132 | 50 | 4 | 28.5 | 1 | 18 | 10 |
| Robusta | 0.890914651 | 3.838112233 | 261.2159768 | 0.046856829 | 0.031503506 | 10.62291316 | 0.489236688 | 100 | 4 | 28 | 1 | 17 | 10 |
| Robusta | 0.300200664 | 3.167561295 | 78.09329745 | 0.015960146 | 0.034711148 | 11.70457872 | 0.453610503 | 100 | 6 | 35 | 1 | 18 | 10 |
| Robusta | 0.593576237 | 4.109899238 | 184.6380714 | 0.031500367 | 0.06494328 | 21.89889904 | 0.439133942 | 100 | 8 | 28.5 | 1 | 16 | 10 |
| Variable Abbreviation | Variable Type | Statistical Tests | Results Assessment | p-Value of the Recommended Test | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| p-Value (Shapiro–Wilk) | p-Value (Levene) | |||||||||||
| Bourbon | Geisha | Catuai | Villa Sarchí | Robusta | N | H | I | Recommended Test | ||||
| E | Physiological | 0.94393 | 0.81423 | 0.87974 | 0.22112 | 0.99260 | 0.24683812 | Yes | Yes | Yes | ANOVA | 0.0997 |
| A | Physiological | 0.09259 | 0.91236 | 0.70350 | 0.50137 | 0.54236 | 0.25325899 | Yes | Yes | Yes | ANOVA | 0.117 |
| Ci | Physiological | 0.45332 | 0.63848 | 0.54776 | 0.83242 | 0.82010 | 0.17076344 | Yes | Yes | Yes | ANOVA | 0.1464 |
| gs | Physiological | 0.93017 | 0.80432 | 0.88411 | 0.23080 | 0.99344 | 0.23117457 | Yes | Yes | Yes | ANOVA | 0.0934 |
| ΦPSII | Physiological | 0.93171 | 0.48695 | 0.51486 | 0.91301 | 0.16620 | 0.5401381 | Yes | Yes | Yes | ANOVA | 0.0429 * |
| ETR | Physiological | 0.93195 | 0.48696 | 0.51499 | 0.91354 | 0.16620 | 0.54024316 | Yes | Yes | Yes | ANOVA | 0.0429 * |
| Fv/Fm | Physiological | 0.34958 | 0.62507 | 0.00467 | 0.05731 | 0.54345 | 0.02156893 | No | No | Yes | Kruskal–Wallis | 0.5089 |
| GT | Morphological | 0.6369 | −0.00005 | 0.63690 | −0.00005 | 0.04918814 | No | No | Yes | Kruskal–Wallis | 0.1767 | |
| VI | Morphological | −0.00005 | −0.00005 | 0.46326 | 0.63690 | 1.00000 | 0.44535999 | No | Yes | Yes | Kruskal–Wallis | 0.9185 |
| H | Morphological | 0.78045 | 0.19389 | 0.70173 | 0.29826 | 0.12232 | 0.17052693 | Yes | Yes | Yes | ANOVA | 0.8225 |
| SD | Morphological | −0.00005 | −0.00005 | −0.00005 | 0.00368007 | No | No | Yes | Kruskal–Wallis | 0.8903 | ||
| RL | Morphological | −0.00005 | −0.00005 | −0.00005 | −0.00005 | 1.00000 | 0.45155505 | No | Yes | Yes | Kruskal–Wallis | 0.5142 |
| LN | Morphological | −0.00005 | −0.00005 | −0.00005 | 0.00368007 | No | No | Yes | Kruskal–Wallis | 0.3764 | ||
References
- Poncet, V.; van Asten, P.; Millet, C.P.; Vaast, P.; Allinne, C. Which Diversification Trajectories Make Coffee Farming More Sustainable? Curr. Opin. Environ. Sustain. 2024, 68, 101432. [Google Scholar] [CrossRef]
- Bracken, P.; Burgess, P.J.; Girkin, N.T. Opportunities for Enhancing the Climate Resilience of Coffee Production through Improved Crop, Soil and Water Management. Agroecol. Sustain. Food Syst. 2023, 47, 1125–1157. [Google Scholar] [CrossRef]
- UNDP (United Nations Development Programme). Peru: Sustainable Coffee. Available online: https://www.undp.org/foodsystems/peru-sustainable-coffee (accessed on 17 June 2025).
- Arellanos, E.; López, G.M.; Guadalupe, G.; García, L. Balancing Tree and Crop Biodiversity and Yield in Coffee Plantations of the Peruvian Amazon: The Role of Shade and Certification as Indicators of Sustainable Management. Environ. Chall. 2025, 20, 101223. [Google Scholar] [CrossRef]
- Myers, R.; Kawabata, A.; Cho, A.; Nakamoto, S.T. Grafted Coffee Increases Yield and Survivability. Horttechnology 2020, 30, 428–432. [Google Scholar] [CrossRef]
- Pham, T.T.; Giang, B.L.; Nguyen, N.H.; Yen, P.N.D.; Hoang, V.D.M.; Ha, B.T.L.; Le, N.T.T. Combination of Mycorrhizal Symbiosis and Root Grafting Effectively Controls Nematode in Replanted Coffee Soil. Plants 2020, 9, 555. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.A.; Prado, F.M.; Antunes, W.C.; Cardoso Paiva, R.M.; Gava Ferrão, M.A.; Andrade, A.C.; Di Mascio, P.; Loureiro, M.E.; DaMatta, F.M.; Almeida, A.M. Reciprocal Grafting between Clones with Contrasting Drought Tolerance Suggests a Key Role of Abscisic Acid in Coffee Acclimation to Drought Stress. Plant Growth Regul. 2018, 85, 221–229. [Google Scholar] [CrossRef]
- Couttolenc-Brenis, E.; Carrión, G.; Villain, L.; Ortega-Escalona, F.; Mata-Rosas, M.; Méndez-Bravo, A. Defense Response to Hemileia Vastatrix in Susceptible Grafts onto Resistant Rootstock of Coffea arabica L. Agronomy 2021, 11, 1621. [Google Scholar] [CrossRef]
- Singh, R.K.; Das, S.; Tluanga, L.; Dongre, R.N.; Panda, J.; Rajput, R.; Kumar, A.; Shankar, R. Applications and Future Prospects of in Vitro Grafting in Horticulture Crops. Int. J. Adv. Biochem. Res. 2024, 8, 577–585. [Google Scholar] [CrossRef]
- Elam, P. Budding and Grafting Citrus and Avocados in the Home Garden; Publication 8001; University of California: Oakland, CA, USA, 1997. [Google Scholar]
- Isele, E.; Breen, M.; Galanti, R. Grafting Cacao; College of Tropical Agriculture and Human Resources (CTAHR): Honolulu, HI, USA, 2020. [Google Scholar]
- Koutouleas, A.; Blunt, C.; Bregar, A.; Hansen, J.K.; Ræbild, A.; Etienne, H.; Georget, F. Effects of Interspecific Grafting of Coffea arabica and Elevation on Coffee Growth, Yield, and Quality Attributes in Costa Rica. Sci. Hortic. 2023, 320, 112162. [Google Scholar] [CrossRef]
- Vu, N.T.; Park, J.-M.; Nguyen, N.Q.; Nguyen, T.-T.-S.; Kim, I.-S.; Jang, D.-C. Enhanced Drought Tolerance of Arabica Coffee (Coffea arabica L.) by Grafting Method. Sains Malays. 2021, 50, 3219–3229. [Google Scholar] [CrossRef]
- Rasool, A.; Mansoor, S.; Bhat, K.M.; Hassan, G.I.; Baba, T.R.; Alyemeni, M.N.; Alsahli, A.A.; El-Serehy, H.A.; Paray, B.A.; Ahmad, P. Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants. Front. Plant Sci. 2020, 11, 590847. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, B.; Etienne, H. Growth, Production, and Bean Quality of Coffea arabica as Affected by Interspecific Grafting: Consequences for Rootstock Breeding. HortScience 2001, 36, 269–273. [Google Scholar] [CrossRef]
- Bravo Sornoza, J.D.; Barcia Jalca, B.S.; Cordero Vargas, C.A. Respuesta de Rebrotes de Coffea arabica—Híbridos F1 CATIE, a La Injertación Con Patrones de Coffea Canephora Var. Nemaya. Cienc. Lat. 2024, 8, 812–830. [Google Scholar] [CrossRef]
- Salas López, R.; Gómez Fernández, D.; Silva López, J.O.; Rojas Briceño, N.B.; Oliva, M.; Terrones Murga, R.E.; Iliquín Trigoso, D.; Barboza Castillo, E.; Barrena Gurbillón, M.Á. Land Suitability for Coffee (Coffea arabica) Growing in Amazonas, Peru: Integrated Use of AHP, GIS and RS. ISPRS Int. J. Geo-Inf. 2020, 9, 673. [Google Scholar] [CrossRef]
- MIDAGRI (Ministerio de Desarrollo Agrario y Riego). Caracterización de Las Zonas Cafetaleras En El Perú; Ministerio de Desarrollo Agrario y Riego: Lima, Perú, 2003.
- Kawabata, A.M.; Nakamoto, S.T.; Cho, A.; Myers, R. A Pictorial Guide to Coffee Grafting; University of Hawaii Cooperative Extension Bulletin: Honolulu, HI, USA, 2019. [Google Scholar]
- Haworth, M.; Marino, G.; Centritto, M. An Introductory Guide to Gas Exchange Analysis of Photosynthesis and Its Application to Plant Phenotyping and Precision Irrigation to Enhance Water Use Efficiency. J. Water Clim. Change 2018, 9, 786–808. [Google Scholar] [CrossRef]
- Long, S.P.; Bernacchi, C.J. Gas Exchange Measurements, What Can They Tell Us about the Underlying Limitations to Photosynthesis? Procedures and Sources of Error. J. Exp. Bot. 2003, 54, 2393–2401. [Google Scholar] [CrossRef] [PubMed]
- Bolat, I.; Bakır, A.G.; Korkmaz, K.; Gutiérrez-Gamboa, G.; Kaya, O. Silicon and Nitric Oxide Applications Allow Mitigation of Water Stress in Myrobalan 29C Rootstocks (Prunus cerasifera Ehrh.). Agriculture 2022, 12, 1273. [Google Scholar] [CrossRef]
- Dogan, M.; Bolat, I.; Karakas, S.; Dikilitas, M.; Gutiérrez-Gamboa, G.; Kaya, O. Remediation of Cadmium Stress in Strawberry Plants Using Humic Acid and Silicon Applications. Life 2022, 12, 1962. [Google Scholar] [CrossRef]
- Korkmaz, K.; Bolat, I.; Turan, M.; Kaya, O. Early Stage Morphological, Biochemical, and Anatomical Compatibility of Apricot (Hacihaliloğlu) with Prunus Cerasifera Ehrh. Rootstock Candidates. Plant Physiol. Biochem. 2025, 228, 110211. [Google Scholar] [CrossRef]
- Rahmati, M.; Davarynejad, G.H.; Génard, M.; Bannayan, M.; Azizi, M.; Vercambre, G. Peach Water Relations, Gas Exchange, Growth and Shoot Mortality under Water Deficit in Semi-Arid Weather Conditions. PLoS ONE 2015, 10, e0120246. [Google Scholar] [CrossRef]
- Moreno, M.A.; Moing, A.; Lansac, M.; Gaudillere, J.P.; Salesses, G. Peach/Myrobalan Plum Graft Incompatibility in the Nursery. J. Hortic. Sci. 1993, 68, 705–714. [Google Scholar] [CrossRef]
- Miller, R.G. Simultaneous Statistical Inference, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 1981; Volume 10, ISBN 9781461381242. [Google Scholar]
- DaMatta, F.M.; Rahn, E.; Läderach, P.; Ghini, R.; Ramalho, J.C. Why Could the Coffee Crop Endure Climate Change and Global Warming to a Greater Extent than Previously Estimated? Clim. Change 2019, 152, 167–178. [Google Scholar] [CrossRef]
- Damatta, F.M.; Avila, R.T.; Cardoso, A.A.; Martins, S.C.V.; Ramalho, J.C. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. J. Agric. Food Chem. 2018, 66, 5264–5274. [Google Scholar] [CrossRef]
- Fahl, J.I.; Carelli, M.L.C.; Menezes, H.C.; Gallo, P.B.; Trivelin, P.C.O. Gas Exchange, Growth, Yield and Beverage Quality of Coffea arabica Cultivars Grafted on to C. Canephora and C. Congensis. Exp. Agric. 2001, 37, 241–252. [Google Scholar] [CrossRef]
- Espinoza Mora, K.E.; Toapanta Palomino, M.F.; García Lozano, J.G.; Vásquez Coloma, H.F.; Jiménez Becerra, J.E. Evaluación Agronómica de La Calidad de Plantas de Café (Coffea arábiga L) Mediante Injerto Hipocotiledonar, En Caluma, Ecuador. Rev. Investig. Talent. 2017, 4, 87–94. [Google Scholar]
- D’Souza, G.F.; Rajeswari, N.; Ramesh Babu, H.N. Influence of Rootstock Scion Combinations on Morpho-Physiological Traits in Coffee. J. Plant. Crop. 2011, 39, 351–357. [Google Scholar]
- López-García, F.J.; Cruz-Castillo, J.G. Yield of Coffea arabica Grafted onto Coffea Canephora in Soils Infested with Nematodes in Mexico. Coffee Sci. 2019, 14, 308–314. [Google Scholar] [CrossRef]
- García, L.; Veneros, J.; Bolaños-Carriel, C.; Guadalupe, G.A.; Garcia, H.; Mori-Zabarburú, R.C.; Chavez, S.G. Agro-Morphological Traits, Proximate Composition, and Phenotypic Plasticity of Coffea arabica in Contrasting and Very Close Environments in Northern Peru. Agronomy 2025, 15, 2465. [Google Scholar] [CrossRef]
- García, L.; Veneros, J.; Oliva-Cruz, M.; Olivares, N.; Chavez, S.G.; Rojas-Briceño, N.B. Construction of Linear Models for the Normalized Vegetation Index (NDVI) for Coffee Crops in Peru Based on Historical Atmospheric Variables from the Climate Engine Platform. Atmosphere 2024, 15, 923. [Google Scholar] [CrossRef]
- Alkimim, E.R.; Caixeta, E.T.; Sousa, T.V.; Da Silva, F.L.; Sakiyama, N.S.; Zambolim, L. High-Throughput Targeted Genotyping Using next-Generation Sequencing Applied in Coffea Canephora Breeding. Euphytica 2018, 214, 50. [Google Scholar] [CrossRef]
- Mng’omba, S.A.; du Toit, E.S.; Akinnifesi, F.K. The Relationship between Graft Incompatibility and Phenols in Uapaca Kirkiana Müell Arg. Sci. Hortic. 2008, 117, 212–218. [Google Scholar] [CrossRef]

| Variable Type | Variable | Abbreviation | Unit |
|---|---|---|---|
| Physiological | Transpiration | E | mmol H2O m−2 s−1 |
| Physiological | Net photosynthesis (CO2 assimilation) | A | µmol CO2 m−2 s−1 |
| Physiological | Intercellular CO2 concentration | Ci | µmol mol−1 (ppm) |
| Physiological | Stomatal conductance | Gs | mol H2O m−2 s−1 |
| Physiological | PSII quantum yield (light-adapted) | ΦPSII (=ΔF/Fm′) | Dimensionless |
| Physiological | Electron transport rate | ETR | µmol e− m−2 s−1 |
| Physiological | Maximum PSII efficiency (dark-adapted) | Fv/Fm | Dimensionless (0–1) |
| Morphological | Graft-take success | GT | % |
| Morphological | Plant vigor (visual score) | VI | Dimensionless (1–5) |
| Morphological | Plant height | H | cm |
| Morphological | Stem diameter | SD | mm |
| Morphological | Root length | RL | cm |
| Morphological | Leaf number | LN | Count |
| Variable | Unit | Treatments [(Mean ± Standard Deviations) or Median (IQR: Q1–Q3)] | p-Value | Test | ||||
|---|---|---|---|---|---|---|---|---|
| T1 Bourbon | T2 Geisha | T3 Catuai | T4 Villa Sarchí | Tc Robusta | ||||
| E | mmol H2O m−2 s−1 | 0.88 ± 0.24 | 1.60 ± 0.48 | 1.07 ± 0.23 | 1.18 ± 0.61 | 0.59 ± 0.30 | 0.0997 | ANOVA |
| A | µmol CO2 m−2 s−1 | 4.33 ± 0.55 | 5.25 ± 0.41 | 4.63 ± 0.58 | 4.99 ± 1.10 | 3.71 ± 0.49 | 0.1170 | ANOVA |
| Ci | µmol mol−1 (ppm) | 240.77 ± 44.27 | 292.81 ± 26.70 | 261.76 ± 12.46 | 254.09 ± 43.46 | 174.65 ± 91.97 | 0.1464 | ANOVA |
| gs | mol H2O m−2 s−1 | 0.05 ± 0.01 | 0.09 ± 0.03 | 0.06 ± 0.01 | 0.06 ± 0.03 | 0.03 ± 0.02 | 0.0934 | ANOVA |
| ΦPSII | Dimensionless | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.02 | 0.09 ± 0.02 | 0.04 ± 0.02 | 0.0429 * | ANOVA |
| ETR | µmol e− m−2 s−1 | 24.78 ± 3.80 | 23.81 ± 2.60 | 24.37 ± 5.45 | 29.44 ± 5.18 | 14.74 ± 6.22 | 0.0429 * | ANOVA |
| Fv/Fm | Dimensionless | 0.40 (0.36–0.56) | 0.50 (0.46–0.52) | 0.42 (0.42–0.49) | 0.48 (0.48–0.52) | 0.45 (0.44–0.49) | 0.5089 | Kruskal–Wallis |
| Variable | Treatment Pair | Mean Difference | Adjusted p-Value |
|---|---|---|---|
| ΦPSII | Bourbon vs. Geisha | −0.003 | 1.000 |
| ΦPSII | Bourbon vs. Catuai | −0.001 | 1.000 |
| ΦPSII | Bourbon vs. Villa Sarchí | 0.014 | 1.000 |
| ΦPSII | Bourbon vs. Robusta | −0.030 | 0.290 |
| ΦPSII | Geisha vs. Catuai | 0.002 | 1.000 |
| ΦPSII | Geisha vs. Villa Sarchí | 0.017 | 1.000 |
| ΦPSII | Geisha vs. Robusta | −0.027 | 0.441 |
| ΦPSII | Catuai vs. Villa Sarchí | 0.015 | 1.000 |
| ΦPSII | Catuai vs. Robusta | −0.029 | 0.346 |
| ΦPSII | Villa Sarchí vs. Robusta | −0.044 | 0.039 * |
| ETR | Bourbon vs. Geisha | −0.963 | 1.000 |
| ETR | Bourbon vs. Catuai | −0.403 | 1.000 |
| ETR | Bourbon vs. Villa Sarchí | 4.666 | 1.000 |
| ETR | Bourbon vs. Robusta | −10.035 | 0.290 |
| ETR | Geisha vs. Catuai | 0.559 | 1.000 |
| ETR | Geisha vs. Villa Sarchí | 5.629 | 1.000 |
| ETR | Geisha vs. Robusta | −9.073 | 0.441 |
| ETR | Catuai vs. Villa Sarchí | 5.070 | 1.000 |
| ETR | Catuai vs. Robusta | −9.632 | 0.346 |
| ETR | Villa Sarchí vs. Robusta | −14.702 | 0.039 * |
| Variable | Unit | Treatments [(Mean ± Standard Deviations) or Median (IQR: Q1–Q3)] | p-Value | Test | ||||
|---|---|---|---|---|---|---|---|---|
| T1 Bourbon | T2 Geisha | T3 Catuai | T4 Villa Sarchí | Tc Robusta | ||||
| GT | % | 80 (60–90) | 80 (70–80) | 80 (70–100) | 80 (50–80) | 100 (100–100) | 0.1767 | Kruskal–Wallis |
| VI | Dimensionless (1–5) | 6 (6–8) | 6 (6–7) | 5 (4–8) | 6 (4–7) | 6 (4–8) | 0.9185 | Kruskal–Wallis |
| H | cm | 29.33 ± 1.26 | 31.67 ± 2.47 | 30.00 ± 2.78 | 29.67 ± 1.61 | 30.50 ± 3.91 | 0.8225 | ANOVA |
| SD | mm | 1.0 (1.0–1.5) | 1.0 (1.0–1.5) | 1.0 (1.0–1.5) | 1.0 (1.0–1.0) | 1.0 (1.0–1.0) | 0.8903 | Kruskal–Wallis |
| RL | cm | 17 (16–17) | 18 (17–18) | 17 (16–17) | 18 (16–18) | 17 (16–18) | 0.5142 | Kruskal–Wallis |
| LN | Count | 10 (10–10) | 10 (10–12) | 10 (10–12) | 8 (8–10) | 10 (10–10) | 0.3764 | Kruskal–Wallis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuesta, C.; García, L.; Condori-Apfata, J.; Alviárez-Gutierrez, E.; Veneros, J.; Guadalupe, G.A.; Oliva-Cruz, M.; Arellanos, E. Initial Compatibility Indicators of Four Coffea arabica Cultivars on Coffea canephora Rootstock. Horticulturae 2025, 11, 1449. https://doi.org/10.3390/horticulturae11121449
Tuesta C, García L, Condori-Apfata J, Alviárez-Gutierrez E, Veneros J, Guadalupe GA, Oliva-Cruz M, Arellanos E. Initial Compatibility Indicators of Four Coffea arabica Cultivars on Coffea canephora Rootstock. Horticulturae. 2025; 11(12):1449. https://doi.org/10.3390/horticulturae11121449
Chicago/Turabian StyleTuesta, Carlos, Ligia García, Jorge Condori-Apfata, Eliana Alviárez-Gutierrez, Jaris Veneros, Grobert A. Guadalupe, Manuel Oliva-Cruz, and Erick Arellanos. 2025. "Initial Compatibility Indicators of Four Coffea arabica Cultivars on Coffea canephora Rootstock" Horticulturae 11, no. 12: 1449. https://doi.org/10.3390/horticulturae11121449
APA StyleTuesta, C., García, L., Condori-Apfata, J., Alviárez-Gutierrez, E., Veneros, J., Guadalupe, G. A., Oliva-Cruz, M., & Arellanos, E. (2025). Initial Compatibility Indicators of Four Coffea arabica Cultivars on Coffea canephora Rootstock. Horticulturae, 11(12), 1449. https://doi.org/10.3390/horticulturae11121449

