Orchard Soil Health—Current Challenges and Future Perspectives
Abstract
1. Introduction
2. Soil Requirements of Fruit Trees in Orchards Worldwide
3. Rethinking Soil Health Assessment for Orchard Systems
4. Challenges to Orchard Soil Health
4.1. Climate Change
4.2. Emerging Contaminants (ECs) in Orchard Soil
5. Improved Orchard Soil Management Practices
5.1. Organic Agriculture
5.2. Cover Crop
5.3. Biochar
6. Future Directions in Orchard Soil Health
6.1. Orchard Soil Health Data Acquisition
6.2. Orchard Soil Data Analysis and Processing
6.3. Decision-Making Platform for Soil Health with Cross-Border Cooperation and Feedback
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Status of the World’s Soil Resources; FAO: Rome, Italy, 2015. [Google Scholar]
- Fan, Z.; Wang, J.; Lv, D.; Li, S.; Miao, Y.; Hu, M.; Wu, D.; Liu, F.; Wang, D. Effects of cropland-to-orchard conversion on soil multifunctionality, particularly nitrogen cycling in the eastern Loess Plateau. Front. Microbiol. 2024, 15, 2024. [Google Scholar] [CrossRef]
- Simon, S.; Lesueur-Jannoyer, M.; Plénet, D.; Lauri, P.; Le Bellec, F. Methodology to design agroecological orchards: Learnings from on-station and on-farm experiences. Eur. J. Agron. 2017, 82, 320–330. [Google Scholar] [CrossRef]
- Tao, Z.; Neil, E.; Si, B. Determining deep root water uptake patterns with tree age in the Chinese loess area. Agric. Water Manag. 2021, 249, 106810. [Google Scholar] [CrossRef]
- Midwood, A.J.; Hannam, K.D.; Forge, T.A.; Neilsen, D.; Emde, D.; Jones, M.D. Importance of drive-row vegetation for soil carbon storage in woody perennial crops: A regional study. Geoderma 2020, 377, 114591. [Google Scholar] [CrossRef]
- Hussain, S.; Sharma, V.; Arya, V.M.; Sharma, K.R.; Rao, C.S. Total organic and inorganic carbon in soils under different land use/land cover systems in the foothill Himalayas. Catena 2019, 182, 104104. [Google Scholar] [CrossRef]
- Tian, H.; Fang, F.; Wang, Z.; Li, S.; Qiao, J.; Han, X.; Zhu, Y.; Liu, W. A mosaic pattern of apple orchards and farmland affects the distribution of soil water and nutrients in their adjacent areas on the Chinese Loess Plateau. Catena 2024, 237, 107776. [Google Scholar] [CrossRef]
- DuPont, S.T.; Culman, S.W.; Ferris, H.; Buckley, D.H.; Glover, J.D. No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota. Agric. Ecosyst. Environ. 2010, 137, 25–32. [Google Scholar] [CrossRef]
- Cheng, C.G.; Zhao, D.Y.; Lv, D.G.; Shuang, L.; Du, G.D. Comparative Study on Microbial Community Structure across Orchard Soil, Cropland Soil, and Unused Soil. Soil Water Res. 2017, 12, 237–245. [Google Scholar] [CrossRef]
- Wang, H.; Sheng, Y.; Jiang, W.; Pan, F.; Wang, M.; Chen, X.; Shen, X.; Yin, C.; Mao, Z. The effects of crop rotation combinations on the soil quality of old apple orchard. Hortic. Plant J. 2022, 8, 1–10. [Google Scholar] [CrossRef]
- Melo, L.B.B.; Benevenute, P.A.N.; Barbosa, S.M.; Chiarini, T.P.A.; Oliveira, G.C.; Lima, J.M.; Vanella, D.; Consoli, S.; Ferreira, E.A.; Silva, B.M. Spatial and temporal electrical resistivity dynamics in a dense Ultisol under deep tillage and different citrus root-stocks. Soil Tillage Res. 2023, 228, 105629. [Google Scholar] [CrossRef]
- Kremer, R.J.; Kussman, R.D. Soil quality in a pecan-kura clover alley cropping system in the Midwestern USA. Agrofor. Syst. 2011, 83, 213–223. [Google Scholar] [CrossRef]
- Wei, B.M.; Li, Z.H.; Wang, Y.Q. Study on soil compaction and its causative factors at apple orchards in the Weibei Dry Highland of China. Soil Use Manag. 2022, 38, 790–801. [Google Scholar] [CrossRef]
- Dong, H.M.; Zhao, J.B.; Xie, M.P. Heavy Metal Concentrations in Orchard Soils with Different Cultivation Durations and Their Potential Ecological Risks in Shaanxi Province, Northwest China. Sustainability 2021, 13, 4741. [Google Scholar] [CrossRef]
- Zheng, T.H.; Zhang, J.; Tang, C.J.; Zhang, Y.F.; Duan, J. Persistence and vertical distribution of neonicotinoids in soils under different citrus orchards chrono sequences from southern China. Chemosphere 2022, 286, 131584. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.N.; Jiang, W.T.; Zhang, R.; Chen, R.; Chen, X.S.; Yin, C.M.; Mao, Z.Q. Discovery of Fusarium proliferatum f. sp. malus domestica Causing Apple Replant Disease in China. Plant Dis. 2022, 106, 2958–2966. [Google Scholar] [CrossRef]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Lozano-García, B. Soil Productivity Degradation in a Long-Term Eroded Olive Orchard under Semiarid Mediterranean Conditions. Agronomy 2021, 11, 812. [Google Scholar] [CrossRef]
- FAO. FAOSTAT: Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/TCL (accessed on 5 December 2024).
- Demestihas, C.; Plénet, D.; Génard, M.; Raynal, C.; Lescourret, F. Ecosystem services in orchards. A review. Agron. Sustain. Dev. 2017, 37, 12. [Google Scholar] [CrossRef]
- IUSS. Reference Soil Groups (WRB) Distribution. Available online: https://wrb.isric.org/distributions/ (accessed on 7 August 2025).
- Chang, T.; Feng, G.; Paul, V.; Adeli, A.; Brooks, J.P. Chapter Three—Soil health assessment methods: Progress, applications and comparison. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 172, pp. 129–210. [Google Scholar]
- Martins, S.; Pereira, S.; Dinis, L.T.; Brito, C. Enhancing Olive Cultivation Resilience: Sustainable Long-Term and Short-Term Adaptation Strategies to Alleviate Climate Change Impacts. Horticulturae 2024, 10, 1066. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Cao, S.; Yu, J.; Li, X.; Su, Y.; Li, G.; Gao, H.; Zhao, Z. Spatio-temporal variation of soil microplastics as emerging pollutant after long-term application of plastic mulching and organic compost in apple orchards. Environ. Pollut. 2023, 328, 121571. [Google Scholar] [CrossRef]
- Rezapour, S.; Nouri, A.; Alamdari, P. How Long-Term Orchard Management Revitalizes Soil Health beyond the Topsoil. Earth Syst. Environ. 2025, 1–22. [Google Scholar] [CrossRef]
- Gao, J.B.; Lu, Y.L.; Chen, Z.J.; Wang, L.; Zhou, J.B. Land-use change from cropland to orchard leads to high nitrate accumulation in the soils of a small catchment. Land Degrad. Dev. 2019, 30, 2150–2161. [Google Scholar] [CrossRef]
- Nikkhah, A.; Royan, M.; Khojastehpour, M.; Bacenetti, J. Environmental impacts modeling of Iranian peach production. Renew. Sustain. Energy Rev. 2017, 75, 677–682. [Google Scholar] [CrossRef]
- Brambila, A.; Haring, S.; Brown, A.; Lane-Massee, M.; Hallett, L.M. Native cover crops enhance biodiversity and ecosystem services in hazelnut orchards. J. Appl. Ecol. 2025, 62, 401–413. [Google Scholar] [CrossRef]
- Daelemans, R.; Hulsmans, E.; Honnay, O. Both organic and integrated pest management of apple orchards maintain soil health as compared to a semi-natural reference system. J. Environ. Manag. 2022, 303, 114191. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zhang, X.; Awasthi, M.K.; Li, H.; Zhang, L.; Syed, A.; Bahkali, A.H.; Verma, M. Bacterial community diversity and co-occurrence networks in biochar as a sustainable soil amendment material for apple orchards. Ind. Crops Prod. 2023, 206, 117723. [Google Scholar] [CrossRef]
- Hatten, J.; Liles, G. Chapter 15—A ‘healthy’ balance—The role of physical and chemical properties in maintaining forest soil function in a changing world. In Developments in Soil Science; Busse, M., Giardina, C.P., Morris, D.M., Page-Dumroese, D.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 36, pp. 373–396. [Google Scholar]
- Anjos, L.; Gaistardo, C.C.; Deckers, J.; Dondeyne, S.; Eberhardt, E.; Gerasimova, M.; Harms, B.; Jones, A.; Krasilnikov, P.; Reinsch, T. World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Shi, H.T.; Sun, S.L.; Liu, Z.J.; Zhu, Y.J.; Ai, C.; Xu, X.P.; Wang, Z.H. Changes rather than absolute contents of soil nitrogen, phosphorus, potassium, and calcium are responsible for soil-profile acidification in apple. Agric. Ecosyst. Environ. 2025, 393, 109863. [Google Scholar] [CrossRef]
- Liu, X.; Ma, T.; Zhang, H.; Yan, K.; Zhou, S. The accumulation of fungal not bacterial residue carbon is management-dependent under conventional and organic practices in apple-orchard soil. Geoderma 2024, 448, 116968. [Google Scholar] [CrossRef]
- Wei, W.; Feng, X.R.; Yang, L.; Chen, L.D.; Feng, T.J.; Chen, D. The effects of terracing and vegetation on soil moisture retention in a dry hilly catchment in China. Sci. Total Environ. 2019, 647, 1323–1332. [Google Scholar] [CrossRef]
- Moale, C.; Ghiurea, M.; Sîrbu, C.E.; Somoghi, R.; Cioroianu, T.M.; Faraon, V.A.; Lupu, C.; Trica, B.; Constantinescu-Aruxandei, D.; Oancea, F. Effects of Siliceous Natural Nanomaterials Applied in Combination with Foliar Fertilizers on Physiology, Yield and Fruit Quality of the Apricot and Peach Trees. Plants 2021, 10, 2395. [Google Scholar] [CrossRef]
- Vera, A.; Moreno, J.L.; García, C.; Nicolás, E.; Bastida, F. Agro-physiological and soil microbial responses to desalinated seawater irrigation in two crops. Ecotoxicol. Environ. Saf. 2023, 250, 114507. [Google Scholar] [CrossRef]
- Cui, Z.; Huang, Z.; Liu, Y.; López-Vicente, M.; Wu, G.-L. Natural compensation mechanism of soil water infiltration through decayed roots in semi-arid vegetation species. Sci. Total Environ. 2022, 819, 151985. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, G.; Rosinger, C.; Pines, E.D.; Faccini, B.; Coltorti, M.; Keiblinger, K.M. Soil quality increases with long-term chabazite-zeolite tuff amendments in arable and perennial cropping systems. J. Environ. Manag. 2024, 354, 120303. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.S.; Li, Z.T.; Guo, S.M.; Jones, D.L.; Wang, J.Y.; Han, Z.Q.; Zou, J.W. Lower soil nitrogen-oxide emissions associated with enhanced denitrification under replacing mineral fertilizer with manure in orchard soils. Sci. Total Environ. 2024, 921, 171192. [Google Scholar] [CrossRef] [PubMed]
- Rojano-Cruz, R.; Martínez-Moreno, F.J.; Galindo-Zaldívar, J.; Lamas, F.; González-Castillo, L.; Delgado, G.; Párraga, J.; Ramírez-González, V.; Durán-Zuazo, V.H.; Cárceles-Rodríguez, B.; et al. Impacts of a hydroinfiltrator rainwater harvesting system on soil moisture regime and groundwater distribution for olive groves in semi-arid Mediterranean regions. Geoderma 2023, 438, 116623. [Google Scholar] [CrossRef]
- Aguilera-Huertas, J.; Parras-Alcántara, L.; González-Rosado, M.; Lozano-García, B. Intercropping in rainfed Mediterranean olive groves contributes to improving soil quality and soil organic carbon storage. Agric. Ecosyst. Environ. 2024, 361, 108826. [Google Scholar] [CrossRef]
- Ruiz-Cátedra, G.; Calero, J.; Domouso, P.; García-Ruiz, R. Do management practices which enhance nature-based processes improve soil health in olive groves? Geoderma 2025, 457, 117276. [Google Scholar] [CrossRef]
- Lima, F.; Blanco-Sepúlveda, R.; Calle, M.; Andújar, D. Reconstruction of historical soil surfaces and estimation of soil erosion rates with mound measurements and UAV photogrammetry in Mediterranean olive groves. Geoderma 2023, 440, 116708. [Google Scholar] [CrossRef]
- Denvir, A.; García-Oliva, F.; Arima, E.Y.; Latorre-Cárdenas, M.C.; González-Rodríguez, A.; Young, K.R.; De la Cruz, L.I.L. Sustainability implications of carbon dynamics on the avocado frontier. Agric. Ecosyst. Environ. 2024, 359, 108746. [Google Scholar] [CrossRef]
- Mzezewa, J. Impacts of Converting Native Grassland into Arable Land and an Avocado Orchard on Soil Hydraulic Properties at an Experimental Farm in South Africa. Agronomy 2025, 15, 1039. [Google Scholar] [CrossRef]
- Assouline, S.; Kamai, T.; Simunek, J.; Narkis, K.; Silber, A. Mitigating the Impact of Irrigation With Effluent Water: Mixing With Freshwater and/or Adjusting Irrigation Management and Design. Water Resour. Res. 2020, 56, e2020WR027781. [Google Scholar] [CrossRef]
- Do, V.; La, N.; Bergkvist, G.; Dahlin, A.S.; Mulia, R.; Nguyen, V.; Oborn, I. Agroforestry with contour planting of grass contributes to terrace formation and conservation of soil and nutrients on sloping land. Agric. Ecosyst. Environ. 2023, 345, 108323. [Google Scholar] [CrossRef]
- Wang, Z.H.; Liu, X.; Zhou, W.J.; Sinclair, F.; Shi, L.L.; Xu, J.C.; Gui, H. Land use intensification in a dry-hot valley reduced the constraints of water content on soil microbial diversity and multifunctionality but increased CO2 production. Sci. Total Environ. 2022, 852, 158397. [Google Scholar] [CrossRef] [PubMed]
- Dierks, J.; Blaser-Hart, W.J.; Gamper, H.A.; Nyoka, I.B.; Barrios, E.; Six, J. Trees enhance abundance of arbuscular mycorrhizal fungi, soil structure, and nutrient retention in low-input maize cropping systems. Agric. Ecosyst. Environ. 2021, 318, 107487. [Google Scholar] [CrossRef]
- Akosah, D.K.; Adjei-Nsiah, S.; Brentu, F.C. Response of Late Valencia Sweet Orange (Citrus sinensis (L.) Osbeck) to Fertilization on Acrisols of the Semi-Deciduous Forest Agro-Ecological Zone of Ghana. Commun. Soil Sci. Plant Anal. 2021, 52, 1275–1285. [Google Scholar] [CrossRef]
- Acosta, J.A.; Imbernón-Mulero, A.; Martínez-Alvarez, V.; Gallego-Elvira, B.; Maestre-Valero, J.F. Midterm effects of irrigation with desalinated seawater on soil properties and constituents in a Mediterranean citrus orchard. Agric. Ecosyst. Environ. 2025, 381, 109421. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, C.X.; Tan, Q.L.; Nie, Z.J.; Zheng, C.S.; Gui, H.P.; Sun, X.C.; Zhao, X.H. Soil Application of Boron and Zinc Influence Fruit Yield and Quality of Satsuma Mandarin in Acidic Soils. Agron. J. 2015, 107, 1–8. [Google Scholar] [CrossRef]
- Raghavendra, M.; Sharma, M.P.; Ramesh, A.; Richa, A.; Billore, S.D.; Verma, R.K. Soil Health Indicators: Methods and Applications. In Soil Analysis: Recent Trends and Applications; Rakshit, A., Ghosh, S., Chakraborty, S., Philip, V., Datta, A., Eds.; Springer: Singapore, 2020; pp. 221–253. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Rinot, O.; Levy, G.J.; Steinberger, Y.; Svoray, T.; Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total Environ. 2019, 648, 1484–1491. [Google Scholar] [CrossRef]
- Cao, Y.; Li, X.; Qian, X.; Gu, H.; Li, J.; Chen, X.; Shen, G. Soil health assessment in the Yangtze River Delta of China: Method development and application in orchards. Agric. Ecosyst. Environ. 2023, 341. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Moebius-Clune, B.N. Comprehensive Assessment of Soil Health: The Cornell Framework Manual; Cornell University: Ithaca, NY, USA, 2016. [Google Scholar]
- Purakayastha, T.J.; Pathak, H.; Kumari, S.; Biswas, S.; Chakrabarty, B.; Padaria, R.N.; Kamble, K.; Pandey, M.; Sasmal, S.; Singh, A. Soil health card development for efficient soil management in Haryana, India. Soil Tillage Res. 2019, 191, 294–305. [Google Scholar] [CrossRef]
- Mueller, L.; Schindler, U.; Shepherd, T.G.; Ball, B.C.; Smolentseva, E.; Pachikin, K.; Hu, C.; Hennings, V.; Sheudshen, A.K.; Behrendt, A.; et al. The Muencheberg Soil Quality Rating for Assessing the Quality of Global Farmland. In Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia; Mueller, L., Saparov, A., Lischeid, G., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 235–248. [Google Scholar]
- Ylagan, S.; Amorim, H.C.S.; Ashworth, A.J.; Sauer, T.; Wienhold, B.J.; Owens, P.R.; Zinn, Y.L.; Brye, K.R. Soil quality assessment of an agroforestry system following long-term management in the Ozark Highlands. Agrosystems Geosci. Environ. 2021, 4, e20194. [Google Scholar] [CrossRef]
- Weih, M.; Asplund, L.; Bergkvist, G. Assessment of nutrient use in annual and perennial crops: A functional concept for analyzing nitrogen use efficiency. Plant Soil 2011, 339, 513–520. [Google Scholar] [CrossRef]
- DuPont, S.T.; Kalcsits, L.; Kogan, C. Soil health indicators for Central Washington orchards. PLoS ONE 2021, 16, e0258991. [Google Scholar] [CrossRef] [PubMed]
- Tollefson, J. Climate change is hitting the planet faster than scientists originally thought. Nature 2022, 28, d41586-022. [Google Scholar] [CrossRef]
- Kumar, U.; Dey, S.; Kaviraj, M.; Rout, S.; Nayak, A.K. Impact of Elevated CO2 and Temperature on Greenhouse Gas Emission and Decomposition. In Greenhouse Gas Regulating Microorganisms in Soil Ecosystems: Perspectives for Climate Smart Agriculture; Mohanty, S.R., Kollah, B., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 135–149. [Google Scholar]
- Singh, K.; Rani, D. Climate change impacts on orchard management: A review. Planta 2023, 7, 1428–1446. [Google Scholar]
- Lesk, C.; Anderson, W.; Rigden, A.; Coast, O.; Jägermeyr, J.; McDermid, S.; Davis, K.F.; Konar, M. Compound heat and moisture extreme impacts on global crop yields under climate change. Nat. Rev. Earth Environ. 2022, 3, 872–889. [Google Scholar] [CrossRef]
- Oishy, M.N.; Shemonty, N.A.; Fatema, S.I.; Mahbub, S.; Mim, E.L.; Hasan Raisa, M.B.; Anik, A.H. Unravelling the effects of climate change on the soil-plant-atmosphere interactions: A critical review. Soil Environ. Health 2025, 3, 100130. [Google Scholar] [CrossRef]
- Vercambre, G.; Mirás-Avalos, J.M.; Juillion, P.; Moradzadeh, M.; Plenet, D.; Valsesia, P.; Memah, M.-M.; Launay, M.; Lesniak, V.; Cheviron, B.; et al. Analyzing the impacts of climate change on ecosystem services provided by apple orchards in Southeast France using a process-based model. J. Environ. Manag. 2024, 370, 122470. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Zeraatpisheh, M.; Soleimani, A.; Francaviglia, R. Land use conversion, climate change and soil organic carbon: Modeling a citrus garden chronosequence in Northern Iran. Geoderma Reg. 2022, 30, e00559. [Google Scholar] [CrossRef]
- Niu, Y.H.; Wang, L.; Wan, X.G.; Peng, Q.Z.; Huang, Q.; Shi, Z.H. A systematic review of soil erosion in citrus orchards worldwide. Catena 2021, 206, 105558. [Google Scholar] [CrossRef]
- Xiong, M.; Sun, R.; Chen, L. A global comparison of soil erosion associated with land use and climate type. Geoderma 2019, 343, 31–39. [Google Scholar] [CrossRef]
- Duan, J.; Liu, Y.J.; Tang, C.J.; Shi, Z.H.; Yang, J. Efficacy of orchard terrace measures to minimize water erosion caused by extreme rainfall in the hilly region of China: Long-term continuous in situ observations. J. Environ. Manag. 2021, 278, 111537. [Google Scholar] [CrossRef] [PubMed]
- Blanke, M.; Kunz, A. Soil temperature increased by ca. 1.1 °C in a fruit orchard due to climate change results of 60 years records. In Proceedings of the Xxxi International Horticultural Congress (Ihc2022): International Symposium on Agroecology and System Approach for Sustainable 1355, Angers, France, 14–20 August 2022; pp. 393–398. [Google Scholar]
- Freitas, T.R.; Santos, J.A.; Paredes, P.; Fraga, H. Future aridity and drought risk for traditional and super-intensive olive orchards in Portugal. Clim. Change 2024, 177, 155. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Y.; Wu, W.; Lyu, L.; Li, W. Research progress on the physiological, biochemical and molecular regulatory mechanisms of fruit tree responses to high-temperature stress. Hortic. Plant J. 2025, 11, 1–14. [Google Scholar] [CrossRef]
- Cook, C.; Magan, N.; Robinson-Boyer, L.; Xu, X.M. Effect on microbial communities in apple orchard soil when exposed short-term to climate change abiotic factors and different orchard management practices. J. Appl. Microbiol. 2023, 134, lxad002. [Google Scholar] [CrossRef]
- Toumi, I.; Ghrab, M.; Zarrouk, O.; Nagaz, K. Impact of Deficit Irrigation Strategies Using Saline Water on Soil and Peach Tree Yield in an Arid Region of Tunisia. Agriculture 2024, 14, 377. [Google Scholar] [CrossRef]
- Ramos, T.B.; Darouich, H.; Oliveira, A.R.; Farzamian, M.; Castanheira, N.; Paz, A.; Alexandre, C.; Gonçalves, M.C.; Pereira, L.S. Water use, soil water balance and soil salinization risks of Mediterranean tree orchards in southern Portugal under current climate variability: Issues for salinity control and irrigation management. Agric. Water Manag. 2023, 283, 108319. [Google Scholar] [CrossRef]
- Gelaye, Y.; Getahun, S. A review of the carbon sequestration potential of fruit trees and their implications for climate change mitigation: The case of Ethiopia. Cogent Food Agric. 2024, 10. [Google Scholar] [CrossRef]
- Jahanzad, E.; Holtz, B.A.; Zuber, C.A.; Doll, D.; Brewer, K.M.; Hogan, S.; Gaudin, A.C.M. Orchard recycling improves climate change adaptation and mitigation potential of almond production systems. PLoS ONE 2020, 15, e0229588. [Google Scholar] [CrossRef] [PubMed]
- Han, J.L.; Zhang, A.F.; Kang, Y.H.; Han, J.Q.; Yang, B.; Hussain, Q.; Wang, X.D.; Zhang, M.; Khan, M.A. Biochar promotes soil organic carbon sequestration and reduces net global warming potential in apple orchard: A two-year study in the Loess Plateau of China. Sci. Total Environ. 2022, 803, 150035. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.X.; Zhan, P.J.; Thomas, B.; Zhao, J.K.; Zhang, X.L.; Yan, H.; Zhang, Z.B.; Chen, S.; Shi, X.J.; Zhang, Y.T. Organic carbon and nitrogen accumulation in orchard soil with organic fertilization and cover crop management: A global meta-analysis. Sci. Total Environ. 2022, 852, 158402. [Google Scholar] [CrossRef] [PubMed]
- Baldi, E.; Cavani, L.; Margon, A.; Quartieri, M.; Sorrenti, G.; Marzadori, C.; Toselli, M. Effect of compost application on the dynamics of carbon in a nectarine orchard ecosystem. Sci. Total Environ. 2018, 637, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Mena, M.; Carrillo-López, E.; Boix-Fayos, C.; Almagro, M.; Franco, N.G.; Díaz-Pereira, E.; Montoya, I.; de Vente, J. Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. Catena 2020, 187, 104352. [Google Scholar] [CrossRef]
- Branquinho, S.; Rolim, J.; Teixeira, J.L. Climate Change Adaptation Measures in the Irrigation of a Super-Intensive Olive Orchard in the South of Portugal. Agronomy 2021, 11, 1658. [Google Scholar] [CrossRef]
- Li, H.C.; Zhao, X.N.; Gao, X.D.; Ren, K.M.; Wu, P. Effects of water collection and mulching combinations on water infiltration and consumption in a semiarid rainfed orchard. J. Hydrol. 2018, 558, 432–441. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, M.; Wu, W.; Tanveer, S.K.; Wen, X.; Liao, Y. The effects of conservation tillage practices on the soil water-holding capacity of a non-irrigated apple orchard in the Loess Plateau, China. Soil Tillage Res. 2013, 130, 7–12. [Google Scholar] [CrossRef]
- Puri, M.; Gandhi, K.; Kumar, M.S. Emerging environmental contaminants: A global perspective on policies and regulations. J. Environ. Manag. 2023, 332, 117344. [Google Scholar] [CrossRef]
- Bi, D.; Wang, B.B.; Li, Z.; Zhang, Y.B.; Ke, X.; Huang, C.W.; Liu, W.X.; Luo, Y.M.; Christie, P.; Wu, L.H. Occurrence and distribution of microplastics in coastal plain soils under three land-use types. Sci. Total Environ. 2023, 855, 159023. [Google Scholar] [CrossRef]
- Zhuang, W.L.; Zhou, H.T.; Zhou, K.X.; Shi, Z.J.; Zhang, J.E. Impact of land-use patterns on soil microplastics: Distribution characteristics and driving factors in southern China’s Pearl River Delta. J. Hazard. Mater. 2025, 494, 138499. [Google Scholar] [CrossRef]
- Cai, L.; Zhang, L.; Liu, Z.H.; Zhao, X.L.; Han, J.Q. The factors affecting microplastic pollution in farmland soil for different agricultural uses: A case study of China. Catena 2024, 239, 107972. [Google Scholar] [CrossRef]
- Xu, G.; Feng, W.; Yang, Y.; Xu, Z.; Liu, Y.; Li, H. Occurrence, sources, and risks of microplastics in agricultural soils of Weishan Irrigation District in the lower reaches of the Yellow River, China. J. Hazard. Mater. 2025, 491, 137849. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Poblete, A.; Retamal-Salgado, J.; Zornoza, R.; Schoebitz, M. Twenty-One Years of Plastic Mulching on Blueberries: Content of Microplastics and Effects on Soil Properties. J. Soil Sci. Plant Nutr. 2025, 25, 576–588. [Google Scholar] [CrossRef]
- Wang, K.; Flury, M.; Kuzyakov, Y.; Zhang, H.; Zhu, W.; Jiang, R. Aluminum and microplastic release from reflective agricultural films disrupt microbial communities and functions in soil. J. Hazard. Mater. 2025, 491, 137891. [Google Scholar] [CrossRef] [PubMed]
- Knoblauch, D.; Mederake, L. Government policies combatting plastic pollution. Curr. Opin. Toxicol. 2021, 28, 87–96. [Google Scholar] [CrossRef]
- Zhang, H.; Miles, C.; Gerdeman, B.; LaHue, D.G.; DeVetter, L. Plastic mulch use in perennial fruit cropping systems—A review. Sci. Hortic. 2021, 281, 109975. [Google Scholar] [CrossRef]
- Broggini, G.A.L.; Duffy, B.; Holliger, E.; Schärer, H.J.; Gessler, C.; Patocchi, A. Detection of the fire blight biocontrol agent Bacillus subtilis BD170 (Biopro®) in a Swiss apple orchard. Eur. J. Plant Pathol. 2005, 111, 93–100. [Google Scholar] [CrossRef]
- Chanvatik, S.; Donnua, S.; Lekagul, A.; Kaewkhankhaeng, W.; Vongmongkol, V.; Athipunyakom, P.; Khamlar, S.; Prommintara, M.; Tangcharoensathien, V. Antibiotic use in mandarin production (Citrus reticulata Blanco) in major mandarin-producing areas in Thailand: A survey assessment. PLoS ONE 2019, 14, e0225172. [Google Scholar] [CrossRef]
- McManus, P.S. Does a drop in the bucket make a splash? Assessing the impact of antibiotic use on plants. Curr. Opin. Microbiol. 2014, 19, 76–82. [Google Scholar] [CrossRef]
- Zhao, F.K.; Chen, L.D.; Yang, L.; Sun, L.; Li, S.J.; Li, M.; Feng, Q.Y. Effects of land use and rainfall on sequestration of veterinary antibiotics in soils at the hillslope scale. Environ. Pollut. 2020, 260, 114112. [Google Scholar] [CrossRef]
- Zhao, F.-K.; Chen, L.-D.; Yang, L.; Fang, L.; Sun, L.; Li, S.-J. [Composition and Distribution of Antibiotics in Soils with Different Land Use Types in a Typical Peri-urban Area of the Yangtze River Delta]. Huan Jing Ke Xue= Huanjing Kexue 2017, 38, 5237–5246. [Google Scholar] [CrossRef]
- Fang, L.; Chen, C.; Li, S.; Ye, P.; Shi, Y.; Sharma, G.; Sarkar, B.; Shaheen, S.M.; Lee, S.S.; Xiao, R.; et al. A comprehensive and global evaluation of residual antibiotics in agricultural soils: Accumulation, potential ecological risks, and attenuation strategies. Ecotoxicol. Environ. Saf. 2023, 262, 115175. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.B.; Ou, Y.N.; Li, R.C.; Tao, C.Y.; Liu, H.J.; Li, R.; Shen, Z.Z.; Shen, Q.R. The occurrence of banana Fusarium wilt aggravates antibiotic resistance genes dissemination in soil. Ecotoxicol. Environ. Saf. 2024, 283, 116982. [Google Scholar] [CrossRef] [PubMed]
- DuPont, S.T.; Cox, K.; Johnson, K.; Peter, K.; Smith, T.; Munir, M.; Baro, A. Evaluation of biopesticides for the control of Erwinia amylovora in apple and pear. J. Plant Pathol. 2024, 106, 889–901. [Google Scholar] [CrossRef]
- Dagher, F.; Olishevska, S.; Philion, V.; Zheng, J.; Déziel, E. Development of a novel biological control agent targeting the phytopathogen Erwinia amylovora. Heliyon 2020, 6, e05222. [Google Scholar] [CrossRef] [PubMed]
- Maddela, N.R.; Ramakrishnan, B.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M. Major contaminants of emerging concern in soils: A perspective on potential health risks. RSC Adv. 2022, 12, 12396–12415. [Google Scholar] [CrossRef]
- Tao, Y.Q.; Wang, J.Q.; Chen, Y.L.; Tan, C.Q.; Guo, H.G. Development of traceability systems: A methodological overview toward effective regulation of emerging contaminants. J. Hazard. Mater. 2025, 495, 139058. [Google Scholar] [CrossRef]
- Yu, Y.; Griffin-LaHue, D.E.; Miles, C.A.; Hayes, D.G.; Flury, M. Are micro- and nanoplastics from soil-biodegradable plastic mulches an environmental concern? J. Hazard. Mater. Adv. 2021, 4, 100024. [Google Scholar] [CrossRef]
- Cen, Y.; Li, L.; Guo, L.; Li, C.; Jiang, G. Organic management enhances both ecological and economic profitability of apple orchard: A case study in Shandong Peninsula. Sci. Hortic. 2020, 265, 109201. [Google Scholar] [CrossRef]
- Janke, R.R.; Menezes-Blackburn, D.; Al Hamdi, A.; Rehman, A. Organic Management and Intercropping of Fruit Perennials Increase Soil Microbial Diversity and Activity in Arid Zone Orchard Cropping Systems. Sustainability 2024, 16, 9391. [Google Scholar] [CrossRef]
- Cárceles Rodríguez, B.C.; Durán Zuazo, V.H.D.; Herencia Galán, J.F.H.; Lipan, L.; Soriano, M.; Hernández, F.; Sendra, E.; Carbonell-Barrachina, Á.A.; Ruiz, B.G.; García-Tejero, I.F. Soil Management Strategies in Organic Almond Orchards: Implications for Soil Rehabilitation and Nut Quality. Agronomy 2023, 13, 749. [Google Scholar] [CrossRef]
- Wentzien, N.M.; Fernández-González, A.J.; Villadas, P.J.; Valverde-Corredor, A.; Mercado-Blanco, J.; Fernández-López, M. Thriving beneath olive trees: The influence of organic farming on microbial communities. Comput. Struct. Biotechnol. J. 2023, 21, 3575–3589. [Google Scholar] [CrossRef]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical review of the impact of cover crops on soil properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Wauters, V.M.; Jarvis-Shean, K.; Williams, N.; Hodson, A.; Hanson, B.D.; Haring, S.; Wilson, H.; Westphal, A.; Solis, S.S.; Daane, K.; et al. Developing cover crop systems for California almonds: Current knowledge and uncertainties. J. Soil Water Conserv. 2023, 78, 5A. [Google Scholar] [CrossRef]
- de Torres, M.; Moreno-García, M.; Ordóñez-Fernández, R.; Rodríguez-Lizana, A.; Rodríguez, B.C.; García-Tejero, I.F.; Zuazo, V.H.D.; Carbonell-Bojollo, R.M. Cover Crop Contributions to Improve the Soil Nitrogen and Carbon Sequestration in Almond Orchards (SW Spain). Agronomy 2021, 11, 387. [Google Scholar] [CrossRef]
- de Oliveira, E.M.; Hermógenes, G.M.; Brito, L.D.; Silva, B.M.; Avanzi, J.C.; Beniaich, A.; Silva, M.L.N. Cover crop management systems improves soil quality and mitigate water erosion in tropical olive orchards. Sci. Hortic. 2024, 330, 113092. [Google Scholar] [CrossRef]
- Alcántara, C.; Pujadas, A.; Saavedra, M. Management of cruciferous cover crops by mowing for soil and water conservation in southern Spain. Agric. Water Manag. 2011, 98, 1071–1080. [Google Scholar] [CrossRef]
- Fernando, M.; Scott, N.; Shrestha, A.; Gao, S.; Hale, L. A native plant species cover crop positively impacted vineyard water dynamics, soil health, and vine vigor. Agric. Ecosyst. Environ. 2024, 367, 108972. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Martens-Habbena, W.; Smyth, A.R.; Kadyampakeni, D.M.; Strauss, S.L. Short-term effects of cover crops on soil properties and the abundance of N-cycling genes in citrus agroecosystems. Appl. Soil Ecol. 2022, 172, 104341. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Maltais-Landry, G.; Martens-Habbena, W.; Strauss, S.L. Depth-dependent effects of cover crops in citrus orchards on soil carbon and nitrogen cycling, greenhouse gas emissions, and soil microbial communities. Appl. Soil Ecol. 2023, 192, 105071. [Google Scholar] [CrossRef]
- Scavo, A.; Restuccia, A.; Lombardo, S.; Fontanazza, S.; Abbate, C.; Pandino, G.; Anastasi, U.; Onofri, A.; Mauromicale, G. Improving soil health, weed management and nitrogen dynamics by Trifolium subterraneum cover cropping. Agron. Sustain. Dev. 2020, 40, 18. [Google Scholar] [CrossRef]
- Rodriguez-Ramos, J.C.; Scott, N.; Marty, J.; Kaiser, D.; Hale, L. Cover crops enhance resource availability for soil microorganisms in a pecan orchard. Agric. Ecosyst. Environ. 2022, 337, 108049. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Strauss, S.L. Impact of Cover Crops on the Soil Microbiome of Tree Crops. Microorganisms 2020, 8, 328. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Zhang, P.; Huang, P.; Ma, M.; Meng, X.; Hao, Y.; Sun, H. Chapter 11—Effects of biochar on the environmental behavior of pesticides. In Biochar in Agriculture for Achieving Sustainable Development Goals; Tsang, D.C.W., Ok, Y.S., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 129–138. [Google Scholar]
- Gholizadeh, M.; Meca, S.; Zhang, S.; Clarens, F.; Hu, X. Understanding the dependence of biochar properties on different types of biomass. Waste Manag. 2024, 182, 142–163. [Google Scholar] [CrossRef]
- Sharma, S.; Rana, V.S.; Rana, N.; Prasad, H.; Sharma, U.; Patiyal, V. Biochar from fruit crops waste and its potential impact on fruit crops. Sci. Hortic. 2022, 299, 111052. [Google Scholar] [CrossRef]
- Guo, Y.J.; Qiu, B.L.; Khan, Z.; Jiang, H.; Ji, Q.H.; Fan, Q.Z.; Khan, M.M. The potential for biochar application in “Shatangju” (Citrus reticulate cv.) orchard on acid red soil: Biochar prepared from its organic waste in an orchard. Front. Plant Sci. 2022, 13, 1001740. [Google Scholar] [CrossRef]
- Hu, L.N.; Qin, R.; Zhou, L.M.; Deng, H.; Li, K.; He, X.Y. Effects of Orange Peel Biochar and Cipangopaludina chinensis Shell Powder on Soil Organic Carbon Transformation in Citrus Orchards. Agronomy 2023, 13, 1801. [Google Scholar] [CrossRef]
- Kayiranga, A.; Luo, Z.X.; Ndayishimiye, J.C.; Nkinahamira, F.; Cyubahiro, E.; Habumugisha, T.; Yan, C.Z.; Guo, J.H.; Zhen, Z.; Tuyishimire, A.; et al. Insights into thallium adsorption onto the soil, bamboo-derived biochar, and biochar amended soil in Pomelo orchard. Biochar 2021, 3, 315–328. [Google Scholar] [CrossRef]
- Ahmad, R.; Gao, J.E.; Li, W.Z.; Zhang, Y.Y.; Gao, Z.; Khan, A.; Ali, I.; Ullah, S.; Fahad, S. Response of soil nutrients, enzyme activities, and fungal communities to biochar availability in the rhizosphere of mountainous apple trees. Plant Soil 2023, 489, 277–293. [Google Scholar] [CrossRef]
- Ahmad, R.; Gao, J.N.; Gao, Z.; Khan, A.; Ali, I.; Fahad, S. Influence of Biochar on Soil Nutrients and Associated Rhizobacterial Communities of Mountainous Apple Trees in Northern Loess Plateau China. Microorganisms 2022, 10, 2078. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.B.; Li, Q.; Wu, J.S.; Song, X.Z. Effects of nitrogen deposition and biochar amendment on soil respiration in a Torreya grandis orchard. Geoderma 2019, 355, 113918. [Google Scholar] [CrossRef]
- Nematian, M.; Keske, C.; Ng'ombe, J.N. A techno-economic analysis of biochar production and the bioeconomy for orchard biomass. Waste Manag. 2021, 135, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Pow, D.; Dawson, K.; Rust, J.; Munroe, P.; Taherymoosavi, S.; Mitchell, D.R.G.; Robb, S.; Solaiman, Z.M. Biochar increases soil organic carbon, avocado yields and economic return over 4 years of cultivation. Sci. Total Environ. 2020, 724, 138153. [Google Scholar] [CrossRef] [PubMed]
- Shyam, A.; Sharma, D.P.; Sharma, N.C.; Singh, U. Lowering Chemical Fertilizers Rate in 'Black Amber' Plum Orchard for Improving Sustainable Resource Management: Effect on Soil Health and Fruit Quality. Commun. Soil Sci. Plant Anal. 2024, 55, 2868–2882. [Google Scholar] [CrossRef]
- Brewer, R.; John, P.; and Heskett, M. A Critical Review of Discrete Soil Sample Data Reliability: Part 2—Implications. Soil Sediment Contam. Int. J. 2017, 26, 23–44. [Google Scholar] [CrossRef]
- Zhu, S.D.; Cui, N.B.; Zhou, J.; Xue, J.Y.; Wang, Z.H.; Wu, Z.J.; Wang, M.J.; Deng, Q.L. Digital Mapping of Root-Zone Soil Moisture Using UAV-Based Multispectral Data in a Kiwifruit Orchard of Northwest China. Remote Sens. 2023, 15, 646. [Google Scholar] [CrossRef]
- Jiao, X.C.; Liu, H.; Wang, W.M.; Zhu, J.J.; Wang, H. Estimation of Surface Soil Nutrient Content in Mountainous Citrus Orchards Based on Hyperspectral Data. Agriculture 2024, 14, 873. [Google Scholar] [CrossRef]
- Singh, K.; Fuentes, I.; Al-Shammari, D.; Fidelis, C.; Butubu, J.; Yinil, D.; Sharififar, A.; Minasny, B.; Guest, D.; Field, D.J. E-Agriculture Planning Tool for Supporting Smallholder Cocoa Intensification Using Remotely Sensed Data. Remote Sens. 2023, 15, 3492. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Zeng, T.W.; Li, L.; Fang, J.H.; Fu, W.; Gu, Y. Canopy extraction of mango trees in hilly and plain orchards using UAV images: Performance of machine learning vs deep learning. Ecol. Inform. 2025, 87, 103101. [Google Scholar] [CrossRef]
- Yu, L.; Du, Z.; Li, X.; Zheng, J.; Zhao, Q.; Wu, H.; weise, D.; Yang, Y.; Zhang, Q.; Li, X.; et al. Enhancing global agricultural monitoring system for climate-smart agriculture. Clim. Smart Agric. 2025, 2, 100037. [Google Scholar] [CrossRef]
- Sale, T.; Gallo, S.; Askarani, K.K.; Irianni-Renno, M.; Lyverse, M.; Hopkins, H.; Blotevogel, J.; Burge, S. Real-time soil and groundwater monitoring via spatial and temporal resolution of biogeochemical potentials. J. Hazard. Mater. 2021, 408, 124403. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, J.; Ye, D.; Saddique, M.A.B.; Muneer, M.A.; Li, H. Advancing soil health assessment and improvement strategies in green plum (Vatica mangachapoi Blanco) Orchards: Insights from southeast China. Sci. Hortic. 2025, 347, 114186. [Google Scholar] [CrossRef]
- Jagadesh, M.; Dash, M.; Kumari, A.; Singh, S.K.; Verma, K.K.; Kumar, P.; Bhatt, R.; Sharma, S.K. Revealing the hidden world of soil microbes: Metagenomic insights into plant, bacteria, and fungi interactions for sustainable agriculture and ecosystem restoration. Microbiol. Res. 2024, 285, 127764. [Google Scholar] [CrossRef]
- LANDMARK Consortium. LANDMARK: LAND Management: Assessment, Research, Knowledge Base; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Zhang, L.F.; Zhang, L.P. Artificial Intelligence for Remote Sensing Data Analysis A Review of Challenges and Opportunities. IEEE Geosci. Remote Sens. Mag. 2022, 10, 270–294. [Google Scholar] [CrossRef]
Fruit | Top Producing Countries | Soil Types |
---|---|---|
Apple | China, Russia, Turkey, Poland, Uzbekistan | Cambisols [33], Luvisols [34] |
Apricot | Turkey, Iran, Uzbekistan, Algeria, Afghanistan | Cambisol [35], Chernozem [36], Fluvisol [37], Luvisol [38] |
Pear | China, India, Italy, Turkey, Argentina | Cambisols [39], Fluvisol [40] |
Olive | Spain, Tunisia, Morocco, Italy, Turkey | Calcisols [41], Cambisols [42], Leptosols [43], Regosols [44], |
Avocado | Mexico, Colombia, Indonesia, Peru, Dominican Republic | Andosols [45], Ferralsols [46], Vertisols [47] |
Mangoes & Related | India, China, Côte d’Ivoire, Indonesia, Mexico | Acrisols [48], Ferralsols [49], Fluvisols [50] |
Citrus Fruits | Nigeria, China, India, Mexico, Guinea | Acrisols [51], Calcisols [52], Fluvisols [40], Luvisols [53] |
System Name | Developer | Indicators | Scoring System | Advantages | Application Scope |
---|---|---|---|---|---|
SMAF | Karlen’s team | Tailored to management goals and site-specific factors | Nonlinear scoring curves (0 to 1) | Adaptable to local conditions and management goals Provides comprehensive assessment through integration | Used in multiple countries (e.g., Brazil, Spain, Italy, India) |
CASH | Cornell University | Simplified from SMAF; now has 39 indicators | Cumulative normal distribution functions (0 to 100) | Standardized approach with fewer indicators Easy to use with practical field assessment | Used in multiple countries (e.g., USA, China, Kenya) |
Soil Health Card (SHC) | India | 18 indicators (physical, chemical, biological) | Nonlinear scoring functions (0 to 100) Based on expert opinion and principal component analysis | Practical tool for farmers Includes detailed recommendations and easy-to-understand results | Mainly used in India |
Muencheberg Soil Quality Rating (M-SQR) | Muencheberg | 20 indicators (8 basic, 12 hazard) | Quasi 5-ball scale ranking (0 to 2) | Considers hazard indicators for comprehensive soil quality assessment | Mainly used in Europe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Wang, T.; Xin, C.; Wu, D.; Wang, J.; Ge, Z.; Lou, X. Orchard Soil Health—Current Challenges and Future Perspectives. Horticulturae 2025, 11, 1206. https://doi.org/10.3390/horticulturae11101206
Huang J, Wang T, Xin C, Wu D, Wang J, Ge Z, Lou X. Orchard Soil Health—Current Challenges and Future Perspectives. Horticulturae. 2025; 11(10):1206. https://doi.org/10.3390/horticulturae11101206
Chicago/Turabian StyleHuang, Jiale, Tianhao Wang, Chengshu Xin, Dongyang Wu, Jia Wang, Zhuang Ge, and Xin Lou. 2025. "Orchard Soil Health—Current Challenges and Future Perspectives" Horticulturae 11, no. 10: 1206. https://doi.org/10.3390/horticulturae11101206
APA StyleHuang, J., Wang, T., Xin, C., Wu, D., Wang, J., Ge, Z., & Lou, X. (2025). Orchard Soil Health—Current Challenges and Future Perspectives. Horticulturae, 11(10), 1206. https://doi.org/10.3390/horticulturae11101206