BMDNet-YOLO: A Lightweight and Robust Model for High-Precision Real-Time Recognition of Blueberry Maturity
Abstract
1. Introduction
- A lightweight blueberry maturity detection model, BMDNet-YOLO, is proposed based on an improved YOLOv8n architecture, achieving a balance between high accuracy and low computational cost through deep feature enhancement and structural optimization;
- A FasterPW module is introduced into the backbone to improve feature extraction efficiency, while the neck integrates a coordinate attention (CA) mechanism and an adaptive weighted concatenation module for efficient multi-scale feature fusion;
- The detection head employs a lightweight shared convolution structure based on heterogeneous convolution (HetConv), effectively reducing parameter redundancy and significantly improving inference speed;
- A three-stage transfer learning strategy—comprising source-domain pretraining, domain adaptation, and target (domain fine-tuning) is developed to accelerate convergence and enhance generalization in complex scenarios.
2. Materials and Methods
2.1. Dataset
2.2. Baseline Model
2.3. Backbone Optimization: FasterPW
2.4. Coordinate Attention Mechanism
2.5. Lightweight Shared Convolution Head Based on HetConv
2.6. Proposed Model
2.7. Transfer Learning
3. Experiments and Results
3.1. Model Training Environment and Parameters Setup
3.2. Evaluation Metrics
3.3. Comparative Performance Analysis of Different Models
3.4. Comparative Experiments of Different Attention Mechanisms
3.5. Ablation Study
3.6. Comparative Experiments on Transfer Learning
4. Discussion
4.1. Advantages
4.2. Challenges
4.3. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, Y.; Tarafdar, A.; Chaurasia, D.; Singh, A.; Bhargava, P.C.; Yang, J.; Li, Z.; Ni, X.; Tian, Y.; Li, H.; et al. Blueberry fruit valorization and valuable constituents: A review. Int. J. Food Microbiol. 2022, 381, 109890. [Google Scholar] [CrossRef] [PubMed]
- Avendano, E.E.; Raman, G. Blueberry consumption and exercise: Gap analysis using evidence mapping. J. Altern. Complement. Med. 2021, 27, 3–11. [Google Scholar] [CrossRef]
- Norabuena-Figueroa, R.; García-Fernández, J. Logistical Process and Improvement of the Packing Area in the Export of Peruvian Blueberries: Advancing Sustainable Development Goal 8. In Fostering Sustainable Development Goals: New Dimensions and Dynamics; Springer: Berlin/Heidelberg, Germany, 2024; p. 80. [Google Scholar]
- Hammami, A.M.; Guan, Z.; Cui, X. Foreign Competition Reshaping the Landscape of the US Blueberry Market. Choices 2024, 39, 1–9. [Google Scholar]
- Kim, E.; Freivalds, A.; Takeda, F.; Li, C. Ergonomic evaluation of current advancements in blueberry harvesting. Agronomy 2018, 8, 266. [Google Scholar] [CrossRef]
- Brondino, L.; Borra, D.; Giuggioli, N.R.; Massaglia, S. Mechanized blueberry harvesting: Preliminary results in the Italian context. Agriculture 2021, 11, 1197. [Google Scholar] [CrossRef]
- Gallardo, R.K.; Zilberman, D. The economic feasibility of adopting mechanical harvesters by the highbush blueberry industry. HortTechnology 2016, 26, 299–308. [Google Scholar] [CrossRef]
- Wang, R.F.; Qu, H.R.; Su, W.H. From Sensors to Insights: Technological Trends in Image-Based High-Throughput Plant Phenotyping. Smart Agric. Technol. 2025, 12, 101257. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, K.; Huo, Y.; Yao, M.; Xue, L.; Wang, H. Mushroom image classification and recognition based on improved ConvNeXt V2. J. Food Sci. 2025, 90, e70133. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, R.F. The Heterogeneous Network Community Detection Model Based on Self-Attention. Symmetry 2025, 17, 432. [Google Scholar] [CrossRef]
- Cui, K.; Tang, W.; Zhu, R.; Wang, M.; Larsen, G.D.; Pauca, V.P.; Alqahtani, S.; Yang, F.; Segurado, D.; Fine, P.; et al. Efficient Localization and Spatial Distribution Modeling of Canopy Palms Using UAV Imagery. IEEE Trans. Geosci. Remote Sens. 2025, 63, 4413815. [Google Scholar] [CrossRef]
- Tobar-Bolaños, G.; Casas-Forero, N.; Orellana-Palma, P.; Petzold, G. Blueberry juice: Bioactive compounds, health impact, and concentration technologies—A review. J. Food Sci. 2021, 86, 5062–5077. [Google Scholar] [CrossRef]
- Lyu, X.; Wang, H.; Xu, G.; Chu, C. Research on fruit picking test of blueberry harvesting machinery under transmission clearance. Heliyon 2024, 10, e34740. [Google Scholar] [CrossRef]
- Thota, J.; Kim, E.; Freivalds, A.; Kim, K. Development and evaluation of attachable anti-vibration handle. Appl. Ergon. 2022, 98, 103571. [Google Scholar] [CrossRef]
- Tan, C.; Li, C.; Perkins-Veazie, P.; Oh, H.; Xu, R.; Iorizzo, M. High throughput assessment of blueberry fruit internal bruising using deep learning models. Front. Plant Sci. 2025, 16, 1575038. [Google Scholar] [CrossRef] [PubMed]
- Haydar, Z.; Esau, T.J.; Farooque, A.A.; Zaman, Q.U.; Hennessy, P.J.; Singh, K.; Abbas, F. Deep learning supported machine vision system to precisely automate the wild blueberry harvester header. Sci. Rep. 2023, 13, 10198. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Wang, Y.; Li, D.; Pan, W. Melon ripeness detection by an improved object detection algorithm for resource constrained environments. Plant Methods 2024, 20, 127. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, Y.; Liu, J.; Liu, D.; Chen, C.; Li, Y.; Zhang, X.; Touko Mbouembe, P.L. An improved YOLOv7 model based on Swin Transformer and Trident Pyramid Networks for accurate tomato detection. Front. Plant Sci. 2024, 15, 1452821. [Google Scholar] [CrossRef] [PubMed]
- Júnior, M.R.B.; Dos Santos, R.G.; de Azevedo Sales, L.; Vargas, R.B.S.; Deltsidis, A.; de Oliveira, L.P. Image-based and ML-driven analysis for assessing blueberry fruit quality. Heliyon 2025, 11, e42288. [Google Scholar] [CrossRef]
- Mu, C.; Yuan, Z.; Ouyang, X.; Sun, P.; Wang, B. Non-destructive detection of blueberry skin pigments and intrinsic fruit qualities based on deep learning. J. Sci. Food Agric. 2021, 101, 3165–3175. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, H.; Shi, J.; Duan, Y.; Wu, W.; Lyu, L.; Li, W. Effects of different light wavelengths on fruit quality and gene expression of anthocyanin biosynthesis in blueberry (Vaccinium corymbosm). Cells 2023, 12, 1225. [Google Scholar] [CrossRef]
- Sun, L.; Shi, W.; Tian, X.; Li, J.; Zhao, B.; Wang, S.; Tan, J. A plane stress measurement method for CFRP material based on array LCR waves. NDT E Int. 2025, 151, 103318. [Google Scholar] [CrossRef]
- Zhang, Z.; Janvekar, N.A.S.; Feng, P.; BHASKAR, N. Graph-Based Detection of Abusive Computational Nodes. US Patent 12,223,056, 11 February 2025. [Google Scholar]
- Zhou, Y.; Xia, H.; Yu, D.; Cheng, J.; Li, J. Outlier detection method based on high-density iteration. Inf. Sci. 2024, 662, 120286. [Google Scholar] [CrossRef]
- Lu, W.; Wang, J.; Wang, T.; Zhang, K.; Jiang, X.; Zhao, H. Visual style prompt learning using diffusion models for blind face restoration. Pattern Recognit. 2025, 161, 111312. [Google Scholar] [CrossRef]
- Hao, H.; Yao, E.; Pan, L.; Chen, R.; Wang, Y.; Xiao, H. Exploring heterogeneous drivers and barriers in MaaS bundle subscriptions based on the willingness to shift to MaaS in one-trip scenarios. Transp. Res. Part A Policy Pract. 2025, 199, 104525. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, Y.; Ye, H.; Shao, Z.; Sun, J.; Zhang, J.; Chen, Z.; Zhang, J.; Chen, Y.; Li, H. SADA: Stability-guided Adaptive Diffusion Acceleration. In Proceedings of the Forty-second International Conference on Machine Learning, Vancouver, BC, Canada, 13–19 July 2025. [Google Scholar]
- Zhou, Y.; Liu, C.; Urgaonkar, B.; Wang, Z.; Mueller, M.; Zhang, C.; Zhang, S.; Pfeil, P.; Horn, D.; Liu, Z.; et al. PBench: Workload Synthesizer with Real Statistics for Cloud Analytics Benchmarking. arXiv 2025, arXiv:2506.16379. [Google Scholar] [CrossRef]
- Zhao, K.; Huo, Y.; Xue, L.; Yao, M.; Tian, Q.; Wang, H. Mushroom Image Classification and Recognition Based on Improved Swin Transformer. In Proceedings of the 2023 IEEE 6th International Conference on Information Systems and Computer Aided Education (ICISCAE), Virtual, 23–25 September 2023; IEEE: Piscataway Township, NJ, USA, 2023; pp. 225–231. [Google Scholar]
- Pan, C.H.; Qu, Y.; Yao, Y.; Wang, M.J.S. HybridGNN: A Self-Supervised graph neural network for efficient maximum matching in bipartite graphs. Symmetry 2024, 16, 1631. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Wang, H.; Georgieva, T.; Ferentinos, K.; Arvanitis, K.; Sygrimis, N. Sustainable energy management of solar greenhouses using open weather data on MACQU platform. Int. J. Agric. Biol. Eng. 2018, 11, 74–82. [Google Scholar] [CrossRef]
- Shao, Z.; Wang, Y.; Wang, Q.; Jiang, T.; Du, Z.; Ye, H.; Zhuo, D.; Chen, Y.; Li, H. FlashSVD: Memory-Efficient Inference with Streaming for Low-Rank Models. arXiv 2025, arXiv:2508.01506. [Google Scholar]
- Wei, Z.L.; An, H.Y.; Yao, Y.; Su, W.C.; Li, G.; Saifullah; Sun, B.F.; Wang, M.J.S. FSTGAT: Financial Spatio-Temporal Graph Attention Network for Non-Stationary Financial Systems and Its Application in Stock Price Prediction. Symmetry 2025, 17, 1344. [Google Scholar] [CrossRef]
- Garillos-Manliguez, C.A.; Chiang, J.Y. Multimodal deep learning and visible-light and hyperspectral imaging for fruit maturity estimation. Sensors 2021, 21, 1288. [Google Scholar] [CrossRef]
- Dong, Y.; Qiao, J.; Liu, N.; He, Y.; Li, S.; Hu, X.; Yu, C.; Zhang, C. GPC-YOLO: An Improved Lightweight YOLOv8n Network for the Detection of Tomato Maturity in Unstructured Natural Environments. Sensors 2025, 25, 1502. [Google Scholar] [CrossRef]
- Zhu, R.; Cui, K.; Tang, W.; Wang, R.F.; Alqahtani, S.; Lutz, D.; Yang, F.; Fine, P.; Karubian, J.; Plemmons, R.; et al. From Orthomosaics to Raw UAV Imagery: Enhancing Palm Detection and Crown-Center Localization. arXiv 2025, arXiv:2509.12400. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Cheng, Y.; Wu, X.; Sun, X.; Hou, R.; Wang, H. Fruit freshness detection based on multi-task convolutional neural network. Curr. Res. Food Sci. 2024, 8, 100733. [Google Scholar] [CrossRef]
- Qu, H.; Zheng, C.; Ji, H.; Huang, R.; Wei, D.; Annis, S.; Drummond, F. A deep multi-task learning approach to identifying mummy berry infection sites, the disease stage, and severity. Front. Plant Sci. 2024, 15, 1340884. [Google Scholar] [CrossRef]
- Zhao, M.; Cui, B.; Yu, Y.; Zhang, X.; Xu, J.; Shi, F.; Zhao, L. Intelligent Detection of Tomato Ripening in Natural Environments Using YOLO-DGS. Sensors 2025, 25, 2664. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J. Tomato anomalies detection in greenhouse scenarios based on YOLO-Dense. Front. Plant Sci. 2021, 12, 634103. [Google Scholar] [CrossRef]
- Lyu, S.; Zhou, X.; Li, Z.; Liu, X.; Chen, Y.; Zeng, W. YOLO-SCL: A lightweight detection model for citrus psyllid based on spatial channel interaction. Front. Plant Sci. 2023, 14, 1276833. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Zhu, R.; Wang, M.; Tang, W.; Larsen, G.D.; Pauca, V.P.; Alqahtani, S.; Yang, F.; Segurado, D.; Lutz, D.A.; et al. Detection and Geographic Localization of Natural Objects in the Wild: A Case Study on Palms. In Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence, IJCAI-25, Montreal, QC, Canada, 16–22 August 2025; pp. 9601–9609. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y. SLGA-YOLO: A lightweight castings surface defect detection method based on fusion-enhanced attention mechanism and self-architecture. Sensors 2024, 24, 4088. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Chu, H.Q.; Qin, Y.M.; Hu, P.; Wang, R.F. Empowering Smart Soybean Farming with Deep Learning: Progress, Challenges, and Future Perspectives. Agronomy 2025, 15, 1831. [Google Scholar] [CrossRef]
- Ye, R.; Shao, G.; Gao, Q.; Zhang, H.; Li, T. CR-YOLOv9: Improved YOLOv9 multi-stage strawberry fruit maturity detection application integrated with CRNET. Foods 2024, 13, 2571. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zheng, H.; Zhang, Y.; Zhang, Q.; Chen, H.; Xu, X.; Wang, G. “Is this blueberry ripe?”: A blueberry ripeness detection algorithm for use on picking robots. Front. Plant Sci. 2023, 14, 1198650. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, N.; Zhuang, X.; Wang, Y.; Liu, G.; Liu, Y.; Wang, C.; Gong, Z.; Liu, K.; Yu, G.; et al. LSC-YOLO: Small Target Defects Detection Model for Wind Turbine Blade Based on YOLOv9. In Proceedings of the International Conference on Neural Information Processing, Vancouver, BC, Canada, 10–15 December 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 256–270. [Google Scholar]
- Di, X.; Cui, K.; Wang, R.F. Toward Efficient UAV-Based Small Object Detection: A Lightweight Network with Enhanced Feature Fusion. Remote Sens. 2025, 17, 2235. [Google Scholar] [CrossRef]
- Wang, J.; Liu, N.; Liu, G.; Liu, Y.; Zhuang, X.; Zhang, L.; Wang, Y.; Yu, G. RSD-YOLO: A Defect Detection Model for Wind Turbine Blade Images. In Proceedings of the International Conference on Computer Engineering and Networks, Kashi, China, 18–21 October 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 423–435. [Google Scholar]
- Wang, R.F.; Tu, Y.H.; Li, X.C.; Chen, Z.Q.; Zhao, C.T.; Yang, C.; Su, W.H. An Intelligent Robot Based on Optimized YOLOv11l for Weed Control in Lettuce. In Proceedings of the 2025 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, Toronto, ON, Canada, 13–16 July 2025; p. 1. [Google Scholar]
- Huo, Y.; Wang, R.F.; Zhao, C.T.; Hu, P.; Wang, H. Research on Obtaining Pepper Phenotypic Parameters Based on Improved YOLOX Algorithm. AgriEngineering 2025, 7, 209. [Google Scholar] [CrossRef]
- Yi, F.; Mohamed, A.S.A.; Noor, M.H.M.; Ani, F.C.; Zolkefli, Z.E. YOLOv8-DEE: A high-precision model for printed circuit board defect detection. PeerJ Comput. Sci. 2024, 10, e2548. [Google Scholar] [CrossRef]
- Deng, B.; Lu, Y.; Li, Z. Detection, counting, and maturity assessment of blueberries in canopy images using YOLOv8 and YOLOv9. Smart Agric. Technol. 2024, 9, 100620. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Zhou, Y.; Zhai, Y.; Yang, Y.; Fu, D. GLL-YOLO: A Lightweight Network for Detecting the Maturity of Blueberry Fruits. Agriculture 2025, 15, 1877. [Google Scholar] [CrossRef]
- Ding, J.; Hu, J.; Lin, J.; Zhang, X. Lightweight enhanced YOLOv8n underwater object detection network for low light environments. Sci. Rep. 2024, 14, 27922. [Google Scholar] [CrossRef]
- Wang, J.; Meng, R.; Huang, Y.; Zhou, L.; Huo, L.; Qiao, Z.; Niu, C. Road defect detection based on improved YOLOv8s model. Sci. Rep. 2024, 14, 16758. [Google Scholar] [CrossRef]
- Guarnido-Lopez, P.; Ramirez-Agudelo, J.F.; Denimal, E.; Benaouda, M. Programming and setting up the object detection algorithm YOLO to determine feeding activities of beef cattle: A comparison between YOLOv8m and YOLOv10m. Animals 2024, 14, 2821. [Google Scholar] [CrossRef]
- Cinar, I. Comparative analysis of machine learning and deep learning algorithms for knee arthritis detection using YOLOv8 models. J. X-Ray Sci. Technol. 2025, 33, 565–577. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Xu, H.; Pi, J.; Wang, D. Research on Beef Marbling Grading Algorithm Based on Improved YOLOv8x. Foods 2025, 14, 1664. [Google Scholar] [CrossRef] [PubMed]
- Fuengfusin, N.; Tamukoh, H. Mixed-precision weights network for field-programmable gate array. PLoS ONE 2021, 16, e0251329. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; Gao, Q.; Li, T. BRA-YOLOv7: Improvements on large leaf disease object detection using FasterNet and dual-level routing attention in YOLOv7. Front. Plant Sci. 2024, 15, 1373104. [Google Scholar] [CrossRef]
- Hua, B.; Tran, M.K.; Yeung, S.K. Pointwise convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 984–993. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 13713–13722. [Google Scholar]
- Singh, P.; Verma, V.K.; Rai, P.; Namboodiri, V.P. HetConv: Heterogeneous kernel-based convolutions for deep CNNs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4835–4844. [Google Scholar]
- Wang, R.F.; Qin, Y.M.; Zhao, Y.Y.; Xu, M.; Schardong, I.B.; Cui, K. RA-CottNet: A Real-Time High-Precision Deep Learning Model for Cotton Boll and Flower Recognition. AI 2025, 6, 235. [Google Scholar] [CrossRef]
- An, J.; Zhang, D.; Xu, K.; Wang, D. An OpenCL-based FPGA accelerator for Faster R-CNN. Entropy 2022, 24, 1346. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, H.; Liu, B.; Zhang, J.; Duan, N.; Yuan, A.; Huo, Y. VMF-SSD: A novel V-space based multi-scale feature fusion SSD for apple leaf disease detection. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 20, 2016–2028. [Google Scholar] [CrossRef]
- Guo, K.; He, C.; Yang, M.; Wang, S. A pavement distresses identification method optimized for YOLOv5s. Sci. Rep. 2022, 12, 3542. [Google Scholar] [CrossRef]
- Wang, Z.; Hua, Z.; Wen, Y.; Zhang, S.; Xu, X.; Song, H. E-YOLO: Recognition of estrus cow based on improved YOLOv8n model. Expert Syst. Appl. 2024, 238, 122212. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11534–11542. [Google Scholar]
- Ye, B.; Xue, R.; Xu, H. ASD-YOLO: A lightweight network for coffee fruit ripening detection in complex scenarios. Front. Plant Sci. 2025, 16, 1484784. [Google Scholar] [CrossRef]
- Varzakas, T.; Smaoui, S. Global food security and sustainability issues: The road to 2030 from nutrition and sustainable healthy diets to food systems change. Foods 2024, 13, 306. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.W.; Dai, Y.Q.; Cui, K.; Wang, H.; Chee, P.W.; Wang, R.F. Resource-Efficient Cotton Network: A Lightweight Deep Learning Framework for Cotton Disease and Pest Classification. Plants 2025, 14, 2082. [Google Scholar] [CrossRef] [PubMed]
- Guan, A.; Zhou, S.; Gu, W.; Wu, Z.; Gao, M.; Liu, H.; Zhang, X.P. Dynamic Simulation and Parameter Calibration-Based Experimental Digital Twin Platform for Heat-Electric Coupled System. IEEE Trans. Sustain. Energy 2025. Early Access. [Google Scholar] [CrossRef]












| Dataset | Total Number of Samples | Sparse Fruit | Dense Fruit | Back Light |
|---|---|---|---|---|
| Training set | 5775 | 2002 | 2366 | 1407 |
| Validation set | 1650 | 572 | 376 | 402 |
| Test set | 825 | 286 | 338 | 201 |
| Total | 8250 | 2860 | 3380 | 2010 |
| Model | mAP@0.5 (%) | Precision (%) | Recall (%) | Parameters (MB) | FLOPs (G) | Inference Speed (ms) |
|---|---|---|---|---|---|---|
| Faster R-CNN | 86.8 | 89.2 | 84.5 | 137.8 | 207.3 | 156.3 |
| SSD | 84.3 | 87.1 | 81.8 | 26.285 | 62.15 | 45.7 |
| YOLOv5s | 88.1 | 91.3 | 85.7 | 7.225 | 16.5 | 28.4 |
| YOLOv8n | 92.0 | 95.14 | 90.6 | 3.157 | 8.858 | 22.3 |
| BMDNet-YOLO | 95.6 | 98.27 | 94.36 | 1.845 | 5.124 | 19.7 |
| Model | mAP@0.5 (%) | Precision (%) | Recall (%) | Parameters (MB) | FLOPs (G) |
|---|---|---|---|---|---|
| YOLOv8n | 92.0 | 95.14 | 90.6 | 3.157 | 8.858 |
| YOLOv8n-SE | 92.6 | 95.7 | 91.3 | 3.165 | 8.864 |
| YOLOv8n-CBAM | 93.1 | 96.2 | 91.8 | 3.172 | 8.873 |
| YOLOv8n-ECA | 92.8 | 95.9 | 91.5 | 3.161 | 8.862 |
| YOLOv8n-CA | 93.74 | 97.37 | 93.94 | 3.168 | 8.871 |
| Group | YOLOv8n | FasterPW | CA | Weighted Concat | HetConv | mAP@0.5 (%) | Precision (%) | Recall (%) | Params (MB) | FLOPs (G) |
|---|---|---|---|---|---|---|---|---|---|---|
| a | ✓ | – | – | – | – | 92.0 | 95.14 | 90.6 | 3.157 | 8.858 |
| b | ✓ | ✓ | – | – | – | 93.01 | 96.45 | 93.63 | 2.648 | 7.445 |
| c | ✓ | – | ✓ | – | – | 94.35 | 96.72 | 94.20 | 3.196 | 8.871 |
| d | ✓ | – | – | ✓ | – | 91.73 | 95.68 | 93.16 | 3.189 | 8.901 |
| e | ✓ | – | – | – | ✓ | 94.98 | 95.51 | 92.99 | 2.355 | 6.427 |
| f | ✓ | ✓ | ✓ | – | – | 95.22 | 97.48 | 93.96 | 2.687 | 7.458 |
| g | ✓ | ✓ | – | ✓ | – | 94.13 | 96.94 | 93.42 | 2.681 | 7.498 |
| h | ✓ | – | ✓ | ✓ | – | 94.63 | 97.45 | 93.93 | 3.228 | 8.924 |
| i | ✓ | ✓ | ✓ | ✓ | – | 95.37 | 97.74 | 94.12 | 2.720 | 7.511 |
| j | ✓ | ✓ | ✓ | ✓ | ✓ | 95.6 | 98.27 | 94.36 | 1.845 | 5.124 |
| Experimental Group | Model | mAP@0.5 (%) | Precision (%) | Recall (%) |
|---|---|---|---|---|
| No transfer learning | YOLOv8n | 91.3 | 93.8 | 89.6 |
| BMDNet-YOLO | 92.4 | 94.7 | 90.8 | |
| With transfer learning | YOLOv8n | 92.0 | 95.14 | 90.6 |
| BMDNet-YOLO | 95.6 | 98.27 | 94.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Wang, R.-F. BMDNet-YOLO: A Lightweight and Robust Model for High-Precision Real-Time Recognition of Blueberry Maturity. Horticulturae 2025, 11, 1202. https://doi.org/10.3390/horticulturae11101202
Sun H, Wang R-F. BMDNet-YOLO: A Lightweight and Robust Model for High-Precision Real-Time Recognition of Blueberry Maturity. Horticulturae. 2025; 11(10):1202. https://doi.org/10.3390/horticulturae11101202
Chicago/Turabian StyleSun, Huihui, and Rui-Feng Wang. 2025. "BMDNet-YOLO: A Lightweight and Robust Model for High-Precision Real-Time Recognition of Blueberry Maturity" Horticulturae 11, no. 10: 1202. https://doi.org/10.3390/horticulturae11101202
APA StyleSun, H., & Wang, R.-F. (2025). BMDNet-YOLO: A Lightweight and Robust Model for High-Precision Real-Time Recognition of Blueberry Maturity. Horticulturae, 11(10), 1202. https://doi.org/10.3390/horticulturae11101202

