Real-Time Nutrient Management in Hydroponic Controlled Environment Agriculture Systems Through Plant Sap Analysis
Abstract
1. Introduction
2. Principles of Plant Sap Analysis
2.1. Definition
Features | Traditional Nutrient Testing | Plant Sap Analysis | Reference |
---|---|---|---|
Time for Results | Hours to days | Real-time | [19] |
Sample Type | Dried leaves | Fresh plant sap | [24] |
Precision | Retrospective | Immediate | [15] |
Application | Post-harvest | Real-time crop monitoring | [14] |
Nutrient Availability | Limited and shows past nutrient levels | Immediate and reflects current plant uptake | [18] |
Technical expertise | Laboratory staff needed to perform sample digestion and operate autoanalyzer | Grower or technician must be trained to extract sap | [28] |
Equipment | Drying ovens, grinders, and digestion apparatus | Sap press or portable meters required | [28] |
Accuracy and precision | Standardized method with established sufficiency ranges | Expertise required because of variability | [28] |
Cost analysis | Lower due to established standards | Higher due to special equipment and processing | [28] |
Environmental sensitivity | Less sensitive to short-term changes | Highly sensitive to time of day, hydration, and temperature | [28] |
Application frequency | Often used at specific stages or annually | Suitable for frequent monitoring during key growth stages | [28] |
2.2. Historical Evolution and Contemporary Advancements
2.3. Comparison with Traditional Soil and Tissue Analysis Methods
3. Methods for Sap Extraction and Sampling Protocol
3.1. An Overview of Extraction Methodologies
3.2. Factors Affecting Sap Extraction Effectiveness
4. Improving Sampling Strategies for Sap Analysis
4.1. Considerations of Timing and Frequency
4.2. Selection of Suitable Parts and Number of Leaves
4.3. Selection of the Age of Tissue
4.4. Strategies to Mitigate Sample Contamination and Deterioration
5. Analytical Methods for Quantifying Nutrients with the Help of Sap Analysis
5.1. Laboratory Established Techniques
5.2. Rapid Test Technologies
5.3. Innovative Analytical Methodologies and Their Future Significance in CEA
6. Interpretation and Application of Sap Analysis Results
6.1. Defining and Implementation Nutrient Sufficiency Ranges (NSRs)
6.2. Crop-Specific Concerns for Different Crops
6.3. The Challenges for NSRs in CEA Environments
6.4. Data Analysis for Rapid Nutrient Management Decisions
7. Implementation of Sap Analysis in CEA
7.1. Real-Time Assessment of Plant Nutrient Concentrations
7.2. Rapid Identification of Nutritional Imbalance and Deficiencies
7.3. Precise Fertilizer Application to Enhance Crop Quality and Production
8. Variability, Limitations, Lack of Standard Protocol, Economic Factors and Cost-Efficiency, Knowledge Gap and Future Directions for Sap Analysis in CEA
8.1. Variability and Limitations of Sap Analysis in CEA
8.2. Lack of Standardized Protocols and Cost-Efficiency Concerns for Sap Analysis
8.3. Knowledge Gaps and Areas for More Research
8.4. Future Directions
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cowan, N.; Ferrier, L.; Spears, B.; Drewer, J.; Reay, D.; Skiba, U. CEA Systems: The means to achieve future food security and environmental sustainability? Front. Sustain. Food Syst. 2022, 6, 891256. [Google Scholar] [CrossRef]
- Li, L. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW): Systems at Breaking Point. 2021. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/ecb51a59-ac4d-407a-80de-c7d6c3e15fcc/content (accessed on 2 June 2025).
- Benton, T.G.; Bieg, C.; Harwatt, H.; Pudasaini, R.; Wellesley, L. Food System Impacts on Biodiversity Loss Three Levers for Food System Transformation in Support of Nature. 2021. Available online: https://reliefweb.int/report/world/food-system-impacts-biodiversity-loss-three-levers-food-system-transformation-support (accessed on 2 June 2025).
- Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala South Africa, R.; Barreiro, M.; Bock, L.; Malinina, E.; Ruiz, L.; Sallée, J.-B.; Santer, B.D.; et al. Human influence on the climate system. In Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 423–552. [Google Scholar] [CrossRef]
- Malone, T.C.; Newton, A. The globalization of cultural eutrophication in the coastal ocean: Causes and consequences. Front. Mar. Sci. 2020, 7, 670. [Google Scholar] [CrossRef]
- Wade, C.M.; Austin, K.G.; Cajka, J.; Lapidus, D.; Everett, K.H.; Galperin, D.; Maynard, R.; Sobel, A. What Is Threatening Forests in Protected Areas? A Global Assessment of Deforestation in Protected Areas, 2001–2018. Forests 2020, 11, 539. [Google Scholar] [CrossRef]
- Mitchell, C.A. Controlled environments in plant-science research and commercial agriculture. Int. J. Biotronics 2004, 33, 1–12. [Google Scholar]
- Gómez, C.; Currey, C.J.; Dickson, R.W.; Kim, H.-J.; Hernández, R.; Sabeh, N.C.; Raudales, R.E.; Brumfield, R.G.; Laury-Shaw, A.; Wilke, A.K. Controlled environment food production for urban agriculture. HortScience 2019, 54, 1448–1458. [Google Scholar] [CrossRef]
- Shamshiri, R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z.M. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Acquaviva. AGRICOOL—Les Fermiers de Demain. 2019. Available online: https://lepetitjournal.com/dubai/communaute/agricool-les-fermiers-de-demain-241312 (accessed on 13 June 2025).
- Bidaud, F. Les fermes maraıcheres verticales. Cent. D’etudes Prospect. Anal. 2019, 141, 1–4. [Google Scholar]
- Herridge. Veggie Plant Growth System Activated on International Space Station—NASA. 2014. Available online: https://www.nasa.gov/missions/station/veggie-plant-growth-system-activated-on-international-space-station/ (accessed on 2 June 2025).
- Asaduzzaman, M.; Niu, G.; Asao, T. Nutrients recycling in hydroponics: Opportunities and challenges toward sustainable crop production under controlled environment agriculture. Front. Plant Sci. 2022, 13, 845472. [Google Scholar] [CrossRef] [PubMed]
- Farneselli, M.; Tei, F.; Simonne, E. Reliability of petiole sap test for N nutritional status assessing in processing tomato. J. Plant Nutr. 2014, 37, 270–278. [Google Scholar] [CrossRef]
- Palmer, L.J.; Stangoulis, J.C.R. Changes in the elemental and metabolite profile of wheat phloem sap during grain filling indicate a dynamic between plant maturity and time of day. Metabolites 2018, 8, 53. [Google Scholar] [CrossRef]
- Cadahia Lopez, C. La Savia Como Índice de Fertilización; Ediciones Mundi-Prensa: Madrid, Spain, 2008. [Google Scholar]
- Esteves, E.; Locatelli, G.; Bou, N.A.; Ferrarezi, R.S. Sap analysis: A powerful tool for monitoring plant nutrition. Horticulturae 2021, 7, 426. [Google Scholar] [CrossRef]
- Llanderal, A.; García-Caparrós, P.; Segura, M.L.; Contreras, J.I.; Lao, M.T. Nutritional changes in petiole sap over space and time in a tomato crop greenhouse. J. Plant Nutr. 2019, 42, 1205–1217. [Google Scholar] [CrossRef]
- Hochmuth, G.J. Efficiency ranges for nitrate-nitrogen and potassium for vegetable petiole sap quick tests. HortTechnology 1994, 4, 218–222. [Google Scholar] [CrossRef]
- Datnoff, L.E.; Elmer, W.H.; Huber, D.M. Mineral Nutrition and Plant Disease; American Phytopathological Society: St. Paul, MN, USA, 2007. [Google Scholar]
- Garcia-Mina, J.M. Plant nutrition and defense mechanism: Frontier knowledge. In Advances in Citrus Nutrition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–12. [Google Scholar]
- Knaus, D. Leaf sap analysis for plant resilience. Comb. Proc. IPPS 2024, 74, 391–398. [Google Scholar]
- Treub, M. On the mineral composition of plant sap and its relation to growth. Ann. Bot. 1923, 37, 123–135. [Google Scholar]
- Jones, J.B.; Wolf, B.; Mills, H.A. Plant Analysis Handbook; Micro-Macro Publishing: Athens, GA, USA, 1991; pp. 1107–1120. [Google Scholar]
- Studstill, D.W.; Simonne, E.H.; Hutchinson, C.M.; Hochmuth, R.C.; Dukes, M.D.; Davis, W.E. Petiole sap testing sampling procedures for monitoring pumpkin nutritional status. Commun. Soil Sci. Plant Anal. 2003, 34, 2355–2362. [Google Scholar] [CrossRef]
- Hartz, T.K. The assessment of soil and crop nutrient status in the development of efficient fertilizer recommendations. Acta Hortic. 2002, 627, 231–240. [Google Scholar] [CrossRef]
- Mills, H.A. Plant Analysis Handbook II: A Practical Sampling Preparation, Analysis and Interpretation Guide; Micro-Macro Publishing: Athens, GA, USA, 1996. [Google Scholar]
- Guy, S. Evaluating Sap Analysis: A new Tool for Nutrient Management? 2024. Available online: https://cropaia.com/blog/sap-analysis/ (accessed on 15 July 2025).
- Gilbert, B.E.; Hardin, J.L. The current mineral nutrient content of the plant solution as a possible means of chemical control of optimum fertilization. J. Agric. Res. 1927, 35, 185–192. [Google Scholar]
- Arnon, D.I. Effect of ammonium and nitrate nitrogen on the mineral composition and sap characteristics of barley. Soil Sci. 1939, 48, 295–308. [Google Scholar] [CrossRef]
- Pettinger, N.A. The expressed sap of corn plants as an indicator of nutrient needs. J. Agric. Res. 1932, 43, 95–119. [Google Scholar]
- Carolus, R.L. Experiences with rapid chemical tests for the determination of nutrient deficiencies in vegetable crops. Proc. Amer. Soc. Hort. Sci. 1935, 33, 579–583. [Google Scholar]
- Bray, R.H. Nitrates tests for soils and plant tissues. Soil Sci. 1945, 60, 219–221. [Google Scholar] [CrossRef]
- Hernando, V.; Cadahía, C. Diagnosis of the evolution of mineral nutrition in plants using sap analysis. In Proceedings of the 7th International Colloquium on Plant Analysis and Fertilizer Problems, Hannover, Germany, 2–6 September 1974. [Google Scholar]
- Hochmuth, R.C.; Simonne, E.H.; Davis, L.L.; Laughlin, W.L. Plant part selection and preliminary sufficiency ranges for sap testing interpretation of greenhouse herbs: HS1123/HS372, 11/2007. EDIS 2008, 2008. [Google Scholar] [CrossRef]
- Hochmuth, G.; Hochmuth, R. Plant petiole sap-testing for vegetable crops: CV004/CIR1144, Rev. 5/2022. EDIS 2022, 2022. [Google Scholar] [CrossRef]
- Hochmuth, G.; Maynard, D.; Vavrina, C.; Hanlon, E.; Simonne, E. Plant tissue analysis and interpretation for vegetable crops in Florida. Fla. Coop. Ext. Serv. Spec. Ser. SS-VEC-42 1991. [Google Scholar] [CrossRef]
- Locascio, S.J.; Hochmuth, G.J.; Rhoads, F.M.; Olson, S.M.; Smajstrla, A.G.; Hanlon, E.A. Nitrogen and potassium application scheduling effects on drip-irrigated tomato yield and leaf tissue analysis. HortScience 1997, 32, 230–235. [Google Scholar] [CrossRef]
- Carson, L.; Ozores-Hampton, M.; Morgan, K. Correlation of petiole sap nitrate-nitrogen concentration measured by ion selective electrode, leaf tissue nitrogen concentration, and tomato yield in Florida. J. Plant Nutr. 2016, 39, 1809–1819. [Google Scholar] [CrossRef]
- Shamshiri, R.; Che Man, H.; Zakaria, A.; Beveren, P.V.; Wan Ismail, W.; Ahmad, D. Digital growth response maps for assessment of cooling requirement in greenhouse production of tomato. In Proceedings of the III International Conference on Agricultural and Food Engineering 1152, Kuala Lumpur, Malaysia, 23–25 August 2016; pp. 117–124. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology; Sinauer Associates Publishers: Sunderland, MA, USA, 1998. [Google Scholar]
- Nagarajah, S. A petiole sap test for nitrate and potassium in Sultana grapevines. Aust. J. Grape Wine Res. 1999, 5, 56–60. [Google Scholar] [CrossRef]
- Gangaiah, C.; Ahmad, A.A.; Nguyen, H.V.; Radovich, T.J.K. A correlation of rapid cardy meter sap test and ICP spectrometry of dry tissue for measuring potassium (K+) Concentrations in Pak Choi (Brassica rapa Chinensis Group). Commun. Soil Sci. Plant Anal. 2016, 47, 2046–2052. [Google Scholar] [CrossRef]
- Rodríguez, A.; Peña-Fleitas, M.T.; Padilla, F.M.; Gallardo, M.; Thompson, R.B. Petiole sap nitrate concentration to assess crop nitrogen status of greenhouse sweet pepper. Sci. Hortic. 2021, 285, 110157. [Google Scholar] [CrossRef]
- Ikeda, H. Development of new nutrition diagnosis methods for horticultural crops. Res. Rep. Natl. Sci. Res. Found. 1992, 1994. [Google Scholar]
- Leyva-Ruelas, G.; Sánchez-García, P.; Alcántar-González, G.; Valenzuela-Ureta, J.G.; Gavi-Reyes, F.; Martínez-Garza, Á. Contenido de nitratos en extractos celulares de pecíolos y frutos de tomate. Rev. Fitotec. Mex. 2005, 28, 145. [Google Scholar] [CrossRef]
- Tei, F.; Benincasa, P.; Guiducci, M. Critical nitrogen concentration in processing tomato. Eur. J. Agron. 2002, 18, 45–55. [Google Scholar] [CrossRef]
- Farneselli, M.; Simonne, E.H.; Studstill, D.W.; Tei, F. Washing and/or cutting petioles reduces nitrate nitrogen and potassium sap concentrations in vegetables. J. Plant Nutr. 2006, 29, 1975–1982. [Google Scholar] [CrossRef]
- Fontes, P.C.R.; Ronchi, C.P. Critical values of nitrogen indices in tomato plants grown in soil and nutrient solution determined by different statistical procedures. Pesqui. Agropecu. Bras. 2002, 37, 1421–1429. [Google Scholar] [CrossRef]
- Olsen, J.K.; Lyons, D.J. Petiole sap nitrate is better than total nitrogen in dried leaf for indicating nitrogen status and yield responsiveness of capsicum in subtropical Australia. Aust. J. Exp. Agric. 1994, 34, 835–843. [Google Scholar] [CrossRef]
- Cadahía López, C. Fertirrigación. Cultivos Hortícolas, Frutales y Ornamentales: Cultivos Hortícolas, Frutales y Ornamentales; Ediciones Mundi-Prensa: Madrid, Spain, 2005. [Google Scholar]
- Ostapowicz, J.; Maćkowiak, B.; Ostrowska, K.; Kaczmarek, B.; Pietras, N.; Frąckowiak, D.; Fundowicz, M.; Golusiński, W.; Suchorska, W. Comparison of Tumour Tissue Homogenisation Methods: Mortar and Pestle Versus Ball Mill. 2023. Available online: https://ouci.dntb.gov.ua/en/works/7WbvMYO9/ (accessed on 11 July 2025).
- González-Acuña, I.J.; Llanos-Perales, A.; Hurtado-García, B.; Lang-Ovalle, F.P. Extracting potassium from mango leaves. In Proceedings of the VIII International Mango Symposium, Sun City, South Africa, 5–10 February 2006; pp. 381–386. [Google Scholar]
- Dorich, R.A.; Nelson, D.W. Evaluation of manual cadmium reduction methods for the determination of nitrate in potassium chloride extracts of soils. Soil Sci. Soc. Am. J. 1984, 48, 72–75. [Google Scholar] [CrossRef]
- Souza, T.R.d.; Bôas, R.L.V.; Quaggio, J.A.; Salomão, L.C. Nutrientes na seiva de plantas cítricas fertirrigadas. Rev. Bras. Frutic. 2012, 34, 482–492. [Google Scholar] [CrossRef]
- Havlin, J.L.; Soltanpour, P.N. A nitric acid plant tissue digest method for use with inductively coupled plasma spectrometry. Commun. Soil Sci. Plant Anal. 1980, 11, 969–980. [Google Scholar] [CrossRef]
- Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B.; Farneselli, M.; Padilla, F.M. Assessing crop N status of fertigated vegetable crops using plant and soil monitoring techniques. Ann. Appl. Biol. 2015, 167, 387–405. [Google Scholar] [CrossRef]
- Bélec, C.; Villeneuve, S.; Coulombe, J.; Tremblay, N. Influence of nitrogen fertilization on yield, hollow stem incidence and sap nitrate concentration in broccoli. Can. J. Plant Sci. 2001, 81, 765–772. [Google Scholar] [CrossRef]
- Joris, H.A.W.; Souza, T.R.; Montezano, Z.F.; Vargas, V.P.; Cantarella, H. Evaluating nitrogen behavior in sugarcane after fertilization using leaf and sap extract analyzes. Am. J. Plant Sci. 2014, 5, 2655–2664. [Google Scholar] [CrossRef]
- Oliveira, M.N.S.; Oliva, M.A.; Martínez, C.A.; Silva, M.A.P. Variação diurna e sazonal do pH e composição mineral da seiva do xilema em tomateiro. Hortic. Bras. 2003, 21, 10–14. [Google Scholar] [CrossRef]
- Vitosh, M.L.; Silva, G.H. Factors affecting potato petiole sap nitrate tests. Commun. Soil Sci. Plant Anal. 1996, 27, 1137–1152. [Google Scholar] [CrossRef]
- Opstad, N. Mineral concentrations in leaf dry matter and leaf and petiole sap in strawberry depend on leaf age and plant developmental stage. In Proceedings of the VI International Symposium on Mineral Nutrition of Fruit Crops, Faro, Portugal, 19–21 May 2008; pp. 143–148. [Google Scholar]
- Timmermans, J. NCC Plant Sap Analysis by J. Timmermans Final [Compatibiliteitsmodus]. 2012. Available online: https://www.novacropcontrol.nl/images/downloads/en/plantsapanalysisbyjtimmermansacresusa.pdf (accessed on 5 July 2025).
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers; Pearson Education India: Chennai, India, 2016. [Google Scholar]
- Campbell, C.R. Reference Sufficiency Ranges for Plant Analysis in the Southern Region of the United States; Southern Region Agricultural Experiment Station: Raleigh, NC, USA, 2000. [Google Scholar]
- Hansen, T.H.; de Bang, T.C.; Laursen, K.H.; Pedas, P.; Husted, S.; Schjoerring, J.K. Multielement plant tissue analysis using ICP Spectrometry. In Plant Mineral Nutrients: Methods and Protocols; Maathuis, F.J.M., Ed.; Humana Press: Totowa, NJ, USA, 2013; pp. 121–141. [Google Scholar]
- Almeida, P.d.C.; Oliveira, C.; Mota, M.; Ribeiro, H. Rapid sap nutrient analysis methods in Malus domestica Borkh cv.‘Gala’. Commun. Soil Sci. Plant Anal. 2020, 51, 1693–1706. [Google Scholar] [CrossRef]
- Peña-Fleitas, M.T.; Gallardo, M.; Padilla, F.M.; Rodríguez, A.; Thompson, R.B. Use of a portable rapid analysis system to measure nitrate concentration of nutrient and soil solution, and plant sap in greenhouse vegetable production. Agronomy 2021, 11, 819. [Google Scholar] [CrossRef]
- Wang, Q.; Molinero-Fernández, Á.; Acosta-Motos, J.-R.; Crespo, G.A.; Cuartero, M. Unveiling potassium and sodium ion dynamics in living plants with an In-Planta potentiometric microneedle sensor. ACS Sens. 2024, 9, 5214–5223. [Google Scholar] [CrossRef]
- Touloupakis, E.; Calegari Moia, I.; Zampieri, R.M.; Cocozza, C.; Frassinelli, N.; Marchi, E.; Foderi, C.; Di Lorenzo, T.; Rezaie, N.; Muzzini, V.G. Fire up biosensor technology to assess the vitality of trees after wildfires. Biosensors 2024, 14, 373. [Google Scholar] [CrossRef]
- Wang, Q.; Molinero-Fernandez, Á.; Acosta Motos, J.R.; Crespo, G.A.; Cuartero, M. Microneedle sensors for ion monitoring in plants: One step closer to smart agriculture. ACS Sens. 2025, 10, 4771–4784. [Google Scholar] [CrossRef]
- Bukhamsin, A.; Lahcen, A.A.; De Oliveira Filho, J.; Shetty, S.; Blilou, I.; Kosel, J.; Salama, K.N. Minimally-invasive, real-time, non-destructive, species-independent phytohormone biosensor for precision farming. Biosens. Bioelectron. 2022, 214, 114515. [Google Scholar] [CrossRef]
- Chen, Y.-N.; Cartwright, H.N.; Ho, C.-H. In vivo visualization of nitrate dynamics using a genetically encoded fluorescent biosensor. Sci. Adv. 2022, 8, eabq4915. [Google Scholar] [CrossRef]
- Ghaffari, R.; Choi, J.; Raj, M.S.; Chen, S.; Lee, S.P.; Reeder, J.T.; Aranyosi, A.J.; Leech, A.; Li, W.; Schon, S. Soft wearable systems for colorimetric and electrochemical analysis of biofluids. Adv. Funct. Mater. 2020, 30, 1907269. [Google Scholar] [CrossRef]
- Jo, S.; Sung, D.; Kim, S.; Koo, J. A review of wearable biosensors for sweat analysis. Biomed. Eng. Lett. 2021, 11, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Topraq, Y. Plant sap analysis. New Generation Plant Analysis. 2024. Available online: https://www.topraq.ai/en/yapraq-plant-sap-analysis/ (accessed on 28 June 2025).
- Ali, A.M. Nutrient sufficiency ranges in mango using boundary-line approach and compositional nutrient diagnosis norms in El-Salhiya, Egypt. Commun. Soil Sci. Plant Anal. 2018, 49, 188–201. [Google Scholar] [CrossRef]
- Llanderal, A.; García-Caparrós, P.; Lao, M.T.; Segura, M.L. DRIS norms and sufficiency ranges for pepper grown under greenhouse conditions in the Southeast of Spain. Agronomy 2021, 11, 837. [Google Scholar] [CrossRef]
- Llanderal, A.; Lao, M.T.; Contreras, J.I.; Segura, M.L. Diagnosis and recommendation integrated system norms and sufficiency ranges for tomato greenhouse in Mediterranean climate. HortScience 2018, 53, 479–482. [Google Scholar] [CrossRef]
- Goffart, J.P.; Olivier, M.; Frankinet, M. Potato crop nitrogen status assessment to improve N fertilization management and efficiency: Past–present–future. Potato Res. 2008, 51, 355–383. [Google Scholar] [CrossRef]
- Parks, S.E.; Irving, D.E.; Milham, P.J. A critical evaluation of on-farm rapid tests for measuring nitrate in leafy vegetables. Sci. Hortic. 2012, 134, 1–6. [Google Scholar] [CrossRef]
- Mattson, N.S.; Peters, C. A recipe for hydroponic success. Inside Grow. 2014, 2014, 16–19. [Google Scholar]
- Hart, J.; Strik, B.; Rempel, H. Caneberries: Nutrient management guide. Ore. State Univ. Ext. Serv. EM8903-E Corvallis OR 2006, 2006. Available online: https://wpcdn.web.wsu.edu/wp-extension/uploads/sites/2056/2023/05/Cranberries-Nurtient-Management-Guide.pdf (accessed on 3 July 2025).
- Saure, M.C. Blossom-end rot of tomato (Lycopersicon esculentum Mill.)—A calcium-or a stress-related disorder? Sci. Hortic. 2001, 90, 193–208. [Google Scholar] [CrossRef]
- Lu, Q.; Miles, C.; Tao, H.; DeVetter, L. Evaluation of real-time nutrient analysis of fertilized raspberry using petiole sap. Front. Plant Sci. 2022, 13, 918021. [Google Scholar] [CrossRef]
Crops | Indicator Leaf and Leaves/Sample | Sampling Frequency | Sample Preparation |
---|---|---|---|
Cucumber | Most recent mature leaf (3rd–4th from the growing point), and recommended 8–10 leaves | Begin ≥2 weeks before flowering; sample weekly or at symptom onset | Place in paper bags; avoid plastic to reduce condensation; ship within 24 h |
Lettuce | Recently matured, fully expanded leaf (3rd–4th from the growing point), and recommended 8–10 leaves | Routine monitoring every two weeks; collect immediately if symptoms appear | Collect mid-morning; store in paper envelopes; ship same day if possible |
Spinach | Fully expanded, recently matured leaf (3rd–4th from growing point), and recommended 8–10 leaves | Every two weeks; anytime for problem diagnosis | Shipped to the laboratory in paper containers |
Tomato | Most recent mature or fully expanded leaf (3rd–4th from growing point), and recommended 8–10 leaves | Begin ≥2 weeks prior to flowering; sample weekly or when issues arise | Remove midribs before placing in paper bags for shipment |
Crop | Developmental Stage | NO3−-N (mg L−1) | K+ (mg L−1) |
---|---|---|---|
Cucumber | First fully expanded stage | 800–1000 | * |
When Fruits ~7.5 cm | 600–800 | * | |
First final harvest | 400–600 | * | |
Eggplant | First fruit around 5 cm long | 1200–1600 | 4500–5000 |
First harvest | 1000–1200 | 4000–5000 | |
Mid-harvest | 800–1000 | 3500–4000 | |
Pepper | First flower buds | 1400–1600 | 3200–3500 |
First open flowers | 1400–1600 | 3000–3200 | |
Fruits half-grown | 1200–1400 | 3000–3200 | |
First harvest | 800–1000 | 2400–3000 | |
Second harvest | 500–800 | 2000–2400 | |
Strawberry | November | 800–900 | 3000–3500 |
December | 600–800 | 3000–3500 | |
January | 600–800 | 2500–3000 | |
February | 300–500 | 2000–2500 | |
March | 200–500 | 1800–2500 | |
April | 200–500 | 1500–2000 | |
Tomato (Greenhouse) | Transplant—2nd cluster | 1000–1200 | 4500–5000 |
2nd–5th clusters | 800–1000 | 4000–5000 | |
Harvest season (December-June) | 700–900 | 3500–4000 |
Challenges | Cause | Possible Solution | References |
---|---|---|---|
Variability in sap composition | Environmental fluctuations | Standardized sampling protocols | [60] |
Lack of standard method | Different labs use different methods | Proper standard method | [17] |
Economic barriers | High setup cost | Low-cost rapid test | [28] |
Technological limitations | Instrument contamination | Careful handling | [61] |
Complexity of real-time data interpretation | Large datasets | AI-powered data analysis tools | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauf, H.; Ferrarezi, R.S. Real-Time Nutrient Management in Hydroponic Controlled Environment Agriculture Systems Through Plant Sap Analysis. Horticulturae 2025, 11, 1174. https://doi.org/10.3390/horticulturae11101174
Rauf H, Ferrarezi RS. Real-Time Nutrient Management in Hydroponic Controlled Environment Agriculture Systems Through Plant Sap Analysis. Horticulturae. 2025; 11(10):1174. https://doi.org/10.3390/horticulturae11101174
Chicago/Turabian StyleRauf, Husnain, and Rhuanito Soranz Ferrarezi. 2025. "Real-Time Nutrient Management in Hydroponic Controlled Environment Agriculture Systems Through Plant Sap Analysis" Horticulturae 11, no. 10: 1174. https://doi.org/10.3390/horticulturae11101174
APA StyleRauf, H., & Ferrarezi, R. S. (2025). Real-Time Nutrient Management in Hydroponic Controlled Environment Agriculture Systems Through Plant Sap Analysis. Horticulturae, 11(10), 1174. https://doi.org/10.3390/horticulturae11101174