Moderate Deficit Irrigation and Reduced Nitrogen Application Maintain Tuber Quality and Improve Nitrogen Use Efficiency of Potato (Solanum tuberosum L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Field Layout
2.3. Data Collection
2.3.1. Irrigation Water Measurement
2.3.2. Tuber External and Internal Defects
2.3.3. Tuber-Specific Gravity
2.3.4. Starch Content (SC) and Tuber Dry Matter (TDM) Measurement
2.3.5. Water Use Efficiency (WUE) and Nitrogen Use Efficiency (NUE)
2.4. Statistical Analysis
3. Results
3.1. Precipitation
3.2. Tuber Internal and External Defects
3.3. Quality Traits
3.3.1. Canela Russet
3.3.2. Mesa Russet
3.3.3. Russet Norkotah 3
3.3.4. Yukon Gold
3.4. Resource Use Efficiencies
3.4.1. Canela Russet
3.4.2. Mesa Russet
3.4.3. Russet Norkotah 3
3.4.4. Yukon Gold
3.5. Correlation Coefficients
3.5.1. The Correlation Between Yield and Quality Traits
3.5.2. The Correlation Between Yield and Resource Use Efficiencies
4. Discussion
4.1. Tuber Internal and External Defects
4.2. Quality Traits
4.3. Relationship Between Yield and Quality Traits
4.4. Agronomic Water and Nitrogen Use Efficiency
4.5. Correlation Between Yield and Resource Use Efficiencies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naeem, M.; Maqbool, A.; Aksoy, E. Potato taxonomy and wild relatives. In Potato Production Worldwide; Wronski, W.G., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 19–55. [Google Scholar]
- Ati, A.S.; Iyada, A.D.; Najim, S.M. Water use efficiency of potato (Solanum tuberosum L.) under different irrigation methods and potassium fertilizer rates. Ann. Agric. Sci. 2012, 57, 99–103. [Google Scholar] [CrossRef]
- Muleta, H.D.; Aga, M.C. Role of nitrogen in potato production: A review. J. Plant Sci. 2019, 7, 36–42. [Google Scholar]
- Ye, J.Y.; Tian, W.H.; Jin, C.W. Nitrogen in plants: From nutrition to the modulation of abiotic stress adaptation. Stress Biol. 2022, 2, 4. [Google Scholar] [CrossRef]
- Akkamis, M.; Çalişkan, S. A review on the effects of irrigation and nitrogen fertilization regimes on potato yield. Eurasian J. Sci. Eng. Technol. 2021, 2, 54–61. [Google Scholar]
- Lewis, S. Declines in Upper Rio Grande River Basin Have San Luis Valley Water Users Worried and Taking Action. Colorado Public Radio. Available online: https://www.cpr.org/2022/03/08/upper-rio-grande-river-basin-decline-san-luis-valley-water-users-taking-action-state-of-the-basin-symposium/ (accessed on 11 August 2025).
- Barka, A.M.H.; Essah, S.Y.C.; Davis, J.G. Deficit irrigation and nitrogen application rate influence growth and yield of four potato cultivars (Solanum tuberosum L.). Horticulturae 2025, 11, 849. [Google Scholar] [CrossRef]
- Zitter, T.A.; Loria, R. Detection of Potato Tuber Diseases and Defects. Extension Bulletin, Cornell University. Available online: https://www.vegetables.cornell.edu/pest-management/disease-factsheets/detection-of-potato-tuber-diseases-defects/ (accessed on 11 June 2025).
- Al Riza, D.F.; Widodo, S.; Yamamoto, K.; Ninomiya, K.; Suzuki, T.; Ogawa, Y.; Kondo, N. External defects and severity level evaluation of potato using single and multispectral imaging in the near infrared region. Inf. Process. Agric. 2024, 11, 80–90. [Google Scholar] [CrossRef]
- Nxumalo, K.A.; Masarirambi, M.T.; Muziri, T.; Masarirambi, T. Common physiological disorders of white/Irish potato (Solanum tuberosum) tubers produced in Swaziland: A review. J. Agron. Agric. Sci. 2017, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zotarelli, L.; Hutchinson, C.; Byrd, S.; Gergela, D.; Rowland, D.L. Potato physiological disorders—Growth cracks. Electron. Data Inf. Source EDIS 2018, 5. Available online: https://edis.ifas.ufl.edu/publication/HS182 (accessed on 10 August 2025). [CrossRef]
- University of Massachusetts Amherst. Vegetable Notes. UMass Extension, 31 August 2023. Available online: https://ag.umass.edu/vegetable (accessed on 15 June 2025).
- Dean, B.B.; Thornton, R.E. The specific gravity of potatoes. In Extension Bulletin 1541; Washington State University, Cooperative Extension: Pullman, WA, USA, 1992; Available online: www.nwpotatoresearch.com/images/documents/theSpecificGravityofPotatoes.pdf (accessed on 1 October 2016).
- Akkamis, M.; Çalişkan, S. Responses of yield, quality, and water use efficiency of potato grown under different drip irrigation and nitrogen levels. Sci. Rep. 2023, 13, 9911. [Google Scholar] [CrossRef]
- Sharif, M.; Akram, A.; Khan, K.U.; Waseem, M. Response of potato to different nitrogen levels. Int. J. Agric. Biol. 2005, 7, 535–538. [Google Scholar]
- Badr, M.A.; El-Tohamy, W.A.; Zaghloul, A.M. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- Essah, S.Y.; Andales, A.A.; Bauder, T.A.; Holm, D.G. Response of two Colorado russet potato cultivars to reduced irrigation water use. Am. J. Potato Res. 2020, 97, 221–233. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Allen, R.G. History and evaluation of Hargreaves evapotranspiration equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Colorado State University Colorado Climate Center CoAgMET. Available online: https://coagmet.colostate.edu/ (accessed on 2 April 2025).
- Essah, S.Y.C.; Davis, J.G. Fertilizing Potatoes in Colorado; Colorado State University Extension: Fort Collins, CO, USA, 2019; Available online: https://erams.com/agnutrient/wp-content/uploads/2017/04/00541.pdf (accessed on 15 March 2016).
- Kleinkopf, G.E.; Westermann, D.T.; Wille, M.J.; Kleinschmidt, G.D. Specific gravity of Russet Burbank potatoes. Am. Potato J. 1987, 64, 579–587. [Google Scholar] [CrossRef]
- Hassel, R.L.; Kelly, D.M.; Wittmeyer, E.C.; Wallace, C.; Grassbaugh, E.M.; Elliott, J.Y.; Wenneker, G.L. Ohio Potato Cultivar Trials; Ohio State University: Columbus, OH, USA, 1997; Horticulture Series No. 666. [Google Scholar]
- Reddy, T.Y.; Reddi, G.H. Irrigation water management. In Principles of Agronomy; Kalyani Publishers: Ludhiana, India, 2002; pp. 257–334. [Google Scholar]
- Mulders, P.J.; van den Heuvel, E.R.; van de Molengraft, M.J.G.; Heemels, W.P.M.H.; Reidsma, P. Extreme drought and rainfall had a large impact on potato production in the Netherlands between 2015 and 2020. Commun. Earth Environ. 2024, 5, 496. [Google Scholar] [CrossRef]
- Brown, C.R. Antioxidants in potato. Am. J. Potato Res. 2005, 82, 163–172. [Google Scholar] [CrossRef]
- Haque, M.N.; Ali, M.H.; Roy, T.S. Specific gravity, dry matter and starch concentration of different potato cultivars as affected by arsenic contamination. Potato Res. 2018, 61, 51–64. [Google Scholar] [CrossRef]
- Cappaert, M.R.; Powelson, M.L.; Christensen, N.W.; Stevenson, W.R.; Rouse, D.I. Assessment of irrigation as a method of managing potato early dying. Phytopathology 1994, 84, 792–800. [Google Scholar] [CrossRef]
- Shock, C.C.; Feibert, E.B.G.; Saunders, L.D. Potato yield and quality response to deficit irrigation. HortScience 1998, 33, 655–659. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Koudahe, K.; Allen, S. Irrigation management in potato (Solanum tuberosum L.) production: A review. Sustainability 2021, 13, 1504. [Google Scholar] [CrossRef]
- Aytekin, R.İ.; Çalışkan, S. Irrigation and potassium fertilization effects on plant growth, tuber yield, quality, and water use efficiency of potato. Irrig. Sci. 2024, 42, 367–385. [Google Scholar] [CrossRef]
- Yuan, B.Z.; Nishiyama, S.; Kang, Y. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric. Water Manag. 2003, 63, 153–167. [Google Scholar] [CrossRef]
- Shock, C.C.; Wang, F.X.; Flock, R.; Eldredge, L.; Pereira, A. Successful Potato Irrigation Scheduling; Oregon State University Extension: Corvallis, OR, USA, 2013; Available online: https://agsci.oregonstate.edu/sites/agscid7/files/malheur/attachments/em8911-PotatoIrrigationScheduling.pdf (accessed on 12 February 2016).
- Steyn, J.M.; Du Plessis, H.F.; Fourie, P.; Hammes, P.S. Yield response of potato genotypes to different soil water regimes in contrasting seasons of a subtropical climate. Potato Res. 1998, 41, 239–254. [Google Scholar] [CrossRef]
- Desai, N.C.; Jaimini, S.N. Correlation and path analysis of some economic characters in potato. J. Indian Potato Assoc. 1998, 25, 25–29. [Google Scholar]
- Dalla Costa, L.; Delle Vedove, G.; Gianquinto, G.; Giovanardi, R.; Peressotti, A. Yield, water use efficiency and nitrogen uptake in potato: Influence of drought stress. Potato Res. 1997, 40, 19–34. [Google Scholar] [CrossRef]
- Levy, D.; Coleman, W.K.; Veilleux, R.E. Adaptation of potato to water shortage: Irrigation management and enhancement of tolerance to drought and salinity. Am. J. Potato Res. 2013, 90, 186–206. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; Xue, D.; Zhang, W.; Li, F.; Teng, A.; Ba, Y. Dry matter accumulation, water productivity and quality of potato in response to regulated deficit irrigation in a desert oasis region. Plants 2024, 13, 1927. [Google Scholar] [CrossRef]
- Cantore, V.; Wassar, F.; Yamac, S.S.; Sellami, M.H.; Albrizio, R.; Stellacci, A.M.; Todorovic, M. Yield and water use efficiency of early potato grown under different irrigation regimes. Int. J. Plant Prod. 2014, 8, 409–428. [Google Scholar]
- Carli, C.; Yuldashev, F.; Khalikov, D.; Condori, B.; Mares, V.; Monneveux, P. Effect of different irrigation regimes on yield, water use efficiency and quality of potato (Solanum tuberosum L.) in the lowlands of Tashkent, Uzbekistan: A field and modeling perspective. Field Crops Res. 2014, 163, 90–99. [Google Scholar] [CrossRef]
- Li, F.Q.; Deng, H.L.; Wang, Y.C.; Li, X.; Chen, X.T.; Liu, L.T.; Zhang, H.J. Potato growth, photosynthesis, yield, and quality response to regulated deficit drip irrigation under film mulching in a cold and arid environment. Sci. Rep. 2021, 11, 16. [Google Scholar] [CrossRef]
- Hassanpanah, D. Evaluation of potato cultivars for resistance against water deficit stress under in vivo conditions. Potato Res. 2010, 53, 383–395. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, F.; Wu, L.; Fan, J.; Zhang, Y.; Li, J. Determination of optimal amount of irrigation and fertilizer under drip fertigated system based on tomato yield, quality, water and fertilizer use efficiency. Trans. Chin. Soc. Agric. Eng. 2015, 31, 110–121. [Google Scholar]
- Ju, Z.; Li, D.; Cui, Y.; Sun, D. Optimizing the water and nitrogen management scheme to enhance potato yield and water–nitrogen use efficiency. Agronomy 2024, 14, 1651. [Google Scholar] [CrossRef]
- Stefaniak, T.R.; Fitzcollins, S.; Figueroa, R.; Thompson, A.L.; Carley, C.S.; Shannon, L.M. Genotype and variable nitrogen effects on tuber yield and quality for red fresh market potatoes in Minnesota. Agronomy 2021, 11, 255. [Google Scholar] [CrossRef]
- Fontes, P.C.R.; Braun, H.; Busato, C.; Cecon, P.R. Economic optimum nitrogen fertilization rates and nitrogen fertilization rate effects on tuber characteristics of potato cultivars. Potato Res. 2010, 53, 167–179. [Google Scholar] [CrossRef]
- Makani, M.N.; Sargent, S.A.; Zotarelli, L.; Huber, D.J.; Sims, C. Harvest interval has greater effect on periderm maturity and storage quality of early-maturing, tablestock potato than nitrogen rate. HortScience 2017, 52, 1390–1395. [Google Scholar] [CrossRef]
- Darwish, T.M.; Atallah, T.W.; Hajhasan, S.; Haidar, A. Nitrogen and water use efficiency of fertigated processing potato. Agric. Water Manag. 2006, 85, 95–104. [Google Scholar] [CrossRef]
- Badr, M.A.; Ali, E.; Salman, S.R. Effect of nitrogen application and fertigation scheduling on potato yield performance under drip irrigation system. Gesunde Pflanz. 2023, 75, 2909–2918. [Google Scholar] [CrossRef]
- Tolessa, E.S. A review on water and nitrogen use efficiency of potato (Solanum tuberosum L.) in relation to its yield and yield components. Arch. Agric. Environ. Sci. 2019, 4, 119–132. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, K.; Khan, K.S.; Fudjoe, S.K.; Li, L.; Wang, L.; Luo, Z. Deficit irrigation as an effective way to increase potato water use efficiency in Northern China: A meta-analysis. Agronomy 2024, 14, 1533. [Google Scholar] [CrossRef]
- Essah, S.Y.C.; Delgado, J.A. Nitrogen Management for Maximum Potato Yield, Tuber Quality, and Environmental Conservation. In Proceedings of the Appropriate Technologies for Environmental Protection in the Developing World, Ghana, Africa, 17–19 July 2007; pp. 307–315. [Google Scholar]
Year | pH | Soluble Salts | Organic Matter | Nitrate–N | Available P (Mehlich-3) | Exchangeable K (NH4OAc) |
---|---|---|---|---|---|---|
dS m−1 | % | mg kg−1 | ||||
2016 | 8.1 | 0.23 | 1.2 | 5.5 | 98 | 367 |
2017 | 8.0 | 0.31 | 1.5 | 6.0 | 98 | 451 |
Cultivar and Year | Irrigation Treatment | ||
---|---|---|---|
IRRG1 | IRRG2 | IRRG3 | |
Canela Russet | |||
2016 | 67% (36 cm) | 84% (46 cm) | 100% (54 cm) |
2017 | 55% (31 cm) | 82% (46 cm) | 100% (56 cm) |
Mesa Russet | |||
2016 | 75% (37 cm) | 94% (46 cm) | 100% (49 cm) |
2017 | 66% (33 cm) | 90% (45 cm) | 100% (50 cm) |
Russet Norkotah3 | |||
2016 | 67% (36 cm) | 84% (45 cm) | 100% (54 cm) |
2017 | 61% (34 cm) | 77% (43 cm) | 100% (56 cm) |
Yukon Gold | |||
2016 | 69% (36 cm) | 85% (44 cm) | 100% (52 cm) |
2017 | 61% (28 cm) | 83% (38 cm) | 100% (46 cm) |
Treatment | Low Nitrogen Application (N1) | Recommended Nitrogen Application (N2) |
---|---|---|
--------------------kg N ha−1-------------------- | ||
Pre-plant | 75 | 75 |
In season | 56 (split application 22-22-12) | 90 (split application 34-34-22) |
Total N Applied | 131 | 165 |
Years | |||||||
---|---|---|---|---|---|---|---|
2016 | 2017 | ||||||
Treatments | SG | SC | TDM | SG | SC | TDM | |
Water | ----------%---------- | ----------%---------- | |||||
IRRG3 | 1.093 ab (0.001) | 16.30 ab (0.17) | 23.45 ab (0.19) | 1.097 a (0.001) | 17.14 a (0.15) | 24.37 a (0.22) | |
IRRG2 | 1.096 a (0.001) | 16.97 a (0.26) | 24.19 a (0.29) | 1.099 a (0.001) | 17.48 a (0.18) | 24.75 a (0.16) | |
IRRG1 | 1.089 b (0.001) | 15.82 b (0.28) | 22.93 b (0.31) | 1.098 a (0.001) | 17.32 a (0.33) | 24.57 a (0.36) | |
Nitrogen | |||||||
N1 | 1.093 a (0.001) | 16.39 a (0.18) | 23.56 a (0.20) | 1.098 a (0.001) | 17.40 a (0.16) | 24.66 a (0.18) | |
N2 | 1.092 a (0.001) | 16.33 a (0.26) | 23.49 a (0.28) | 1.097 a (0.001) | 17.23 a (0.24) | 24.47 a (0.26) | |
Interaction W within N | |||||||
Nitrogen | Water | ||||||
N1 | IRRG3 | 1.092 a (0.001) | 16.15 a (0.17) | 23.29 a (0.19) | 1.098 a (0.001) | 17.28 a (0.20) | 24.53 a (0.22) |
IRRG2 | 1.096 a (0.001) | 17.01 a (0.26) | 24.23 a (0.29) | 1.096 a (0.001) | 17.04 a (0.15) | 24.27 a (0.16) | |
IRRG1 | 1.091 a (0.001) | 16.02 a (0.28) | 23.15 a (0.31) | 1.100 a (0.002) | 17.87 a (0.33) | 25.18 a (0.36) | |
N2 | IRRG3 | 1.094 a (0.001) | 16.45 a (0.21) | 23.61 a (0.23) | 1.096 ab (0.001) | 16.99 ab (0.23) | 24.22 ab (0.25) |
IRRG2 | 1.096 a (0.003) | 16.93 a (0.53) | 24.15 a (0.58) | 1.100 a (0.003) | 17.92 a (0.48) | 25.23 a (0.53) | |
IRRG1 | 1.088 a (0.002) | 15.62 a (0.33) | 22.71 a (0.36) | 1.095 b (0.002) | 16.76 b (0.32) | 23.96 b (0.35) | |
Source of Variation | DF | p-Value | |||||
Water | 2 | 0.0040 | 0.0071 | 0.0069 | 0.6218 | 0.5352 | 0.5350 |
Nitrogen | 1 | 0.7981 | 0.8173 | 0.8169 | 0.5100 | 0.5022 | 0.4999 |
W × N | 2 | 0.4591 | 0.5578 | 0.5623 | 0.0137 | 0.0147 | 0.0151 |
Years | |||||||
---|---|---|---|---|---|---|---|
2016 | 2017 | ||||||
Treatments | SG | SC | TDM | SG | SC | TDM | |
Water | ----------%---------- | ----------%---------- | |||||
IRRG3 | 1.072 a (0.003) | 12.14 a (0.22) | 18.89 a (0.30) | 1.085 a (0.004) | 14.83 a (0.25) | 21.84 a (0.33) | |
IRRG2 | 1.074 a (0.004) | 12.56 a (0.18) | 19.36 a (0.27) | 1.088 a (0.003) | 15.34 a (0.29) | 22.40 a (0.36) | |
IRRG1 | 1.072 a (0.003) | 12.10 a (0.21) | 18.86 a (0.28) | 1.088 a (0.004) | 15.47 a (0.31) | 22.55 a (0.39) | |
Nitrogen | |||||||
N1 | 1.074 a (0.002) | 12.54 a (0.19) | 19.33 a (0.25) | 1.088 a (0.003) | 15.40 a (0.22) | 22.42 a (0.35) | |
N2 | 1.071 a (0.003) | 12.00 a (0.21) | 18.74 a (0.28) | 1.086 a (0.004) | 15.06 a (0.27) | 22.10 a (0.34) | |
Source of Variation | DF | p-Value | |||||
Water | 2 | 0.4111 | 0.3470 | 0.3410 | 0.1426 | 0.1739 | 0.1725 |
Nitrogen | 1 | 0.0691 | 0.0713 | 0.0699 | 0.3001 | 0.3128 | 0.3146 |
W × N | 2 | 0.7610 | 0.7989 | 0.7958 | 0.7557 | 0.8366 | 0.8347 |
Years | |||||||
---|---|---|---|---|---|---|---|
2016 | 2017 | ||||||
Treatments | SG | SC | TDM | SG | SC | TDM | |
Water | ----------%---------- | ----------%---------- | |||||
IRRG3 | 1.079 a (0.002) | 13.51 a (0.24) | 20.39 a (0.31) | 1.081 a (0.003) | 13.99 a (0.29) | 20.92 a (0.36) | |
IRRG2 | 1.078 a (0.004) | 13.43 a (0.27) | 20.31 a (0.33) | 1.083 a (0.002) | 14.38 a (0.33) | 21.35 a (0.38) | |
IRRG1 | 1.073 b (0.002) | 12.41 b (0.22) | 19.19 b (0.29) | 1.084 a (0.003) | 14.62 a (0.31) | 21.61 a (0.37) | |
Nitrogen | |||||||
N1 | 1.077 a (0.002) | 13.22 a (0.25) | 20.09 a (0.32) | 1.083 a (0.003) | 14.54 a (0.30) | 21.53 a (0.36) | |
N2 | 1.076 a (0.003) | 13.01 a (0.26) | 19.85 a (0.34) | 1.081 a (0.002) | 14.11 a (0.28) | 21.06 a (0.35) | |
Source of Variation | DF | p-Value | |||||
Water | 2 | 0.0006 | 0.0007 | 0.0007 | 0.3071 | 0.2706 | 0.2744 |
Nitrogen | 1 | 0.3132 | 0.3181 | 0.3156 | 0.1362 | 0.1839 | 0.1840 |
W × N | 2 | 0.7530 | 0.6562 | 0.6523 | 0.7522 | 0.7730 | 0.7714 |
Years | |||||||
---|---|---|---|---|---|---|---|
2016 | 2017 | ||||||
Treatments | SG | SC | TDM | SG | SC | TDM | |
Water | ----------%---------- | ----------%---------- | |||||
IRRG3 | 1.083 b (0.001) | 14.47 b (0.20) | 21.45 b (0.22) | 1.091 a (0.001) | 16.07 a (0.13) | 23.20 a (0.15) | |
IRRG2 | 1.087 a (0.001) | 15.08 a (0.28) | 22.12 a (0.31) | 1.093 a (0.001) | 16.27 a (0.18) | 23.42 a (0.19) | |
IRRG1 | 1.084 b (0.0009) | 14.70 ab (0.13) | 21.70 ab (0.15) | 1.090 a (0.001) | 15.84 a (0.14) | 22.95 a (0.15) | |
Nitrogen | |||||||
N1 | 1.086 a (0.001) | 15.02 a (0.13) | 22.05 a (0.13) | 1.091 a (0.001) | 15.99 a (0.14) | 23.12 a (0.15) | |
N2 | 1.083 b (0.001) | 14.4 b (0.14) | 21.46 b (0.14) | 1.092 a (0.001) | 16.12 a (0.14) | 23.26 a (0.16) | |
Source of Variation | DF | p-Value | |||||
Water | 2 | 0.0081 | 0.0124 | 0.0125 | 0.1673 | 0.2303 | 0.2261 |
Nitrogen | 1 | 0.0015 | 0.0020 | 0.0021 | 0.5045 | 0.5134 | 0.5144 |
W × N | 2 | 0.1253 | 0.1053 | 0.1030 | 0.7361 | 0.7657 | 0.7666 |
Years | |||||
---|---|---|---|---|---|
2016 | 2017 | ||||
Treatments | WUE | NUE | WUE | NUE | |
Water | kg ha−1 mm−1 | kg ha−1 kg N−1 | kg ha−1 mm−1 | kg ha−1 kg N−1 | |
IRRG3 | 82.92 b (2.74) | 322.36 a (17.98) | 72.03 b (3.52) | 286.47 a (8.50) | |
IRRG2 | 102.39 a (3.45) | 335.59 a (20.19) | 82.21 ab (2.40) | 270.14 a (7.69) | |
IRRG1 | 98.65 a (4.46) | 255.35 b (15.09) | 87.19 a (3.87) | 193.35 b (9.19) | |
Nitrogen | |||||
N1 | 94.73 a (3.43) | 341.60 a (14.94) | 74.74 b (2.51) | 261.08 a (13.25) | |
N2 | 94.58 a (4.23) | 267.27 b (12.52) | 86.21 a (3.00) | 238.90 b (13.90) | |
Source of Variation | DF | p-Value | |||
Water | 2 | 0.0056 | 0.0003 | 0.0025 | <0.0001 |
Nitrogen | 1 | 0.9745 | <0.0001 | 0.0015 | 0.0214 |
W × N | 2 | 0.9556 | 0.6652 | 0.6074 | 0.4567 |
Years | |||||
---|---|---|---|---|---|
2016 | 2017 | ||||
Treatments | WUE | NUE | WUE | NUE | |
Water | kg ha−1 mm−1 | kg ha−1 kg N−1 | kg ha−1 mm−1 | kg ha−1 kg N−1 | |
IRRG3 | 82.32 a (4.03) | 286.47 a (8.50) | 80.20 a (2.42) | 258.08 a (14.77) | |
IRRG2 | 81.32 ab (2.37) | 270.14 a (7.69) | 83.41 a (3.13) | 271.31 a (18.25) | |
IRRG1 | 73.05 b (3.24) | 193.35 b (9.19) | 71.68 a (4.22) | 190.39 b (12.70) | |
Nitrogen | |||||
N1 | 73.04 b (2.01) | 261.08 a (13.25) | 79.45 a (2.56) | 272.23 a (14.28) | |
N2 | 84.75 a (2.56) | 238.89 b (13.90) | 77.41 a (3.46) | 207.62 b (11.71) | |
Source of Variation | DF | p-Value | |||
Water | 2 | 0.0291 | <0.0001 | 0.0789 | <0.0001 |
Nitrogen | 1 | 0.0006 | 0.0214 | 0.6240 | <0.0001 |
W × N | 2 | 0.2915 | 0.4567 | 0.7835 | 0.3554 |
Years | |||||
---|---|---|---|---|---|
2016 | 2017 | ||||
Treatments | WUE | NUE | WUE | NUE | |
Water | kg ha−1 mm−1 | kg ha−1 kg N−1 | kg ha−1 mm−1 | kg ha−1 kg N−1 | |
IRRG3 | 95.26 a (4.16) | 300.21 a (25.54) | 79.47 b (2.59) | 261.93 a (12.01) | |
IRRG2 | 90.37 a (2.35) | 285.01 ab (11.70) | 95.17 a (5.16) | 258.54 a (13.62) | |
IRRG1 | 79.45 a (6.93) | 249.86 b (25.13) | 104.78 a (4.63) | 208.45 b (3.90) | |
Nitrogen | |||||
N1 | 92.75 a (3.45) | 324.96 a (10.68) | 86.74 b (2.99) | 257.10 a (11.88) | |
N2 | 83.97 a (4.75) | 231.76 b (13.21) | 99.54 a (5.16) | 228.85 a (8.82) | |
Source of Variation | DF | p-Value | |||
Water | 2 | 0.0570 | 0.0273 | 0.0003 | 0.0012 |
Nitrogen | 1 | 0.1019 | <0.0001 | 0.0057 | 0.0190 |
W × N | 2 | 0.1312 | 0.1211 | 0.2651 | 0.3559 |
Years | |||||
---|---|---|---|---|---|
2016 | 2017 | ||||
Treatments | WUE | NUE | WUE | NUE | |
Water | kg ha−1 mm−1 | kg ha−1 kg N−1 | kg ha−1 mm−1 | kg ha−1 kg N−1 | |
IRRG3 | 90.55 b (4.10) | 354.18 a (18.43) | 77.35 a (3.11) | 309.97 a (14.33) | |
IRRG2 | 98.56 ab (5.27) | 319.32 ab (12.69) | 62.52 a (4.28) | 193.62 b (10.62) | |
IRRG1 | 111.05 a (6.39) | 288.43 b (20.14) | 70.58 a (5.31) | 172.14 b (11.75) | |
Nitrogen | |||||
N1 | 102.55 a (4.86) | 367.81 a (15.91) | 68.43 a (4.07) | 246.44 a (12.38) | |
N2 | 97.56 a (5.01) | 273.48 b (14.27) | 71.87 a (4.63) | 204.04 b (9.96) | |
Source of Variation | DF | p-Value | |||
Water | 2 | 0.0445 | 0.0426 | 0.1926 | <0.0001 |
Nitrogen | 1 | 0.4312 | 0.0001 | 0.5966 | 0.0441 |
W × N | 2 | 0.8370 | 0.5989 | 0.8741 | 0.3531 |
Year | Trait | Canela Russet | Mesa Russet | Russet Norkotah 3 | Yukon Gold |
---|---|---|---|---|---|
2016 | SG | 0.7447 *** | 0.2804 | 0.5490 ** | 0.4344 * |
SC | 0.7251 *** | 0.3090 | 0.5434 ** | 0.4065 * | |
TDM | 0.7259 *** | 0.3094 | 0.5451 ** | 0.4049 * | |
2017 | SG | −0.0482 | −0.1568 | −0.3528 | 0.3016 |
SC | −0.0544 | −0.1509 | −0.3720 | 0.2972 | |
TDM | −0.0532 | −0.1499 | −0.3704 | 0.2966 |
Trait | Canela Russet | Mesa Russet | Russet Norkotah 3 | Yukon Gold | |
---|---|---|---|---|---|
2016 | WUE | 0.3839 | 0.3116 | −0.2517 | −0.1335 |
NUE | 0.7767 *** | 0.66756 *** | 0.4049 * | 0.5179 ** | |
2017 | WUE | 0.0264 | 0.4615 * | −0.5484 ** | 0.2086 |
NUE | 0.7976 *** | 0.8405 *** | 0.3413 | 0.3208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barka, A.M.H.; Essah, S.Y.C.; Davis, J.G. Moderate Deficit Irrigation and Reduced Nitrogen Application Maintain Tuber Quality and Improve Nitrogen Use Efficiency of Potato (Solanum tuberosum L.). Horticulturae 2025, 11, 1159. https://doi.org/10.3390/horticulturae11101159
Barka AMH, Essah SYC, Davis JG. Moderate Deficit Irrigation and Reduced Nitrogen Application Maintain Tuber Quality and Improve Nitrogen Use Efficiency of Potato (Solanum tuberosum L.). Horticulturae. 2025; 11(10):1159. https://doi.org/10.3390/horticulturae11101159
Chicago/Turabian StyleBarka, Abdulssamad M. H., Samuel Y. C. Essah, and Jessica G. Davis. 2025. "Moderate Deficit Irrigation and Reduced Nitrogen Application Maintain Tuber Quality and Improve Nitrogen Use Efficiency of Potato (Solanum tuberosum L.)" Horticulturae 11, no. 10: 1159. https://doi.org/10.3390/horticulturae11101159
APA StyleBarka, A. M. H., Essah, S. Y. C., & Davis, J. G. (2025). Moderate Deficit Irrigation and Reduced Nitrogen Application Maintain Tuber Quality and Improve Nitrogen Use Efficiency of Potato (Solanum tuberosum L.). Horticulturae, 11(10), 1159. https://doi.org/10.3390/horticulturae11101159