Assessment of Peacock Spot Disease (Fusicladium oleagineum) in Olive Orchards Through Agronomic Approaches and UAV-Based Multispectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plant Material Sampling
2.3. Assessment of Disease Incidence
2.4. Assessment of Disease Severity
2.5. Multispectral Imagery Acquisitions
2.6. Statistical Analysis
3. Results
3.1. Field Observations and Disease Symptomatology
3.2. Temporal Analysis of Disease Parameters and Their Statistical Distribution Patterns
3.3. Spatial and Temporal Patterns of Disease Severity
3.4. Spectral Imagery and Vegetation Indices for Disease Surveillance and Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaniewski, D.; Van Campo, E.; Boiy, T.; Terral, J.-F.; Khadari, B.; Besnard, G. Primary Domestication and Early Uses of the Emblematic Olive Tree: Palaeobotanical, Historical and Molecular Evidence from the Middle East. Biol. Rev. 2012, 87, 885–899. [Google Scholar] [CrossRef]
- Barbuzano, J. Climate Change Will Reduce Spanish Olive Oil Production. Available online: http://eos.org/articles/climate-change-will-reduce-spanish-olive-oil-production (accessed on 20 November 2024).
- Cannon, J. Cradle of Transformation: The Mediterranean and Climate Change. Available online: https://news.mongabay.com/2022/04/cradle-of-transformation-the-mediterranean-and-climate-change/ (accessed on 20 November 2024).
- Ouraich, I.; Tyner, W.E. Moroccan Agriculture, Climate Change, and the Moroccan Green Plan: A CGE Analysis. Afr. J. Agric. Resour. Econ. 2018, 13, 307–330. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Abdou Zayan, S. Impact of Climate Change on Plant Diseases and IPM Strategies. In Plant Diseases—Current Threats and Management Trends; Topolovec-Pintarić, S., Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-78985-115-1. [Google Scholar]
- Graniti, A.; Faedda, R.; Cacciola, S.O.; Magnano di San Lio, G. Olive Diseases in a Changing Ecosystem. In Olive Diseases and Disorders; Transworld Research Network: Thiruvananthapuram, India, 2011; pp. 403–433. [Google Scholar]
- Cardoni, M.; Mercado-Blanco, J. Confronting Stresses Affecting Olive Cultivation from the Holobiont Perspective. Front. Plant Sci. 2023, 14, 1261754. [Google Scholar] [CrossRef] [PubMed]
- Rhimini, Y.; Bouaichi, A.; Chliyeh, M.; Msairi, S.; Touhami, A.; Benkirane, R.; Achbani, E.; Douira, A. Influence of Variations in Climatic Factors and Some Cultural Practices on Knot Disease Development on Oleaster and Olive Tree (Olea europaea L.) Northwest of Morocco. ARRB 2018, 24, 1–9. [Google Scholar] [CrossRef]
- Gonzalez-Lamothe, R.; Segura, R.; Trapero, A.; Baldoni, L.; Botella, M.A.; Valpuesta, V. Phylogeny of the Fungus Spilocaea oleagina, the Causal Agent of Peacock Leaf Spot in Olive. FEMS Microbiol. Lett. 2002, 210, 149–155. [Google Scholar] [CrossRef]
- Habbadi, K.; Maafa, I.; Benbouazza, A.; Aoujil, F.; Choukri, H.; El Houssaini, S.E.I.; El Bakkali, A. Differential Response of Olive Cultivars to Leaf Spot Disease (Fusicladium oleagineum) under Climate Warming Conditions in Morocco. Horticulturae 2023, 9, 589. [Google Scholar] [CrossRef]
- Renaud, P. Ecologie de la maladie de l’œil de paon et résistance variétale dans leurs incidences sur la culture de l’olivier dans le pays. Afrimed. Al-Awamia 1968, 26, 55–74. [Google Scholar]
- Issa, T.; Almadi, L.; Jarrar, S.; Tucci, M.; Buonaurio, R.; Famiani, F. Factors Affecting Venturia oleaginea Infections on Olive and Effects of the Disease on Floral Biology. Phytopathol. Mediterr. 2019, 58, 221–229. [Google Scholar]
- ONSSA: Office National de Sécurité Sanitaire et Alimentaire. Bulletin de Veille Phytosanitaire; 2016. Available online: https://www.onssa.gov.ma/evaluation-des-risques/surveillance-des-risques-phytosanitaires/ (accessed on 28 February 2022).
- John, M.A.; Bankole, I.; Ajayi-Moses, O.; Ijila, T.; Jeje, T.; Lalit, P. Relevance of Advanced Plant Disease Detection Techniques in Disease and Pest Management for Ensuring Food Security and Their Implication: A Review. AJPS 2023, 14, 1260–1295. [Google Scholar] [CrossRef]
- Buonaurio, R.; Almadi, L.; Famiani, F.; Moretti, C.; Agosteo, G.E.; Schena, L. Olive Leaf Spot Caused by Venturia oleaginea: An Updated Review. Front. Plant Sci. 2023, 13, 1061136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.P.; Li, S.; Cao, Z.; Hu, P.J.-H.; Wang, J.; Xiang, Y.; Xie, D.; Lu, X. AI for Science: Predicting Infectious Diseases. J. Saf. Sci. Resil. 2024, 5, 130–146. [Google Scholar] [CrossRef]
- Martins, S.; Pereira, S.; Dinis, L.-T.; Brito, C. Enhancing Olive Cultivation Resilience: Sustainable Long-Term and Short-Term Adaptation Strategies to Alleviate Climate Change Impacts. Horticulturae 2024, 10, 1066. [Google Scholar] [CrossRef]
- Castrignanò, A.; Belmonte, A.; Antelmi, I.; Quarto, R.; Quarto, F.; Shaddad, S.; Sion, V.; Muolo, M.R.; Ranieri, N.A.; Gadaleta, G.; et al. Semi-Automatic Method for Early Detection of Xylella fastidiosa in Olive Trees Using UAV Multispectral Imagery and Geostatistical-Discriminant Analysis. Remote Sens. 2021, 13, 14. [Google Scholar] [CrossRef]
- Ghazal, S.; Munir, A.; Qureshi, W.S. Computer Vision in Smart Agriculture and Precision Farming: Techniques and Applications. Artif. Intell. Agric. 2024, 13, 64–83. [Google Scholar] [CrossRef]
- Riefolo, C.; Antelmi, I.; Castrignanò, A.; Ruggieri, S.; Galeone, C.; Belmonte, A.; Muolo, M.R.; Ranieri, N.A.; Labarile, R.; Gadaleta, G.; et al. Assessment of the Hyperspectral Data Analysis as a Tool to Diagnose Xylella fastidiosa in the Asymptomatic Leaves of Olive Plants. Plants 2021, 10, 683. [Google Scholar] [CrossRef]
- Ram, B.G.; Oduor, P.; Igathinathane, C.; Howatt, K.; Sun, X. A Systematic Review of Hyperspectral Imaging in Precision Agriculture: Analysis of Its Current State and Future Prospects. Comput. Electron. Agric. 2024, 222, 109037. [Google Scholar] [CrossRef]
- Abbas, A.; Zhang, Z.; Zheng, H.; Alami, M.M.; Alrefaei, A.F.; Abbas, Q.; Naqvi, S.A.H.; Rao, M.J.; Mosa, W.F.A.; Abbas, Q.; et al. Drones in Plant Disease Assessment, Efficient Monitoring, and Detection: A Way Forward to Smart Agriculture. Agronomy 2023, 13, 1524. [Google Scholar] [CrossRef]
- Tsvetkov, M.Y. Satellite and Drone Multispectral and Thermal Images Data Fusion for Intelligent Agriculture Monitoring and Decision Making Support. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XXV; Neale, C.M., Maltese, A., Eds.; SPIE: Amsterdam, The Netherlands, 2023; p. 65. [Google Scholar]
- Mgendi, G. Unlocking the Potential of Precision Agriculture for Sustainable Farming. Discov. Agric. 2024, 2, 87. [Google Scholar] [CrossRef]
- D-Maps: Cartes Gratuites, Cartes Vierges Gratuites, Cartes Muettes Gratuites, Cartes de Base Gratuites. Available online: https://d-maps.com/index.php?lang=en (accessed on 20 November 2024).
- Présentation—Google Earth. Available online: https://www.google.com/intl/fr/earth/about/ (accessed on 20 November 2024).
- Teviotdale, B.; Sibbett, G.; Harper, D. Several Copper Fungicides Control Olive Leaf Spot. Calif. Agric. 1989, 43, 30–31. [Google Scholar]
- Shabi, E.; Birger, R.; Lavee, S. Leaf Spot (Spilocaea oleaginea) of Olive in Israel and Its Control. Acta Hortic. 1994, 356, 390–394. [Google Scholar] [CrossRef]
- MacDonald, A.J.; Walter, M.; Trought, M.C.; Frampton, C.M.; Burnip, G. Survey of Olive Leaf Spot in New Zealand. N. Z. Plant Prot. 2000, 53, 126–132. [Google Scholar] [CrossRef]
- Sachet, M.R.; Danner, M.A.; Citadin, I.; Pertille, R.H.; Guerrezi, M.T. Standard Area Diagram Set for Olive Leaf Spot Assessment. Cienc. Rural 2017, 47, e20160923. [Google Scholar] [CrossRef]
- Simko, I.; Piepho, H.-P. The Area Under the Disease Progress Stairs: Calculation, Advantage, and Application. Phytopathology 2012, 102, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Seem, R.C. Disease Incidence and Severity Relationships. Annu. Rev. Phytopathol. 1984, 22, 133–150. [Google Scholar] [CrossRef]
- Salman, M.; Hawamda, A.-A.; Amarni, A.A.-A.; Rahil, M.; Hajjeh, H.; Natsheh, B.; Abuamsha, R. Evaluation of the Incidence and Severity of Olive Leaf Spot Caused by Spilocaea oleagina on Olive Trees in Palestine. AJPS 2011, 2, 457–460. [Google Scholar] [CrossRef]
- Obanor, F.O. Effect of Temperature, Relative Humidity, Leaf Wetness and Leaf Age on Spilocaea Oleagina Conidium Germination on Olive Leaves. Eur. J. Plant Pathol. 2008, 120, 211–222. [Google Scholar] [CrossRef]
- Viruega, J.R.; Trapero, A. Epidemiology of Leaf Spot of Olive Tree Caused by Spilocaea oleagina in Southern Spain. Acta Hortic. 1999, 474, 531–534. [Google Scholar] [CrossRef]
- Graniti, A. Olive Scab: A Review1. EPPO Bull. 1993, 23, 377–384. [Google Scholar] [CrossRef]
- Rhimini, Y.; Chliyeh, M.; Chahdi, A.; Touati, J.; Ouazzani Touhami, A.; Benkirane, R.; Douira, A. Influence of Certain Cultural Practices and Variable Climatic Factors on the Manifestation of Spilocaea oleagina, Olive Peacock Spot Agent in the Northwestern Region of Morocco. Int. J. Pure Appl. Biosci. 2014, 2, 1–9. [Google Scholar]
- Ouerghi, F.; Rhouma, A.; Rassaa, N.; Hennachi, I.; Nasraoui, B. Factors Affecting Resistance of Two Olive Cultivars to Leaf Spot Disease in the North West of Tunisia. EJARBLS 2016, 4, 39–51. [Google Scholar]
- El Iraqui El Houssaini, S.; Iaaich, H.; El Bakkali, A.; Razouk, R.; Bouhafa, K.; Habbadi, K.; Benbouazza, A.; Alghoum, M.; Douaik, A. Assessment of the Spatiotemporal Variability of Trees Status in an Olive Orchard through Multispectral Drone Images. Afr. Mediterr. Agric. J. Al Awamia 2021, 132, 142–162. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [PubMed]
- Messina, G.; Modica, G. Twenty Years of Remote Sensing Applications Targeting Landscape Analysis and Environmental Issues in Olive Growing: A Review. Remote Sens. 2022, 14, 5430. [Google Scholar] [CrossRef]
- Rudd, J.D.; Roberson, G.T.; Classen, J.J. Application of Satellite, Unmanned Aircraft System, and Ground-Based Sensor Data for Precision Agriculture: A Review. In Proceedings of the 2017 Spokane, Washington, DC, USA, 16–19 July 2017; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2017. [Google Scholar]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global Products of Vegetation Leaf Area and Fraction Absorbed PAR from Year One of MODIS Data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Cao, R.; Shen, M.; Zhou, J.; Chen, J. Modeling Vegetation Green-up Dates across the Tibetan Plateau by Including Both Seasonal and Daily Temperature and Precipitation. Agric. For. Meteorol. 2018, 249, 176–186. [Google Scholar] [CrossRef]
- Zhang, X.; Tarpley, D.; Sullivan, J.T. Diverse Responses of Vegetation Phenology to a Warming Climate. Geophys. Res. Lett. 2007, 34, L19405. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global Land Cover Mapping from MODIS: Algorithms and Early Results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Bell, G.E.; Howell, B.M.; Johnson, G.V.; Raun, W.R.; Solie, J.B.; Stone, M.L. Optical Sensing of Turfgrass Chlorophyll Content and Tissue Nitrogen. HortScience 2004, 39, 1130–1132. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-Resolution Airborne Hyperspectral and Thermal Imagery for Early Detection of Verticillium Wilt of Olive Using Fluorescence, Temperature and Narrow-Band Spectral Indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Poblete, T.; Camino, C.; Beck, P.S.A.; Hornero, A.; Kattenborn, T.; Saponari, M.; Boscia, D.; Navas-Cortes, J.A.; Zarco-Tejada, P.J. Detection of Xylella fastidiosa Infection Symptoms with Airborne Multispectral and Thermal Imagery: Assessing Bandset Reduction Performance from Hyperspectral Analysis. ISPRS J. Photogramm. Remote Sens. 2020, 162, 27–40. [Google Scholar] [CrossRef]
- Pontikakos, C.M.; Tsiligiridis, T.A.; Drougka, M.E. Location-Aware System for Olive Fruit Fly Spray Control. Comput. Electron. Agric. 2010, 70, 355–368. [Google Scholar] [CrossRef]
- Battista, P.; Bellini, E.; Chiesi, M.; Costafreda-Aumedes, S.; Fibbi, L.; Leolini, L.; Moriondo, M.; Rapi, B.; Rossi, R.; Sabatini, F.; et al. Estimating the Effect of Water Shortage on Olive Trees by the Combination of Meteorological and Sentinel-2 Data. Eur. J. Remote Sens. 2023, 56, 2194553. [Google Scholar] [CrossRef]
- Sepulcre-Cantó, G.; Zarco-Tejada, P.J.; Jiménez-Muñoz, J.C.; Sobrino, J.A.; de Miguel, E.; Villalobos, F.J. Detection of Water Stress in an Olive Orchard with Thermal Remote Sensing Imagery. Agric. For. Meteorol. 2006, 136, 31–44. [Google Scholar] [CrossRef]
- Benitez, Y.; Botella, M.A.; Trapero, A.; Alsalimiya, M.; Caballero, J.L.; Dorado, G.; Muñoz-Blanco, J. Molecular Analysis of the Interaction between Olea europaea and the Biotrophic Fungus Spilocaea oleagina. Mol. Plant Pathol. 2005, 6, 425–438. [Google Scholar] [CrossRef]
- Yahiaoui, R.; Guéchi, A.; Lukasova, E.; Girre, L. Mutagenic and Membranal Effect of Phytotoxic Molecule Isoled from Olive Parasitized by the Fungus Cycloconium oleaginum. J. Mycotoxicoses Mycooxins 1994, 126, 121–129. [Google Scholar]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: Oxford, UK, 2010; ISBN 978-0-19-920779-4. [Google Scholar]
- Ayres, P.G. Water Relations of Diseased Plants. Water Plant Dis. 1978, 5, 1–60. [Google Scholar]
- Fahrentrapp, J.; Ria, F.; Geilhausen, M.; Panassiti, B. Detection of Gray Mold Leaf Infections Prior to Visual Symptom Appearance Using a Five-Band Multispectral Sensor. Front. Plant Sci. 2019, 10, 628. [Google Scholar] [CrossRef]
- Ehsani, R.; Maja, J.M. The Rise of Small UAVs in Precision Agriculture. Resour. Eng. Technol. A Sustain. World 2013, 20, 18–19. [Google Scholar]
- Makhloufi, A.; Abdelmoula, H.; Ben Abdallah, A.; Kallel, A. Olive Tree Health Monitoring Approach Using Satellite Images and Based on Artificial Intelligence: Toward Automatic Olive Stress Detection Solution. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 7839–7842. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.A.; Zarco-Tejada, P.J. Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas. Remote Sens. 2015, 7, 5584–5610. [Google Scholar] [CrossRef]
- Iatrou, G.; Mourelatos, S.; Zartaloudis, Z.; Iatrou, M.; Gewehr, S.; Kalaitzopoulou, S. Remote Sensing for the Management of Verticillium Wilt of Olive. Fresenius Environ. Bull. 2016, 25, 3622–3628. [Google Scholar]
- Di Nisio, A.; Adamo, F.; Acciani, G.; Attivissimo, F. Fast Detection of Olive Trees Affected by Xylella fastidiosa from UAVs Using Multispectral Imaging. Sensors 2020, 20, 4915. [Google Scholar] [CrossRef]
- Hornero, A.; Hernández-Clemente, R.; Beck, P.S.A.; Navas-Cortés, J.A.; Zarco-Tejada, P.J. Using Sentinel-2 Imagery to Track Changes Produced by Xylella fastidiosa in Olive Trees. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 9060–9062. [Google Scholar]
Vegetative Index | Formula | ||
---|---|---|---|
1 | Green (520–590 nm) | --- | |
2 | Red (630–685 nm) | --- | |
3 | RedEdge (690–730 nm) | --- | |
4 | NIR (760–850 nm) | --- | |
5 | NormG | Normalized Green | Green/(NIR + Red + Green) |
6 | NormNIR | Normalized NIR | NIR/(NIR + Red + Green) |
7 | NormR | Normalized Red | Red/(NIR + Red + Green) |
8 | CG | Chlorophyll Green | (NIR/Green)−1 |
9 | GDVI | Difference NIR/Green Vegetation Index | NIR − Green |
10 | GRVI | Green-Red Vegetation Index | (Green − Red)/(Green + Red) |
11 | GNDVI | Green Normalized Difference Vegetation Index | (NIR − Green)/(NIR + Green) |
12 | NDVI | Normalized Difference Vegetation Index | (NIR − Red)/(NIR + Red) |
13 | NDRE | Normalized Difference Red Edge Index | (NIR − RedEdge)/(NIR + RedEdge) |
14 | SR | Simple Ratio index | NIR/Red |
15 | SR800/550 | Simple Ration 800/550 index | NIR/Green |
16 | SR750-550 | Simple Ratio 750/550 index | RedEdge/Green |
17 | CI-RedEdge | Chlorophyll Index RedEdge | (NIR/RedEdge) − 1 |
18 | CI-Green | Chlorphyll Index Green | (NIR/Green) − 1 |
19 | TRiVI | Triangular Vegetation Index | 0.5 × [120 × (RedEdge − Green) – 200 × (Red − Green)] |
20 | WDRVI | Wide Dynamic Range Vegetation Index | (0.1 × NIR − Red)/(0.1 × NIR + Red) |
21 | SCCCI | Simplified Canopy Chlorophyll Content Index | NDRE/NDVI |
Tree | AUDPC_Incidence | AUDPC_Severity | AUDPC_ID | AUDPC_DLA | |
---|---|---|---|---|---|
count | 48 | 48 | 48 | 48 | 48 |
mean | 24.5 | 6419.05 | 3326.08 | 3637.77 | 987.78 |
std | 14 | 1002.17 | 634.92 | 682.67 | 283.71 |
min | 1 | 4530 | 2204.93 | 2460,5 | 566.58 |
25% | 12.75 | 5781.38 | 2916.42 | 3188.69 | 791.45 |
50% | 24.5 | 6493.75 | 3351.28 | 3676.81 | 931.93 |
75% | 36.25 | 7061.5 | 3752.11 | 4102.52 | 1146.04 |
max | 48 | 8575 | 5292.37 | 5730.94 | 2005.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamzaoui, H.; Maafa, I.; Choukri, H.; Bakkali, A.E.; Houssaini, S.E.I.E.; Razouk, R.; Aziz, A.; Louahlia, S.; Habbadi, K. Assessment of Peacock Spot Disease (Fusicladium oleagineum) in Olive Orchards Through Agronomic Approaches and UAV-Based Multispectral Imaging. Horticulturae 2025, 11, 46. https://doi.org/10.3390/horticulturae11010046
Hamzaoui H, Maafa I, Choukri H, Bakkali AE, Houssaini SEIE, Razouk R, Aziz A, Louahlia S, Habbadi K. Assessment of Peacock Spot Disease (Fusicladium oleagineum) in Olive Orchards Through Agronomic Approaches and UAV-Based Multispectral Imaging. Horticulturae. 2025; 11(1):46. https://doi.org/10.3390/horticulturae11010046
Chicago/Turabian StyleHamzaoui, Hajar, Ilyass Maafa, Hasnae Choukri, Ahmed El Bakkali, Salma El Iraqui El Houssaini, Rachid Razouk, Aziz Aziz, Said Louahlia, and Khaoula Habbadi. 2025. "Assessment of Peacock Spot Disease (Fusicladium oleagineum) in Olive Orchards Through Agronomic Approaches and UAV-Based Multispectral Imaging" Horticulturae 11, no. 1: 46. https://doi.org/10.3390/horticulturae11010046
APA StyleHamzaoui, H., Maafa, I., Choukri, H., Bakkali, A. E., Houssaini, S. E. I. E., Razouk, R., Aziz, A., Louahlia, S., & Habbadi, K. (2025). Assessment of Peacock Spot Disease (Fusicladium oleagineum) in Olive Orchards Through Agronomic Approaches and UAV-Based Multispectral Imaging. Horticulturae, 11(1), 46. https://doi.org/10.3390/horticulturae11010046