Norisoprenoid Accumulation under Genotype and Vintage Effects in Vitis vinifera L. Wine Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Materials and Growth Conditions
2.2. Physicochemical Indexes
2.3. Extraction and GC-MS Analysis of Volatile Compounds
2.4. Real-Time PCR Analysis
ΔCT = CTtarget − CTref
2.5. Comparative Sequencing
2.6. Statistical Analysis
3. Results and Discussion
3.1. Comparisons of Physicochemical Indexes among Different Varieties/Cultivations
3.2. Volatile C13-Norisoprenoid Compounds
3.3. Volatile C13-Norisoprenoid Compounds between Vintage 2010 and 2011
3.4. Volatile C13-Norisoprenoid Compounds among Different Varieties
3.5. Correlation Analysis of Volatile C13-Norisoprenoid Compounds and Their Synthesis-Related Genes
3.6. Single Nucleotide Polymorphism of VvCCD1, VvCCD4a, and VvCCD4b among Different Varieties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, F.; Qian, M.C. Development of C13-norisoprenoids, carotenoids and other volatile compounds in Vitis vinifera L. Cv. Pinot noir grapes. Food Chem. 2016, 192, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Wen, Y.Q.; Meng, N.; Qian, X.; Pan, Q.H. Monoterpenyl Glycosyltransferases Differentially Contribute to Production of Monoterpenyl Glycosides in Two Aromatic Vitis vinifera Varieties. Front. Plant Sci. 2017, 8, 1226. [Google Scholar] [CrossRef]
- Mathieu, S.; Terrier, N.; Procureur, J.; Bigey, F.; Gunata, Z. A carotenoid cleavage dioxygenase from Vitis vinifera L.: Functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. J. Exp. Bot. 2005, 56, 2721–2731. [Google Scholar] [CrossRef] [PubMed]
- Canuti, V.; Conversano, M.; Calzi, M.L.; Heymann, H.; Matthews, M.A.; Ebeler, S.E. Headspace solid-phase microextraction-gas chromatography-mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. J. Chromatogr. A 2009, 1216, 3012–3022. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Orte, P.; Concejero, B.; Astrain, J.; Lacau, B.; Cacho, J.; Ferreira, V. Influence of viticulture practices on grape aroma precursors and their relation with wine aroma. J. Sci. Food Agric. 2015, 95, 688–701. [Google Scholar] [CrossRef]
- Ryona, I.; Sacks, G.L. Behavior of Glycosylated Monoterpenes, C13>-Norisoprenoids, and Benzenoids in Vitis vinifera cv. Riesling during Ripening and Following Hedging. In Carotenoid Cleavage Products; American Chemical Society: Washington, DC, USA, 2013; Volume 1134, pp. 109–124. [Google Scholar]
- Mendes-Pinto, M.M. Cartenoid breakdown products the-noisoprenoids-in win aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef]
- De Freitas, V.A.P.; Ramalho, P.S.; Azevedo, Z.; Macedo, A.; Chemistry, F. Identification of some volatile descriptors of the rock-rose-like aroma of fortified red wines from douro demarcated region. J. Agric. Food Chem. 1999, 47, 4327–4331. [Google Scholar] [CrossRef]
- Roubelakis-Angelakis, K.A. (Ed.) Grapevine Molecular Physiology & Biotechnology; Springer Publishers: Berlin/Heidelberg, Germany, 2009; p. 612. ISBN 978-90-481-2304-9. [Google Scholar]
- Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Ahmad, N.; Hou, L.; Ma, J.; Zhou, X.; Xia, H.; Wang, M.; Leal-Bertioli, S.; Zhao, S.; Tian, R.; Pan, J.; et al. Bulk RNA-Seq Analysis Reveals Differentially Expressed Genes Associated with Lateral Branch Angle in Peanut. Genes 2022, 13, 841. [Google Scholar] [CrossRef]
- Yufei, W.; Ahmad, N.; Jiaxin, C.; Lili, Y.; Yuying, H.; Nan, W.; Min, Z.; Libo, J.; Na, Y.; Xiuming, L. CtDREB52 transcription factor regulates UV-B-induced flavonoid biosynthesis by transactivating CtMYB and CtF3′H in Safflower (Carthamus tinctorius L.). Plant Stress. 2024, 11, 100384. [Google Scholar] [CrossRef]
- Sacks, G.L.; Gates, M.J.; Ferry, F.X.; Lavin, E.H.; Kurtz, A.J.; Acree, T.E. Sensory threshold of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) and concentrations in young Riesling and non-Riesling wines. J. Agric. Food Chem. 2012, 60, 2998–3004. [Google Scholar] [CrossRef] [PubMed]
- Marais, J.; Van Wyk, C.; Rapp, A. Effect of Storage Time, Temperature and Region on the Levels of 1, l, 6-Trimethyl-1, 2-dihydronaphthalene and other Volatiles, and on Quality of Weisser Riesling Wines. South. Afr. J. Enol. Vitic. 1992, 13, 33–44. [Google Scholar] [CrossRef]
- Tarasov, A.; Giuliani, N.; Dobrydnev, A.; Müller, N.; Volovenko, Y.; Rauhut, D.; Jung, R. Absorption of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) from wine by bottle closures. Eur. Food Res. Technol. 2019, 245, 2343–2351. [Google Scholar] [CrossRef]
- Fang, Y.; Qian, M.C. Accumulation of C13-Norisoprenoids and Other Aroma Volatiles in Glycoconjugate Form During the Development of Pinot Noir Grapes. In Flavor Chemistry of Wine and Other Alcoholic Beverages; American Chemical Society: Washington, DC, USA, 2012; Volume 1104, pp. 101–115. [Google Scholar]
- Meng, N.; Wei, Y.; Gao, Y.; Yu, K.; Cheng, J.; Li, X.-Y.; Duan, C.-Q.; Pan, Q.-H. Characterization of Transcriptional Expression and Regulation of Carotenoid Cleavage Dioxygenase 4b in Grapes. Front. Plant Sci. 2020, 11, 483. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, Y.; Liu, X.; Ahmad, N.; Wang, N.; Jin, L.; Yao, N.; Liu, X. A Cinnamate 4-HYDROXYLASE1 from Safflower Promotes Flavonoids Accumulation and Stimulates Antioxidant Defense System in Arabidopsis. Int. J. Mol. Sci. 2023, 24, 5393. [Google Scholar] [CrossRef]
- Marais, J. Viticulture: Sauvignon blanc Cultivar Aroma—A Review. S. Afr. J. Enol. Vitic. 1994, 15, 41. [Google Scholar]
- Xu, X.Q.; Liu, B.; Zhu, B.Q.; Lan, Y.B.; Gao, Y.; Wang, D.; Reeves, M.J.; Duan, C.Q. Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of China and their responses to weather conditions. Plant Physiol. Biochem. PPB 2015, 89, 123–133. [Google Scholar] [CrossRef]
- Williams, P.J.; Sefton, M.A.; Francis, I.L. Glycosidic precursors of varietal grape and wine flavor. In Acs Symposium Series; ACS Publications: Washington, DC, USA, 1992. [Google Scholar]
- Sefton, M.A.; Francis, I.L.; Williams, P.J. Free and bound volatile secondary metabolites of Vitis Vhifera Grape cv. Sauvignon Blanc. J. Food Sci. 1994, 59, 142–147. [Google Scholar] [CrossRef]
- Winterhalter, P.; Sefton, M.A.; Williams, P.; Chemistry, F. Two-dimensional GC-DCCC analysis of the glycoconjugates of monoterpenes, norisoprenoids, and shikimate-derived metabolites from Riesling wine. J. Agric. Food Chem. 1990, 38, 1041–1048. [Google Scholar] [CrossRef]
- Al Amin, N.; Ahmad, N.; Wu, N.; Pu, X.; Ma, T.; Du, Y.; Bo, X.; Wang, N.; Sharif, R.; Wang, P. CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max.L). BMC Biotechnol. 2019, 19, 9. [Google Scholar] [CrossRef]
- Crandles, M.; Reynolds, A.G.; Khairallah, R.; Bowen, A. The effect of yeast strain on odor active compounds in Riesling and Vidal blanc icewines. LWT Food Sci. Technol. 2015, 64, 243–258. [Google Scholar] [CrossRef]
- Luo, J.; Brotchie, J.; Pang, M.; Marriott, P.J.; Howell, K.; Zhang, P. Free terpene evolution during the berry maturation of five Vitis vinifera L. cultivars. Food Chem. 2019, 299, 125101. [Google Scholar] [CrossRef] [PubMed]
- Lashbrooke, J.G.; Young, P.R.; Dockrall, S.J.; Vasanth, K.; Vivier, M.A. Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family. BMC Plant Biol. 2013, 13, 156. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Xu, X.Q.; Yu, K.J.; Zhu, B.Q.; Lan, Y.B.; Duan, C.Q.; Pan, Q.H. Varietal Dependence of GLVs Accumulation and LOX-HPL Pathway Gene Expression in Four Vitis vinifera Wine Grapes. Int. J. Mol. Sci. 2016, 17, 1924. [Google Scholar] [CrossRef]
- Coombe, B.G. Growth stages of the grapevine: Adoption of a system for identifying grapevine growth stages. Aust. J. Grape Wine Res. 1995, 1, 104–110. [Google Scholar] [CrossRef]
- Li, X.; He, L.; An, X.; Yu, K.; Meng, N.; Duan, C.; Pan, Q.H. VviWRKY40, a WRKY Transcription Factor, Regulates Glycosylated Monoterpenoid Production by VviGT14 in Grape Berry. Genes 2020, 11, 485. [Google Scholar] [CrossRef]
- Ahmad, N.; Zhang, K.; Ma, J.; Yuan, M.; Zhao, S.; Wang, M.; Deng, L.; Ren, L.; Gangurde, S.S.; Pan, J.; et al. Transcriptional networks orchestrating red and pink testa color in peanut. BMC Plant Biol. 2023, 23, 44. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Bescansa, L.; Masa, A.; Oliveira, J.M. Changes in free and bound fractions of aroma compounds of four Vitis vinifera cultivars at the last ripening stages. Phytochemistry 2012, 74, 196–205. [Google Scholar] [CrossRef]
- Guo, X.; Ahmad, N.; Zhao, S.; Zhao, C.; Zhong, W.; Wang, X.; Li, G. Effect of Salt Stress on Growth and Physiological Properties of Asparagus Seedlings. Plants 2022, 11, 2836. [Google Scholar] [CrossRef]
- He, L.; Meng, N.; Castellarin, S.D.; Wang, Y.; Sun, Q.; Li, X.-Y.; Dong, Z.-G.; Tang, X.-P.; Duan, C.-Q.; Pan, Q.-H. Combined Metabolite and Transcriptome Profiling Reveals the Norisoprenoid Responses in Grape Berries to Abscisic Acid and Synthetic Auxin. Int. J. Mol. Sci. 2021, 22, 1420. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Conf. Biometeorol. Aerobiol. 2000, 51, 249–261. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Wu, Y.; Zhang, W.; Yu, W.; Zhao, L.; Song, S.; Xu, W.; Zhang, C.; Ma, C.; Wang, L.; Wang, S. Study on the volatile composition of table grapes of three aroma types. LWT 2019, 115. [Google Scholar] [CrossRef]
- Lund Steven, T.; Bohlmann Science, J.J. The Molecular Basis for Wine Grape Quality—A Volatile Subject. Science 2006, 311, 804–805. [Google Scholar] [CrossRef] [PubMed]
- Buesa, I.; Intrigliolo, D.S.; Castel, J.R.; Vilanova, M. Influence of water regime on grape aromatic composition of Muscat of Alexandria in a semiarid climate. Sci. Hortic. 2021, 290, 110525. [Google Scholar] [CrossRef]
- Ramos, M.C.; Ibáñez Jara, M.Á.; Rosillo, L.; Salinas, M.R. Effect of temperature and water availability on grape phenolic compounds and their extractability in Merlot grown in a warm area. Sci. Hortic. 2024, 337, 113475. [Google Scholar] [CrossRef]
- Yan, Y.; Song, C.; Falginella, L.; Castellarin, S.D. Day Temperature Has a Stronger Effect Than Night Temperature on Anthocyanin and Flavonol Accumulation in ‘Merlot’ (Vitis vinifera L.) Grapes During Ripening. Front. Plant Sci. 2020, 11, 1095. [Google Scholar] [CrossRef]
- Fenoll, J.; Manso, A.; Hellín, P.; Ruiz, L.; Flores, P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem. 2009, 14, 420–428. [Google Scholar] [CrossRef]
- Jensen, K.; Christensen, L.P.; Hansen, M.; Jørgensen, U.; Kaack, K. Olfactory and quantitative analysis of volatiles in elderberry (Sambucus nigra L) juice processed from seven cultivars. J. Sci. Food Agric. 2001, 81, 237–244. [Google Scholar] [CrossRef]
- Schneider, R.; Razungles, A.; Augier, C.; Baumes, R. Monoterpenic and norisoprenoidic glycoconjugates of Vitis vinifera L. cv. Melon, B. as precursors of odorants in Muscadet wines. J. Chromatogr. A 2001, 936, 145–157. [Google Scholar] [CrossRef]
- Collin, S.; Nizet, S.; Claeys Bouuaert, T.; Despatures, P.M. Main odorants in Jura flor-sherry wines. Relative contributions of sotolon, abhexon, and theaspirane-derived compounds. J. Agric. Food Chem. 2012, 60, 380–387. [Google Scholar] [CrossRef]
- Lorrain, B.; Chira, K.; Teissedre, P. Phenolic composition of Merlot and Cabernet-Sauvignon grapes from Bordeaux vineyard for the 2009-vintage: Comparison to 2006, 2007 and 2008 vintages. ScienceDirect 2011, 126, 1991–1999. [Google Scholar] [CrossRef] [PubMed]
- Lasanta, C.; Caro, I.; Gómez, J.; Pérez, L. The influence of ripeness grade on the composition of musts and wines from Vitis vinifera cv. Tempranillo grown in a warm climate. Food Res. Int. 2014, 64, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Talaverano, I.; Ubeda, C.; Cáceres-Mella, A.; Valdés, M.E.; Pastenes, C. Water stress and ripeness effects on the volatile composition of Cabernet Sauvignon wines. J. Sci. Food Agric. 2018, 98, 1140–1152. [Google Scholar] [CrossRef]
- Zhang, E.; Chai, F.; Zhang, H.; Li, S.; Liang, Z.; Fan, P. Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp. Food Chem. 2017, 237, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its Importance to Wine Aroma—A Review. South. Afr. J. Enol. Vitic. 2019, 21, 97–129. [Google Scholar] [CrossRef]
- Ahmad, N.; Tian, R.; Lu, J.; Li, G.; Sun, J.; Lin, R.; Zhao, C.; Zhou, C.; Chang, H.; Zhao, S.; et al. DNA fingerprinting and genetic diversity analysis in Asparagus officinalis L. cultivars using microsatellite molecular markers. Genet. Resour. Crop Evol. 2022, 70, 1163–1177. [Google Scholar] [CrossRef]
- Baldermann, S.; Kato, M.; Kurosawa, M.; Kurobayashi, Y.; Fujita, A.; Fleischmann, P.; Watanabe, N. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. J. Exp. Bot. 2010, 61, 2967–2977. [Google Scholar] [CrossRef]
- Liu, J.; Arneborg, N.; Toldam-Andersen, T.B.; Petersen, M.A.; Bredie, W.L. Effect of sequential fermentations and grape cultivars on volatile compounds and sensory profiles of Danish wines. J. Sci. Food Agric. 2017, 9, 3594–3602. [Google Scholar] [CrossRef]
- Battilana, J.; Emanuelli, F.; Gambino, G.; Gribaudo, I.; Gasperi, F.; Boss, P.K.; Grando, M.S. Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation. J. Exp. Bot. 2011, 62, 5497–5508. [Google Scholar] [CrossRef]
- Ahmad, N.; Naeem, M.; Ali, H.; Alabbosh, K.F.; Hussain, H.; Khan, I.; Siddiqui, S.A.; Khan, A.A.; Iqbal, B. From challenges to solutions: The impact of melatonin on abiotic stress synergies in horticultural plants via redox regulation and epigenetic signaling. Sci. Hortic. 2023, 321, 112369. [Google Scholar] [CrossRef]
No. | Compounds | RI | CAS No. | OTV(μg/L) | Aroma Decirptor |
---|---|---|---|---|---|
1. | Geranylacetone | 1857 | 689-67-8 | 60 | Rose, floral |
2. | 6-methyl-5-Hepten-2-one | 1337 | 1569-60-4 | 50 | Sweet, fruity |
3. | 6-methyl-5-Hepten-2-ol | 1458 | 1569-60-4 | 2000 | Fruity, sweet |
4. | TCH | n.a | 2408-37-9 | n.a | n.a |
5. | Cyclocitral | 1096 | 432-25-7 | n.a | Mint |
6. | TDN | 1355 | 30,364-38-6 | 2 | Petrol [13] |
7. | β-damascenone | 1825 | 23,726-91-2 | 0.09 | Sweet, floral, fruity |
8. | ionone | 1489 | 14,901-07-6 | 0.007 | Balsamic, rose |
9. | Dihydro edulan I | 1290 | 41,678-32-4 | n.a | Elderberry [43] |
10. | Vitispirane A | 1248 | 65,416-59-3 | n.a | Woody, spicy |
11. | Vitispirane B | 1252 | 65,416-59-3 | n.a | Woody, spicy |
12. | Riesling acetal | 1612 | 129,601-94-1 | n.a | Floral, raspberry [44] |
13. | Theaspirane A | 2128 | 66,537-39-1 | n.a | Honey, acid drops [45] |
Compounds | Variety | Vintage |
---|---|---|
geranylacetone | 1.42 × 10−39 ** | 1.02 × 10−6 ** |
β-damascenone | 1.76 × 10−42 ** | 3.87 × 10−4 ** |
β- ionone | 3.43 × 10−36 ** | 7.69 × 10−31 ** |
6-methyl-5-Hepten-2-one | 3.50 × 10−11 ** | 1.04 × 10−6 ** |
6-methyl-5-Hepten-2-ol | 4.98 × 10−21 ** | 1.28 × 10−10 ** |
Cyclocitral | 6.88 × 10−92 ** | 3.41 × 10−68 ** |
β-cyclogeraniol | 3.35 × 10−29 ** | 7.82 × 10−5 ** |
Vitispirane A | 3.79 × 10−1 | 1.38 × 10−2 * |
Vitispirane B | 5.62 × 10−3 ** | 8.47 × 10−4 ** |
Riesling acetal | 6.88 × 10−6 ** | 5.31 × 10−1 |
Cis-theaspirane | 2.28 × 10−12 ** | 5.86 × 10−1 |
dihydro_edulan_I | 5.91 × 10−38 ** | 5.60 × 10−1 |
TCH | 1.50 × 10−5 ** | 5.45 × 10−4 ** |
TDN | 1.82 × 10−21 ** | 7.85 × 10−1 |
Genes | Sites | Nucleotide Variation | Amino Acid Sites | Amino Acid Variation | Types of Gene Mutations | Mutation Varieties |
---|---|---|---|---|---|---|
VvCCD1 | ||||||
50 | C/T | 17 | A/V | Non-synonymous mutation | Mus, MR, Gew | |
65 | C/A | 22 | T/K | Non-synonymous mutation | Mus, MR | |
130 | C/T | 44 | H/Y | Non-synonymous mutation | Mus | |
716 | G/C | 239 | S/T | Non-synonymous mutation | Mus | |
1332 | C/T | -- | -- | synonymous mutation | Mus | |
1480 | A/G | 494 | I/V | Non-synonymous mutation | Mus, MR | |
VvCCD4a | ||||||
541 | C/T | 181 | P/S | Non-synonymous mutation | Mus, MR, Gew | |
621 | C/T | -- | -- | synonymous mutation | Mus, MR, Gew | |
681 | G/T | -- | -- | synonymous mutation | Mus | |
733 | C/T | 245 | L/F | Non-synonymous mutation | Gew | |
771 | C/T | -- | -- | synonymous mutation | Gew | |
1075 | A/C | 359 | I/L | Non-synonymous mutation | Mus, Gew | |
1116 | C/G | -- | -- | synonymous mutation | Mus | |
VvCCD4b | ||||||
219 | A/G | -- | -- | synonymous mutation | Mus, MR, Gew | |
464 | T/C | 155 | L/P | Non-synonymous mutation | Mus, MR, Gew | |
535 | T/A | 179 | C/S | Non-synonymous mutation | Mus, MR, Gew | |
606 | C/T | -- | -- | synonymous mutation | Gew | |
609 | A/C | -- | -- | synonymous mutation | Gew | |
663 | C/G | -- | -- | synonymous mutation | MR | |
755 | C/T | 252 | P/L | Non-synonymous mutation | Gew | |
1152 | G/A | -- | -- | synonymous mutation | Gew | |
1159 | T/G | -- | -- | synonymous mutation | Gew | |
1161 | G/A | 387 | W/G | Non-synonymous mutation | Gew |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ahmad, N.; Gao, Y.; Wang, Y.; Meng, X.; Duan, C.; Lu, J.; Pan, Q. Norisoprenoid Accumulation under Genotype and Vintage Effects in Vitis vinifera L. Wine Varieties. Horticulturae 2024, 10, 970. https://doi.org/10.3390/horticulturae10090970
Li X, Ahmad N, Gao Y, Wang Y, Meng X, Duan C, Lu J, Pan Q. Norisoprenoid Accumulation under Genotype and Vintage Effects in Vitis vinifera L. Wine Varieties. Horticulturae. 2024; 10(9):970. https://doi.org/10.3390/horticulturae10090970
Chicago/Turabian StyleLi, Xiangyi, Naveed Ahmad, Yuan Gao, Yachen Wang, Xiao Meng, Changqing Duan, Jiang Lu, and Qiuhong Pan. 2024. "Norisoprenoid Accumulation under Genotype and Vintage Effects in Vitis vinifera L. Wine Varieties" Horticulturae 10, no. 9: 970. https://doi.org/10.3390/horticulturae10090970
APA StyleLi, X., Ahmad, N., Gao, Y., Wang, Y., Meng, X., Duan, C., Lu, J., & Pan, Q. (2024). Norisoprenoid Accumulation under Genotype and Vintage Effects in Vitis vinifera L. Wine Varieties. Horticulturae, 10(9), 970. https://doi.org/10.3390/horticulturae10090970