Influence of Solvent Concentration on the Amount of Individual Phenolic Compounds in Apple and Sour Cherry Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Chemical Products and Reagents
2.3. Methods of Analysis
2.3.1. Sample Preparation
2.3.2. HPLC Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Chen, X.; Deng, J.; Ouyang, D.; Wang, D.; Liang, Y.; Chen, Y.; Sun, Y. Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn. Food Chem. 2020, 332, 127429. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.; Saraiva, J.A.; Pintado, M.E. High value-added compounds from fruit and vegetable by-products–Characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 2022, 60, 1388–1416. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Kobus, Z.; Wilczynski, K.; Nadulski, R.; Rydzak, L.; Guz, T. Effect of solvent polarity on the efficiency of ultrasound-assisted extraction of polyphenols from apple pomace. In IX International Scientific Symposium; University of Life Sciences: Lublin, Poland, 2017. [Google Scholar] [CrossRef]
- Chaouch, M.A.; Benvenuti, S. The Role of Fruit By-Products as Bioactive Compounds for Intestinal Health. Foods 2020, 9, 1716. [Google Scholar] [CrossRef]
- Grigoras, C.G.; Destandau, E.; Fougère, L.; Elfakir, C. Evaluation of apple pomace extracts as a source of bioactive compounds. Ind. Crops Prod. 2013, 49, 794–804. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Parastouei, K.; Khodaiyan, F. Simultaneous extraction optimization and characterization of pectin and phenolics from sour cherry pomace. Int. J. Biol. Macromol. 2020, 158, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Schulz, P.; Rizvi, S.S. Valorization of bioactive compounds in fruit pomace from agro-fruit industries: Present Insights and future challenges. Food Biosci. 2021, 44, 101384. [Google Scholar] [CrossRef]
- Ciccoritti, R.; Paliotta, M.; Centioni, L.; Mencarelli, F.; Carbone, K. The effect of genotype and drying condition on the bioactive compounds of sour cherry pomace. Eur. Food Res. Technol. 2018, 244, 635–645. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef] [PubMed]
- Stoenescu, A.-M.; Trandafir, I.; Cosmulescu, S. Determination of Phenolic Compounds Using HPLC-UV Method in Wild Fruit Species. Horticulturae 2022, 8, 84. [Google Scholar] [CrossRef]
- Phuong, N.N.M.; Le, T.T.; Dang, M.Q.; Van Camp, J.; Raes, K. Selection of extraction conditions of phenolic compounds from rambutan (Nephelium Lappaceum L.) peel. Food Bioprod. Process. 2020, 122, 222–229. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Solid-state fermentation of apple pomace using Phanerocheate chrysosporium–Liberation and extraction of phenolic antioxidants. Food Chem. 2011, 126, 1071–1080. [Google Scholar] [CrossRef]
- Singh, M.; Jha, A.; Kumar, A.; Hettiarachchy, N.; Rai, A.K.; Sharma, D. Influence of the solvents on the extraction of major phenolic compounds (punicalagin, ellagic acid and gallic acid) and their antioxidant activities in pomegranate aril. J. Food Sci. Technol. 2014, 51, 2070–2077. [Google Scholar] [CrossRef]
- Zardo, D.M.; Alberti, A.; Zielinski, A.A.F.; Prestes, A.A.; Esmerino, L.A.; Nogueira, A. Influence of solvents in the extraction of phenolic compounds with antibacterial activity from apple pomace. Sep. Sci. Technol. 2020, 56, 903–911. [Google Scholar] [CrossRef]
- Bai, X.; Yue, T.; Yuan, Y.; Zhang, H. Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J. Sep. Sci. 2010, 33, 3751–3758. [Google Scholar] [CrossRef]
- Leyva-Corral, J.; Quintero-Ramos, A.; Camacho-Dávila, A.; de Jesús Zazueta-Morales, J.; Aguilar-Palazuelos, E.; Ruiz-Gutiérrez, M.G.; Meléndez-Pizarro, C.O.; de Jesús Ruiz-Anchondo, T. Polyphenolic compound stability and antioxidant capacity of apple pomace in an extruded cereal. LWT Food Sci. Technol. 2016, 65, 228–236. [Google Scholar] [CrossRef]
- Xia, P.; Ahmmed, M.K. Exploring efficient extraction methods: Bioactive compounds and antioxidant properties from New Zealand damson plums. Food Biosci. 2023, 55, 103057. [Google Scholar] [CrossRef]
- Yılmaz, F.M.; Görgüç, A.; Karaaslan, M.; Vardin, H.; Ersus Bilek, S.; Uygun, Ö.; Bircan, C. Sour cherry by-products: Compositions, functional properties and recovery potentials—A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3549–3563. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their extraction, analysis, and biological activity. Nat. Prod. Commun. 2022, 17, 1–14. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Satapathy, A.K.; Behera, S.K.; Yadav, A.; Laxmi Mahour, L.N.; Yelamaggad, C.V.; Sandhya, K.L.; Sahoo, B. Tuning the fluorescence behavior of liquid crystal molecules containing Schiff-base: Effect of solvent polarity. J. Lumin. 2019, 210, 371–375. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Wang, C.H.; Zhang, Y.S.; Yang, Y.; Shang, Y.F.; Niu, X.L.; Sun, L.Y.; Ma, Y.L.; Wei, Z.J. Insight into solvent effects on phenolic content and antioxidant activity of bamboo leaves extracts by HPLC analysis. J. Food Meas. Charact. 2018, 12, 2240–2246. [Google Scholar] [CrossRef]
- Muhamad, N.; Muhmed, S.A.; Yusoff, M.M.; Gimbun, J. Influence of solvent polarity and conditions on extraction of antioxidant, flavonoids and phenolic content from Averrhoa bilimbi. J. Food Eng. 2014, 4, 255–260. [Google Scholar] [CrossRef]
- Zhu, K.; Ma, J.; Cong, J.; Zhang, T.; Lei, H.; Xu, H.; Luo, Z.; Li, M. The road to reuse of walnut by-products: A comprehensive review of bioactive compounds, extraction and identification methods, biomedical and industrial applications. Trends Food Sci. Technol. 2024, 143, 104264. [Google Scholar] [CrossRef]
- Reis, S.F.; Rai, D.K.; Abu-Ghannam, N. Water at room temperature as a solvent for the extraction of apple pomace phenolic compounds. Food Chem. 2012, 135, 1991–1998. [Google Scholar] [CrossRef]
- Rasheed, A.; Cobham, E.; Zeighmami, M.; Ong, S. Extraction of phenolic compounds from pineapple fruit. In Proceedings of the 2nd International Symposium on Processing & Drying of Foods, Fruits & Vegetables, Kuala Lumpur, Malaysia, 8–19 June 2012. [Google Scholar]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Jakobek, L.; Šeruga, M. Influence of solvent and temperature on extraction of phenolic compounds from grape seed, antioxidant activity and colour of extract. Int. J. Food Sci. Technol. 2009, 44, 2394–2401. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
Solvent Ratio | Phenolic Compounds mg 100 g−1 DW | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
GA | EA | VA | NCHA | CHA | CFA | FA | EC | MYR | RUT | |
100% EtOH | 1.42 ± 0.16 b | 3.48 ± 0.24 b | n.d. | 46.44 ± 0.60 a | n.d. | n.d. | n.d. | n.d. | 14.28 ± 0.89 b | 0.78 ± 0.39 b |
75% EtOH | 2.68 ± 0.21 a | 6.90 ± 1.13 a | 5.90 ± 1.40 b | 32.09 ± 1.49 b | 4.23 ± 1.86 a | n.d. | 0.42 ± 0.20 a | 1.13 ± 1.19 b | 26.41 ± 4.27 a | 3.95 ± 0.53 a |
50% EtOH | 1.25 ± 0.18 b | 6.49 ± 1.76 a | 8.01 ± 1.06 a | 7.66 ± 1.49 c | 5.73 ± 1.29 a | 4.21 ± 0.68 a | 0.66 ± 0.22 a | 3.37 ± 0.76 a | 23.42 ± 5.25 a | 3.92 ± 0.24 a |
Solvent Ratio | Phenolic Compounds mg 100 g−1 DW | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GA | EA | VA | SAA | NCHA | CHA | SA | C | EC | MYR | RUT | |
100% EtOH | 0.17 ± 0.09 a | 0.84 ± 0.22 b | 0.44 ± 0.08 a | n.d. | 45.20 ± 3.50 a | n.d. | n.d. | 44.63 ± 5.38 c | n.d. | 1.50 ± 0.11 a | 26.67 ± 4.01 b |
75% EtOH | 0.36 ± 0.36 a | 1.79 ± 0.41 a | 0.64 ± 0.31 a | 1.74 ± 0.37 a | 32.60 ± 0.61 b | 2.44 ± 0.12 a | 8.21 ± 0.60 a | 137.86 ± 14.47 a | 3.90 ± 1.09 b | 1.69 ± 0.09 a | 44.26 ± 4.34 a |
50% EtOH | 0.07 ± 0.26 a | 1.50 ± 0.13 a | 0.95 ± 0.37 a | 1.11 ± 0.19 b | 29.12 ± 4.22 b | 3.55 ± 1.07 a | 8.35 ± 1.48 a | 72.27 ± 3.15 b | 20.26 ± 0.42 a | 1.64 ± 0.39 a | 42.45 ± 5.15 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandache, M.B.; Stoenescu, A.-M.; Cosmulescu, S. Influence of Solvent Concentration on the Amount of Individual Phenolic Compounds in Apple and Sour Cherry Pomace. Horticulturae 2024, 10, 900. https://doi.org/10.3390/horticulturae10090900
Mandache MB, Stoenescu A-M, Cosmulescu S. Influence of Solvent Concentration on the Amount of Individual Phenolic Compounds in Apple and Sour Cherry Pomace. Horticulturae. 2024; 10(9):900. https://doi.org/10.3390/horticulturae10090900
Chicago/Turabian StyleMandache, Maria Bianca, Ana-Maria Stoenescu, and Sina Cosmulescu. 2024. "Influence of Solvent Concentration on the Amount of Individual Phenolic Compounds in Apple and Sour Cherry Pomace" Horticulturae 10, no. 9: 900. https://doi.org/10.3390/horticulturae10090900
APA StyleMandache, M. B., Stoenescu, A. -M., & Cosmulescu, S. (2024). Influence of Solvent Concentration on the Amount of Individual Phenolic Compounds in Apple and Sour Cherry Pomace. Horticulturae, 10(9), 900. https://doi.org/10.3390/horticulturae10090900