Increasing Sweet Orange Growth in the Winter Nursery with Supplemental Light and Heating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Light Treatments
2.3. Air Temperature
2.4. Leaf Surface Temperature
2.5. Daily Light Integral (DLI)
2.6. Vegetative and Physiological Measurements
2.7. Statistical Analysis
3. Results
3.1. Daily Light Integral (DLI)
3.2. Greenhouse Temperature
3.3. Leaf Surface Temperature
3.4. Vegetative and Physiological Measurements
3.4.1. Bud Survival
3.4.2. Vegetative Budbreak
3.4.3. Scion Growth
3.4.4. Scion Diameter
3.4.5. Rootstock Diameter
3.4.6. Scion Dry Biomass
3.4.7. Scion Leaf Area
3.4.8. Internode Length
3.4.9. Leaf Chlorophyll Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brar, G.R.P.S.; Spann, T.M. Photoperiodic phytochrome-mediated vegetative growth responses of container-grown citrus nursery trees. Sci. Hort. 2014, 176, 112–119. [Google Scholar] [CrossRef]
- Bowman, K.D.; Joubert, J. Citrus Rootstocks. In The Genus Citrus, 1st ed.; Talon, M., Caruso, M., Gmitter, F.G., Eds.; Elsevier: Cambridge, MA, USA, 2020; pp. 105–127. [Google Scholar]
- Garnsey, S.M.; Barrett, H.C.; Hutchson, D.J. Identification of citrus tristeza virus resistance in citrus relatives and its potential applications. Phytophylactica 1987, 19, 187–192. [Google Scholar]
- Gmitter, F.G.; Xiao, S.Y.; Huang, S.; Hu, X.L.; Garnsey, S.M.; Deng, Z. A localized linkage map of the citrus tristeza virus resistance gene region. Theor. Appl. Genet. 1996, 92, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Mestre, P.F.; Asins, M.J.; Pina, J.A.; Carbonell, E.A.; Navarro, L. Molecular markers flanking citrus tristeza virus resistance gene from Poncirus trifoliata (L.) Raf. Theor. Appl. Genet. 1997, 94, 458. [Google Scholar] [CrossRef]
- Graham, J.; Feichtenberger, E. Citrus phytophthora diseases: Management challenges and successes. J. Cit. Pathol. 2015, 2, 27203. [Google Scholar] [CrossRef]
- Verdejo-Lucas, S.; Kaplan, D.T. The citrus nematode: Tylenchulus semipenetrans. In Plant Resistance to Parasitic Nematodes; Starr, J.L., Cook, R., Bridge, J., Eds.; CABI: Wallingford, UK, 2002; pp. 207–219. [Google Scholar] [CrossRef]
- Ramadugu, C.; Keremane, M.L.; Halbert, S.E.; Duan, Y.P.; Roose, M.L.; Stover, E.; Lee, R.F. Long-term field evaluation reveals Huanglongbing resistance in Citrus relatives. Plant Dis. 2016, 100, 1858–1869. [Google Scholar] [CrossRef]
- Albrecht, U.; Bowman, K.D. Tolerance of the trifoliate citrus hybrid US-897 (Citrus reticulata Blanco × Poncirus trifoliata L. Raf.) to Huanglongbing. HortScience 2011, 46, 16–22. [Google Scholar] [CrossRef]
- Bowman, K.D.; McCollum, G. Five new citrus rootstocks with improved tolerance to huanglongbing. HortScience 2015, 50, 1731–1734. [Google Scholar] [CrossRef]
- Wollaeger, H.M.; Runkle, E.S. Growth and acclimation of impatiens, salvia, petunia, and tomato seedlings to blue and red light. HortScience 2015, 50, 522–529. [Google Scholar] [CrossRef]
- Meng, Q.; Runkle, E.S. Far-red radiation interacts with relative and absolute blue and red photon flux densities to regulate growth, morphology, and pigmentation of lettuce and basil seedlings. Sci. Hortic. 2019, 255, 269–280. [Google Scholar] [CrossRef]
- Kelly, N.; Choe, D.; Meng, Q.; Runkle, E.S. Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Sci. Hortic. 2020, 272, 109565. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Faust, J.E.; Logan, J. Daily light integral: A research review and high-resolution maps of the United States. HortScience 2020, 53, 1250–1257. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, A.; Cheng, Z.M.M. Effects of light emitting diode lights on plant growth, development and traits a meta-analysis. Hortic. Plant J. 2021, 7, 552–564. [Google Scholar] [CrossRef]
- Hoffmann, A.M.; Noga, G.; Hunsche, M. Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit. J. Plant Res. 2015, 128, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Simlat, M.; Ślęzak, P.; Moś, M.; Warchoł, M.; Skrzypek, E.; Ptak, A. The effect of light quality on seed germination, seedling growth and selected biochemical properties of Stevia rebaudiana Bertoni. Sci. Hortic. 2016, 211, 295–304. [Google Scholar] [CrossRef]
- Bowman, K.D.; Albrecht, U. Improving winter growth in the citrus nursery with LED and HPS supplemental lighting. HortScience 2021, 56, 21–27. [Google Scholar] [CrossRef]
- Inoue, H. Effects of day length and temperature on the vegetative growth and flower bud differentiation of satsuma mandarin. J. Japan. Soc. Hortic. Sci. 1989, 58, 563–567. [Google Scholar] [CrossRef]
- Nauer, E.M.; Boswell, S.B.; Holmes, R.C. Chemical treatments, greenhouse temperature, and supplemental day length affect forcing and growth of newly budded orange trees. HortScience 1979, 14, 229–231. [Google Scholar] [CrossRef]
- Piringer, A.A.; Downs, R.J.; Borthwick, H.A. Effects of photoperiod and kind of supplemental light on the growth of three species of citrus and Poncirus trifoliata. Proc. Am. Soc. Hortic. Sci. 1961, 77, 202–210. [Google Scholar]
- Young, R.H. Influence of day length, light intensity and temperature on growth, dormancy and cold hardiness of red-blush grapefruit trees. Proc. Am. Soc. Hortic. Sci. 1961, 78, 174–180. [Google Scholar]
- Zheng, L.; He, H.; Song, W. Application of light-emitting diodes and the effect of light quality on horticultural crops: A review. HortScience 2019, 54, 1661. [Google Scholar] [CrossRef]
- Janda, T.; Prerostová, S.; Vanková, R.; Darkó, É. Crosstalk between light-and temperature-mediated processes under cold and heat stress conditions in plants. Intern. J. Mol. Sci. 2021, 22, 8602. [Google Scholar] [CrossRef]
- Franklin, K.A. Light and temperature signal crosstalk in plant development. Curr. Opin. Plant Biol. 2009, 12, 63–68. [Google Scholar] [CrossRef]
- Kami, C.; Lorrain, S.; Hornitschek, P.; Fankhauser, C. Light-regulated plant growth and development. Curr. Top. Dev. Biol. 2010, 91, 29–66. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, M.; Kim, R.J.A.; Moore, C.M.; Chen, M. Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat. Commun. 2019, 10, 140. [Google Scholar] [CrossRef] [PubMed]
- Legris, M.; Klose, C.; Burgie, E.S.; Rojas, C.C.R.; Neme, M.; Hiltbrunner, A.; Wigge, P.A.; Schäfer, E.; Vierstra, R.D.; Casal, J.J. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 2016, 354, 897–900. [Google Scholar] [CrossRef]
- Dechaine, J.M.; Gardner, G.; Weinig, C. Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturation. Plant Cell Environ. 2009, 32, 1297–1309. [Google Scholar] [CrossRef]
- Niedz, R.P.; Bowman, K.D. Improving citrus bud grafting efficiency. Sci. Rep. 2023, 13, 17807. [Google Scholar] [CrossRef]
- Warner, R.M.; Worku, Z.; Silva, J.A. Effect of photoperiod on growth responses of citrus rootstocks. J. Am. Soc. Hortic. Sci. 1979, 104, 232–235. [Google Scholar] [CrossRef]
- Ortiz, J.M. Botany: Taxonomy, morphology and physiology of fruits, leaves and flowers. In The Genus Citrus; Dugo, G., Di Giacomo, A., Eds.; CRC Press: Boca Raton, FL, USA, 2002; pp. 30–49. [Google Scholar]
- Primo-Millo, E.; Agustí, M. Vegetative growth. In The Genus Citrus, 1st ed.; Talon, M., Caruso, M., Gmitter, F.G., Jr., Eds.; Woodhead Publishing: Sawston, UK, 2020; Chapter 10; pp. 193–244. [Google Scholar]
- Yelenosky, G. Cold hardiness in citrus. Hortic. Rev. 1985, 7, 201–238. [Google Scholar]
- Singh, H.; Khezri, M.; Bushoven, J.; Benes, S.; Hadavi, F.; Brar, G. Carbohydrate partitioning and vegetative growth of citrus nursery trees influenced by varying photoperiods under LED lighting. Hortic. J. 2022, 91, 467–475. [Google Scholar] [CrossRef]
- Wu, Q.S.; Zou, Y.N. Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Sci. Hortic. 2010, 125, 289–293. [Google Scholar] [CrossRef]
- Liu, B.; Heins, R.D. Is plant quality related to the ratio of radiant energy to thermal energy? In II Workshop on Environmental Regulation of Plant Morphogenesis; Acta Horticulturae: Leuven, Belgium, 1996; Volume 435, pp. 171–182. [Google Scholar]
- Walters, K.J.; Lopez, R.G. Modeling growth and development of hydroponically grown dill, parsley, and watercress in response to photosynthetic daily light integral and mean daily temperature. PLoS ONE 2021, 16, e0248662. [Google Scholar] [CrossRef] [PubMed]
- Dannehl, D.; Schwend, T.; Veit, D.; Schmidt, U. Increase of yield, lycopene, and lutein content in tomatoes grown under continuous PAR spectrum LED lighting. Front. Plant Sci. 2021, 12, 611236. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.A.; Bugbee, B. Analysis of environmental effects on leaf temperature under sunlight, high pressure sodium and light emitting diodes. PLoS ONE 2015, 10, e0138930. [Google Scholar] [CrossRef]
- Fukuda, N. Advanced light control technologies in protected horticulture: A review of morphological and physiological responses in plant to light quality and its application. J. Dev. Sustain. Agric. 2013, 8, 32–40. [Google Scholar] [CrossRef]
- Weller, J.L.; Kendrick, R.E. Photomorphogenesis and photoperiodism in plants. In Photobiology: The Science of Light and Life; Bjorn, L.O., Ed.; Springer: New York, NY, USA, 2008; pp. 299–321. [Google Scholar] [CrossRef]
- Park, Y.; Runkle, E.S. Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environ. Exp. Bot. 2017, 136, 41–49. [Google Scholar] [CrossRef]
- Liu, J.; van Iersel, M.W. Far-red photons increase light capture but have lower photosynthetic capacity than red photons. J. Am. Soc. Hortic. Sci. 2023, 148, 253–265. [Google Scholar] [CrossRef]
- Costa-Galvão, V.; Fankhauser, C. Sensing the light environment in plants: Photoreceptors and early signaling steps. Curr. Opin. Neurobiol. 2015, 34, 46–53. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Time Point | HTG | MTG | NHG | ||||||
---|---|---|---|---|---|---|---|---|---|
NSL | DLE | NI | NSL | DLE | NI | NSL | DLE | NI | |
Pre-conditioning | 9 | 15 | 9 | 9 | 11 | 10 | 12 | 17 | 13 |
4 wab | 9 | 18 | 11 | 10 | 15 | 12 | 14 | 26 | 14 |
6 wab | 11 | 28 | 13 | 11 | 22 | 14 | 17 | 34 | 18 |
8 wab | 11 | 26 | 13 | 13 | 22 | 14 | 18 | 35 | 21 |
10 wab | 9 | 26 | 13 | 14 | 23 | 15 | 19 | 36 | 23 |
12 wab | 14 | 30 | 16 | 15 | 22 | 16 | 24 | 41 | 28 |
14 wab | 13 | 23 | 16 | 17 | 22 | 19 | 23 | 39 | 28 |
Average | 11 | 24 | 13 | 13 | 20 | 14 | 18 | 32 | 21 |
Time Point | HTG | MTG | NHG | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Avg | Max Avg | Min Avg | Amplitude | Avg | Max Avg | Min Avg | Amplitude | Avg | Max Avg | Min Avg | Amplitude | |
2 wab | 30.2 | 36.6 | 26.5 | 10.1 | 25.8 | 32.3 | 21.8 | 10.5 | 24.0 | 34.0 | 16.8 | 17.3 |
4 wab | 30.0 | 36.3 | 26.0 | 10.2 | 25.3 | 32.6 | 21.7 | 10.9 | 22.3 | 34.2 | 11.5 | 22.7 |
6 wab | 29.7 | 36.3 | 26.2 | 10.1 | 24.8 | 31.8 | 20.9 | 10.9 | 20.8 | 33.3 | 8.9 | 24.4 |
8 wab | 28.7 | 36.4 | 23.7 | 12.7 | 24.1 | 31.3 | 20.1 | 11.2 | 17.4 | 31.3 | 3.1 | 28.2 |
10 wab | 29.3 | 37.1 | 25.6 | 11.5 | 24.6 | 33.1 | 20.3 | 12.8 | 19.9 | 35.2 | 4.0 | 31.2 |
12 wab | 30.1 | 37.5 | 26.1 | 11.4 | 25.8 | 33.1 | 21.6 | 11.5 | 22.9 | 36.0 | 9.0 | 27.0 |
14 wab | 30.2 | 38.0 | 25.9 | 12.1 | 25.9 | 32.6 | 21.6 | 11.0 | 24.0 | 38.0 | 8.8 | 29.2 |
Average | 29.7 | 36.9 | 25.7 | 11.2 | 25.2 | 32.4 | 21.1 | 11.3 | 21.6 | 34.6 | 8.9 | 25.7 |
Greenhouse | Supplemental Light | No Supplemental Light | p-Value |
---|---|---|---|
HTG | 29.1 °C | 26.9 °C | <0.001 |
MTG | 25.3 °C | 23.7 °C | <0.001 |
NHG | 23.0 °C | 20.8 °C | <0.001 |
Factor | Bud Survival (%) | Budbreak (%) | ||||
---|---|---|---|---|---|---|
12 wab | 6 wab | 8 wab | 10 wab | 12 wab | 14 wab | |
HTG | ||||||
Light treatment | ||||||
NSL | 95.5 | 59.1 b | 69.3 | 75.0 | 80.1 | 81.3 |
DLE + P | 88.4 | 81.3 a | 80.1 | 84.7 | 87.0 | 87.0 |
DLE | 94.3 | 67.6 ab | 72.2 | 76.1 | 76.1 | 77.3 |
NI + P | 96.9 | 70.5 ab | 75.6 | 81.3 | 84.7 | 84.7 |
NI | 94.9 | 67.0 ab | 67.6 | 73.3 | 79.5 | 80.7 |
p-value | 0.066 | 0.026 | 0.228 | 0.086 | 0.094 | 0.141 |
Rootstock | ||||||
Carrizo | 95.2 | 64.3 b | 69.3 | 73.6 b | 76.4 b | 76.8 b |
Rubidoux | 92.7 | 73.9 a | 76.6 | 82.5 a | 86.6 a | 87.5 a |
p-value | 0.189 | 0.023 | 0.056 | 0.004 | <0.001 | <0.001 |
Light treatment × Rootstock | ||||||
p-value | 0.269 | 0.784 | 0.845 | 0.470 | 0.124 | 0.077 |
Block | ||||||
p-value | 0.912 | 0.010 | 0.111 | 0.038 | 0.191 | 0.283 |
MTG | ||||||
Light treatment | ||||||
NSL | 97.2 | 50.6 ab | 68.8 | 75.0 | 79.5 | 81.3 |
DLE + P | 96.6 | 55.7 a | 60.2 | 68.8 | 71.6 | 74.4 |
DLE | 97.7 | 54.0 ab | 63.6 | 72.2 | 76.1 | 77.8 |
NI + P | 94.3 | 30.1 b | 47.7 | 56.8 | 63.6 | 65.9 |
NI | 94.6 | 43.2 ab | 54.0 | 61.9 | 67.6 | 68.2 |
p-value | 0.437 | 0.031 | 0.054 | 0.079 | 0.065 | 0.081 |
Rootstock | ||||||
Carrizo | 98.2 a | 55.7 a | 74.3 a | 76.4 a | 79.5 a | 80.0 a |
Rubidoux | 94.0 b | 37.7 b | 43.4 b | 57.5 b | 63.9 b | 67.0 b |
p-value | 0.005 | 0.002 | <0.001 | <0.001 | <0.001 | 0.002 |
Light treatment × Rootstock | ||||||
p-value | 0.601 | 0.310 | 0.705 | 0.625 | 0.397 | 0.309 |
Block | ||||||
p-value | 0.793 | 0.140 | 0.365 | 0.503 | 0.209 | 0.266 |
NHG | ||||||
Light treatment | ||||||
NSL | 95.5 | 75.6 | 81.3 | 83.5 | 89.2 | 90.9 |
DLE + P | 95.2 | 63.1 | 77.3 | 83.5 | 89.2 | 90.9 |
DLE | 96.6 | 68.2 | 85.2 | 86.9 | 93.2 | 94.3 |
NI + P | 97.2 | 60.8 | 80.7 | 84.1 | 90.3 | 93.8 |
NI | 95.2 | 63.1 | 77.3 | 77.8 | 85.8 | 87.5 |
p-value | 0.921 | 0.391 | 0.318 | 0.441 | 0.310 | 0.368 |
Rootstock | ||||||
Carrizo | 99.3 a | 72.3 a | 88.6 a | 93.2 a | 96.1 a | 97.5 a |
Rubidoux | 92.5 b | 60.0 b | 72.0 b | 73.2 b | 83.0 b | 85.5 b |
p-value | <0.001 | 0.024 | <0.001 | <0.001 | <0.001 | <0.001 |
Light treatment × Rootstock | ||||||
p-value | 0.891 | 0.197 | 0.654 | 0.850 | 0.890 | 0.683 |
Block | ||||||
p-value | 0.383 | 0.086 | 0.328 | 0.604 | 0.754 | 0.554 |
Factor | 6 wab | 8 wab | 10 wab | 12 wab | 14 wab |
---|---|---|---|---|---|
HTG | |||||
Light treatment | |||||
NSL | 5.1 bc | 6.5 b | 16.6 b | 18.0 b | 34.2 b |
DLE + P | 6.6 a | 9.0 a | 24.8 a | 28.5 a | 44.4 a |
DLE | 6.5 ab | 9.5 a | 25.0 a | 28.7 a | 44.0 a |
NI + P | 4.5 c | 6.1 b | 17.7 b | 20.4 b | 39.0 ab |
NI | 6.1 ab | 7.8 ab | 19.0 b | 19.9 b | 36.5 b |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Rootstock | |||||
Carrizo | 6.5 a | 9.0 a | 23.7 a | 25.7 a | 45.3 a |
Rubidoux | 5.2 b | 6.5 b | 17.5 b | 20.5 b | 33.9 b |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Light treatment × Rootstock | |||||
p-value | 0.431 | 0.819 | 0.920 | 0.904 | 0.634 |
Block | |||||
p-value | 0.005 | 0.092 | 0.026 | 0.069 | 0.574 |
MTG | |||||
Light treatment | |||||
NSL | 1.9 a | 8.0 | 8.5 ab | 23.1 bc | 29.0 b |
DLE + P | 2.7 a | 8.5 | 10.7 a | 28.3 a | 35.1 a |
DLE | 2.7 a | 8.3 | 10.7 a | 27.5 ab | 36.8 a |
NI + P | 1.6 a | 7.5 | 7.7 b | 20.1 c | 27.6 b |
NI | 1.9 a | 7.7 | 8.4 ab | 22.5 bc | 28.3 b |
p-value | 0.027 | 0.527 | 0.001 | <0.001 | <0.001 |
Rootstock | |||||
Carrizo | 1.6 a | 9.4 a | 10.7 a | 30.7 a | 37.6 a |
Rubidoux | 2.7 b | 6.6 b | 7.7 b | 17.9 b | 25.1 b |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Light treatment × Rootstock | |||||
p-value | 0.255 | 0.398 | 0.127 | 0.279 | 0.886 |
Block | |||||
p-value | 0.129 | 0.227 | 0.739 | 0.723 | 0.342 |
NHG | |||||
Light treatment | |||||
NSL | 1.6 | 6.9 | 9.6 | 11.7 ab | 35.0 b |
DLE + P | 0.9 | 5.3 | 8.8 | 12.1 ab | 35.0 b |
DLE | 1.2 | 6.7 | 10.1 | 14.4 a | 41.0 a |
NI + P | 1.1 | 5.8 | 8.9 | 11.1 b | 35.4 b |
NI | 1.4 | 5.9 | 9.3 | 11.2 b | 33.3 b |
p-value | 0.217 | 0.278 | 0.278 | 0.028 | <0.001 |
Rootstock | |||||
Carrizo | 1.1 | 6.6 | 11.4 a | 14.3 a | 44.8 a |
Rubidoux | 1.4 | 5.6 | 7.4 b | 9.8 b | 27.1 b |
p-value | 0.264 | 0.052 | <0.001 | <0.001 | <0.001 |
Light treatment × Rootstock | |||||
NSL × Carrizo | 1.8 | 8.6 | 12.9 a | 15.1 | 45.6 |
DLE + P × Carrizo | 0.7 | 5.6 | 10.9 a | 14.6 | 44.1 |
DLE × Carrizo | 1.2 | 6.8 | 11.6 a | 16.3 | 49.0 |
NI + P × Carrizo | 0.9 | 6.1 | 11.0 a | 13.3 | 44.9 |
NI × Carrizo | 1.1 | 5.9 | 10.6 a | 12.3 | 40.4 |
NSL × Rubidoux | 1.5 | 5.1 | 6.3 b | 8.3 | 24.4 |
DLE + P × Rubidoux | 1.0 | 5.0 | 6.8 b | 9.5 | 26.0 |
DLE × Rubidoux | 1.2 | 6.6 | 8.7 a | 12.5 | 33.1 |
NI + P × Rubidoux | 1.3 | 5.4 | 6.9 b | 8.9 | 25.9 |
NI × Rubidoux | 1.8 | 5.9 | 8.1 a | 10.0 | 26.3 |
p-value | 0.630 | 0.204 | 0.038 | 0.329 | 0.274 |
Block | |||||
p-value | 0.295 | 0.066 | 0.182 | 0.046 | 0.125 |
Factor | Scion Stem Diameter (mm) | Rootstock Stem Diameter (mm) | Scion Dry Biomass (g) | Scion Leaf Area (cm2) | Internode Length (mm) | Chlorophyll Index |
---|---|---|---|---|---|---|
HTG | ||||||
Light treatment | ||||||
NSL | 3.4 b | 6.7 c | 4.9 b | 488 c | 16.0 | 73.3 b |
DLE + P | 4.3 a | 7.7 a | 8.3 a | 710 ab | 15.8 | 80.2 a |
DLE | 4.4 a | 7.4 b | 9.2 a | 752 a | 15.9 | 80.4 a |
NI + P | 3.7 b | 6.9 c | 5.9 b | 592 bc | 15.9 | 73.5 b |
NI | 3.5 b | 6.6 c | 5.5 b | 519 c | 15.9 | 72.9 b |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | 0.917 | <0.001 |
Rootstock | ||||||
Carrizo | 4.2 a | 7.5 a | 8.3 a | 734 a | 16.9 a | 76.3 |
Rubidoux | 3.5 b | 6.6 b | 5.2 b | 490 b | 14.9 b | 75.8 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.395 |
Light treatment × Rootstock | ||||||
p-value | 0.214 | 0.475 | 0.715 | 0.301 | 0.082 | 0.455 |
Block | ||||||
p-value | 0.562 | 0.644 | 0.705 | 0.222 | 0.095 | 0.177 |
MTG | ||||||
Light treatment | ||||||
NSL | 3.7 b | 7.0 b | 4.6 b | 495 b | 16.4 | 69.7 b |
DLE + P | 4.4 a | 7.9 a | 7.7 a | 649 a | 15.8 | 74.8 a |
DLE | 4.3 a | 7.8 a | 7.7 a | 647 a | 15.7 | 75.8 a |
NI + P | 3.6 b | 6.8 b | 4.4 b | 456 b | 16.3 | 68.3 b |
NI | 3.7 b | 6.9 b | 4.7 b | 481 b | 16.0 | 69.9 b |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | 0.632 | <0.001 |
Rootstock | ||||||
Carrizo | 4.5 a | 7.9 a | 8.0 a | 723 a | 17.3 a | 71.6 |
Rubidoux | 3.3 b | 6.6 b | 3.6 b | 368 b | 14.8 b | 71.9 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.537 |
Light treatment × Rootstock | ||||||
p-value | 0.781 | 0.421 | 0.079 | 0.413 | 0.353 | 0.559 |
Block | ||||||
p-value | 0.262 | 0.171 | 0.427 | 0.551 | 0.764 | 0.224 |
NHG | ||||||
Light treatment | ||||||
NSL | 3.7 ab | 7.4 ab | 5.3 b | 520 ab | 17.1 | 79.4 |
DLE + P | 3.7 ab | 7.6 a | 5.7 ab | 514 b | 17.2 | 82.5 |
DLE | 4.0 a | 7.6 a | 6.7 a | 662 a | 17.5 | 80.3 |
NI + P | 3.5 b | 7.2 b | 4.9 b | 491 b | 17.8 | 80.2 |
NI | 3.7 b | 7.3 b | 4.8 b | 493 b | 17.1 | 80 |
p-value | <0.001 | <0.001 | <0.001 | 0.009 | 0.23 | 0.388 |
Rootstock | ||||||
Carrizo | 4.3 a | 8.0 a | 7.5 a | 700 a | 19.4 a | 81.1 |
Rubidoux | 3.1 b | 6.7 b | 3.5 b | 371 b | 15.3 b | 79.9 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.246 |
Light treatment × Rootstock | ||||||
p-value | 0.612 | 0.38 | 0.269 | 0.355 | 0.241 | 0.719 |
Block | ||||||
p-value | 0.556 | 0.227 | 0.165 | 0.252 | 0.19 | 0.488 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisi, R.B.; Bowman, K.D.; Albrecht, U. Increasing Sweet Orange Growth in the Winter Nursery with Supplemental Light and Heating. Horticulturae 2024, 10, 897. https://doi.org/10.3390/horticulturae10090897
Bisi RB, Bowman KD, Albrecht U. Increasing Sweet Orange Growth in the Winter Nursery with Supplemental Light and Heating. Horticulturae. 2024; 10(9):897. https://doi.org/10.3390/horticulturae10090897
Chicago/Turabian StyleBisi, Rayane Barcelos, Kim D. Bowman, and Ute Albrecht. 2024. "Increasing Sweet Orange Growth in the Winter Nursery with Supplemental Light and Heating" Horticulturae 10, no. 9: 897. https://doi.org/10.3390/horticulturae10090897
APA StyleBisi, R. B., Bowman, K. D., & Albrecht, U. (2024). Increasing Sweet Orange Growth in the Winter Nursery with Supplemental Light and Heating. Horticulturae, 10(9), 897. https://doi.org/10.3390/horticulturae10090897