Assessing Elemental Diversity in Edible-Podded Peas: A Comparative Study of Pisum sativum L. var. macrocarpon and var. saccharatum through Principal Component Analysis, Correlation, and Cluster Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Location and Climatic Conditions
2.3. Cultural Practices
2.4. Elemental Analysis
2.5. Statistical Analysis
3. Results
3.1. ANOVA and Mean Performance of Genotypes
3.2. Genetic Components of Variation
3.2.1. Genotypic Coefficient of Variation (%)
3.2.2. Phenotypic Coefficient of Variation (%)
3.3. Heritability and Genetic Gain
3.3.1. Heritability
3.3.2. Genetic Gain
3.4. Correlation of Nutrient Components
3.5. Principal Component Analysis
3.6. Hierarchical Cluster Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhall, R.K.; Kaur, R.; Sharma, P.; Singh, H.; Yadav, S.; Kumari, P. Standardized agronomic practices for mechanical harvesting of the single-harvest garden pea in India. Heliyon 2023, 9, e22616. [Google Scholar] [CrossRef] [PubMed]
- Ram, H.; Hedau, N.K.; Chaudhari, G.V.; Kant, L. Peas with zero shelling edible pods: A review. Sci. Hortic. 2021, 288, 110333. [Google Scholar] [CrossRef]
- Rudra, S.G.; Hanan, E.; Sagar, V.R.; Bhardwaj, R.; Basu, S.; Sharma, V. Manufacturing of mayonnaise with pea pod powder as a functional ingredient. J. Food Meas. Charact. 2020, 14, 2402–2413. [Google Scholar] [CrossRef]
- Sneddon, J.L. Identification of garden pea varieties. (I) Grouping, arrangement, and use of continuous characters. J. Natl. Inst. Agric. Bot. 1970, 12, 1–16. [Google Scholar]
- Lim, T.K. Pisum sativum. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2012; Volume 2, pp. 849–866. [Google Scholar]
- Mateos-Aparicio, I.; Redondo-Cuenca, A.; Villanueva-Suárez, M.J.; Zapata-Revilla, M.-A.; Tenorio-Sanz, M.-D. Pea pod, broad bean pod and okra, potential sources of functional compounds. LWT-Food Sci. Technol. 2010, 43, 1467–1470. [Google Scholar] [CrossRef]
- Nasir, G.; Zaidi, S.; Tabassum, N.; Asfaq. A review on nutritional composition, health benefits and potential applications of by-products from pea processing. Biomass Convers. Biorefin. 2022, 14, 10829–10842. [Google Scholar] [CrossRef]
- Available online: https://openknowledge.fao.org/handle/20.500.14283/cc8228en (accessed on 5 August 2024).
- Demirbaş, A. Micro and macronutrients diversity in Turkish pea (Pisum sativum) germplasm. Int. J. Agric. Biol. 2018, 20, 701–710. [Google Scholar]
- Harmankaya, M.; Ceyhan, E.; Çelik, A.S.; Sert, H.; Kahraman, A.; Özcan, M.M. Some chemical properties, mineral content and amino acid composition of cowpeas (Vigna sinensis (L.) Savi). Qual. Assur. Saf. Crops Foods 2016, 8, 111–116. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Çilesiz, Y.; Yüce, İ.; Baloch, F.S.; Karaköy, T. Macro and micronutrients diversity in the seeds of field pea germplasm. Pak. J. Bot. 2021, 53, 1655–1664. [Google Scholar] [CrossRef]
- Hacisalihoglu, G.; Beisel, N.S.; Settles, A.M. Characterization of pea seed nutritional value within a diverse population of Pisum sativum. PLoS ONE 2021, 16, e0259565. [Google Scholar] [CrossRef]
- Ton, A.; Mart, D.; Karaköy, T.; Türkeri, M.; Torun, A.A.; Anlarsal, A.E. Characterization of some local pea (Pisum sativum L.) genotypes for agro-morphological traits and mineral concentrations. Turk. J. Agric. For. 2022, 46, 245–256. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2018. Available online: https://cran.r-project.org/bin/windows/base/ (accessed on 25 May 2023).
- Sivasubramanian, S.; Menon, M. Heterosis and inbreeding depression in rice Madras. Agric. J. 1973, 60, 1139–1140. [Google Scholar]
- Bello, O.B.; Ige, S.A.; Azeez, M.A.; Afolabi, M.S.; Abdulmaliq, S.Y.; Mahamood, J. Heritability and genetic advance for grain yield and its component characters in maize (Zea mays L.). Int. J. Plant Res. 2012, 2, 138–145. [Google Scholar]
- Falconer, D.S. Introduction to Quantitative Genetics, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Fisher, R.A.; Yates, F. Statistical Tables for Biological, Agricultural and Medical Research, 6th ed.; Oliver and Boyd: London, UK, 1963. [Google Scholar]
- Harmankaya, M.; Özcan, M.M.; Karadaş, S.; Ceyhan, E. Protein and mineral contents of pea (Pisum sativum L.) genotypes grown in central Anatolian region of Turkey. South-West J. Hort. Biol. Environ. 2010, 1, 159–165. [Google Scholar]
- Karaköy, T.; Demİrbaș, A. Evaluation of Turkey origined local pea (Pisum sativum L.) genotypes grown in Sivas ecological conditions in term of some nutrient contents. Adü Ziraat Derg. 2017, 14, 7–11. [Google Scholar] [CrossRef]
- Ceyhan, E.; Şimşek, D. Inheritance of some quality characters in canned pea population. Türk Tarım Doğa Bilim. Derg. 2021, 8, 188–195. [Google Scholar] [CrossRef]
- Karaköy, T.; Erdem, H.; Baloch, F.S.; Toklu, F.; Eker, S.; Kilian, B.; Özkan, H. Diversity of macro-and micronutrients in the seeds of lentil landraces. Sci. World J. 2012, 1, 710412. [Google Scholar] [CrossRef]
- Jayalakshmi, V.; Reddy, A.T.; Nagamadhuri, K.V. Genetic diversity and variability for protein and micro nutrients in advance breeding lines and chickpea varieties grown in Andhra Pradesh. Legume Res. 2018, 42, 768–772. [Google Scholar] [CrossRef]
- Karaköy, T.; Toklu, F.; Karagöl, E.T.; Uncuer, D.; Çilesiz, Y.; Ali, A.; Nadeem, M.A.; Özkan, H. Genome-wide association studies revealed DArTseq loci associated with agronomic traits in Turkish faba bean germplasm. Genet. Resour. Crop Evol. 2023, 71, 181–198. [Google Scholar] [CrossRef]
- Saha, A.J.; Mehzabin, P.; Reddy, K.S.; Ramachandran, V. Effect of seasonal variation on micronutrient content in chickpea (Cicer arietinum L.) and identification of accessions having high iron and zinc. J. Food Legumes 2017, 31, 1–4. [Google Scholar]
- Bhasker, K.; Shashibhushan, D.; Murali Krishna, K.; Bhave, M. Genetic variability, heritability and genetic advance of grain yield in pearl millet [Pennisetum glaucum (L.) R. Br.]. Int. J. Pure App. Biosci. 2017, 5, 1228–1231. [Google Scholar]
- Bilgin, O.; Korkut, K.Z.; Bașer, I.; Dağlioğlu, O.; Öztürk, I.; Kahraman, T.; Balkan, A. Variation and heritability for some semolina characteristics and grain yield and their relations in durum wheat (Triticum durum Desf.). World J. Agric 2010, 6, 301–308. [Google Scholar]
- Hamidou, F.; Ratnakumar, P.; Halilou, O.; Mponda, O.; Kapewa, T.; Monyo, E.; Faye, I.; Ntare, B.; Nigam, S.; Upadhyaya, H. Selection of intermittent drought tolerant lines across years and locations in the reference collection of groundnut (Arachis hypogaea L.). Field Crop. Res. 2012, 126, 189–199. [Google Scholar] [CrossRef]
- Gerrano, A.S.; van Rensburg, W.S.J.; Adebola, P.O. Nutritional composition of immature pods in selected cowpea [Vigna unguiculata (L.) Walp.] genotypes in South Africa. Aust. J. Crop Sci. 2017, 11, 134–141. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sharma, A.; Lata, H. Genetic variability for pod yield and related traits in garden pea (Pisum sativum L.). Electron. J. Plant Breed. 2020, 11, 1233–1238. [Google Scholar]
- Singh, B.D. Plant Breeding: Principles and Methods; Kalyani Publishers: New Delhi, India, 2001. [Google Scholar]
- Johnson, H.W.; Robinson, H.F.; Comstock, R.E. Estimates of genetic and environmental variability in Soybeans1. Agron. J. 1955, 47, 314. [Google Scholar] [CrossRef]
- Özer, S.; Karaköy, T.; Toklu, F.; Baloch, F.S.; Kilian, B.; Özkan, H. Nutritional and physicochemical variation in Turkish kabuli chickpea (Cicer arietinum L.) landraces. Euphytica 2010, 175, 237–249. [Google Scholar] [CrossRef]
- Gerrano, A.S.; Jansen-van-Rensburg, W.S.; Venter, S.L.; Shargie, N.G.; Amelework, B.A.; Shimelis, H.A.; Labuschagne, M.T. Selection of cowpea genotypes based on grain mineral and total protein content. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2019, 69, 155–166. [Google Scholar] [CrossRef]
- Walker, W.M.; Miller, J.E.; Hassett, J.J. Effect of lead and cadmium upon the calcium, magnesium, potassium, and phosphorus concentration in young corn plants. Soil Sci. 1977, 124, 145–151. [Google Scholar] [CrossRef]
- Robson, A.D.; Pitman, J.B. Interactions between nutrients in higher plants. In Inorganic Plant Nutrition; Läuchli, A., Bieleski, R.L., Eds.; Springer: New York, NY, USA, 1983; pp. 147–180. [Google Scholar]
- Nguyen, T.D.; Cavagnaro, T.R.; Watts-Williams, S.J. The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: A physiological and molecular assessment. Sci. Rep. 2019, 9, 14880. [Google Scholar] [CrossRef]
- Murube, E.; Beleggia, R.; Pacetti, D.; Nartea, A.; Frascarelli, G.; Lanzavecchia, G.; Bellucci, E.; Nanni, L.; Gioia, T.; Marciello, U.; et al. Characterization of nutritional quality traits of a common bean germplasm collection. Foods 2021, 10, 1572. [Google Scholar] [CrossRef] [PubMed]
- Ene, C.O.; Abtew, W.G.; Oselebe, H.O.; Ozi, F.U.; Ikeogu, U.N. Genetic characterization and quantitative trait relationship using multivariate techniques reveal diversity among tomato germplasms. Food Sci. Nutr. 2022, 10, 2426–2442. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.M.; Xue, J.; Jia, Y.H.; Liu, Z.Q. The cluster analysis on tomato germplasms. Acta Agric. Bor. Sin. 2006, 21, 49–54. [Google Scholar]
Source of Variation | D.F. | Mean Squares | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Mg | P | K | S | Cu | Fe | Mn | Ni | Zn | Na | ||
Genotypes | 23 | 16.61 *** | 1.10 *** | 10.82 *** | 59.87 *** | 4.50 *** | 819.63 *** | 106.193 *** | 329.09 *** | 8.72 *** | 846.93 *** | 1332.14 *** |
Replication | 2 | 0.86 | 0.002 | 0.10 | 0.56 | 0.02 | 0.47 | 134.00 | 0.45 | 0.004 | 1.11 | 0.25 |
Error | 46 | 0.62 | 0.006 | 0.02 | 0.27 | 0.14 | 0.81 | 48.00 | 0.82 | 0.008 | 1.98 | 1.5 |
F value | - | 26.79 | 183.33 | 541.00 | 221.74 | 32.14 | 1011.89 | 2212.35 | 401.33 | 1090.00 | 427.74 | 888.09 |
Concentrations | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ca (g/kg) | Mg (g/kg) | P (g/kg) | K (g/kg) | S (g/kg) | Cu (mg/kg) | Fe (mg/kg) | Mn (mg/kg) | Ni (mg/kg) | Zn (mg/kg) | Na (mg/kg) | |
Airtel | 6.8 ± 0.08 defg | 2.69 ± 0.04 defg | 7.59 ± 0.02 f | 20.97 ± 0.01 de | 4.83 ± 0.07 gh | 34.83 ± 0.71 h | 420.93 ± 6.35 d | 34.23 ± 0.3 fg | 4.3 ± 0.03 g | 63.93 ± 1.43 c | 94.13 ± 0.49 a |
Oregon Sugar pod | 6.07 ± 0.12 fgh | 2.34 ± 0.05 j | 7.21 ± 0 g | 18.79 ± 0.38 h | 4.33 ± 0.11 jk | 48.73 ± 0.23 d | 360.23 ± 5.25 e | 31.78 ± 0.58 h | 4.4 ± 0.1 fg | 61.43 ± 1.12 cd | 66.88 ± 1.15 f |
Arka Sampoorna | 7.73 ± 0.03 cd | 2.7 ± 0.05 def | 6.82 ± 0.16 i | 19.07 ± 0.45 gh | 4.88 ± 0.07 fg | 30.78 ± 0.11 i | 921.43 ± 5.75 a | 42.13 ± 0.24 bc | 4.95 ± 0.02 e | 63.88 ± 0.33 c | 69.28 ± 1.73 e |
Tardio | 7.05 ± 0.13 defg | 2.53 ± 0.06 hi | 6.87 ± 0.05 i | 19.83 ± 0.36 fg | 4.3 ± 0.01 jk | 38.08 ± 0.08 g | 212.38 ± 4.42 k | 33.38 ± 0.57 h | 3.25 ± 0.04 jkl | 67.28 ± 1.51 b | 47.73 ± 0.57 j |
Sugar Bon | 5.77 ± 0.11 gh | 2.63 ± 0.05 efgh | 8.23 ± 0.06 cd | 22.88 ± 0.39 b | 4.62 ± 0.1 hi | 31.83 ± 0.03 i | 301.73 ± 5.65 h | 32.18 ± 0.65 h | 3.75 ± 0.01 h | 60.83 ± 0.73 d | 64.78 ± 0.3 f |
Dwarf grey sugar | 9.93 ± 0.22 a | 3.21 ± 0.05 a | 8.82 ± 0.16 b | 21.98 ± 0.56 bc | 6.64 ± 0.06 a | 54.83 ± 0.24 b | 343.93 ± 5.33 f | 32.43 ± 0.49 a | 5.85 ± 0.09 c | 71.33 ± 0.69 a | 65.78 ± 0.85 f |
Sugar Daddy | 8.91 ± 0.04 abc | 2.9 ± 0.02 b | 8.12 ± 0.09 de | 20.38 ± 0.47 ef | 5.31 ± 0.03 d | 36.18 ± 0.47 h | 281.18 ± 3.66 i | 21.53 ± 0.5 d | 6.55 ± 0.01 b | 63.13 ± 1.61 cd | 39.88 ± 0.68 k |
Mithi Phali | 7.95 ± 0.07 bcd | 2.54 ± 0.01 hi | 6.94 ± 0.03 hi | 20.04 ± 0.31 ef | 3.73 ± 0.05 m | 40.03 ± 0.35 f | 154.98 ± 3.71 n | 16.48 ± 0.33 i | 2.25 ± 0.03 o | 48.38 ± 0.58 g | 39.73 ± 0.06 k |
Tarvedo Sugar | 2.31 ± 0.031 k | 1.07 ± 0.01 n | 2.8 ± 0.01 o | 7.74 ± 0.10 l | 1.71 ± 0.03 o | 9.93 ± 0.06 o | 92.28 ± 0.29 p | 31.76 ± 0.38 m | 1.15 ± 0.02 q | 21.13 ± 0.51 k | 7.78 ± 0.11 n |
Namdhari-NA | 4.96 ± 0.05 hi | 2.17 ± 0.01 k | 6.57 ± 0.01 jk | 18.84 ± 0.41 h | 4.76 ± 0.1 gh | 73.58 ± 1.46 a | 119.33 ± 0.99 o | 24.58 ± 0.23 i | 2.65 ± 0.04 n | 56.53 ± 0.06 ef | 38.08 ± 0.44 k |
Sugar Snappy | 8 ± 0 bcd | 2.76 ± 0.03 cde | 7.11 ± 0.03 gh | 18.23 ± 0.19 hi | 5.33 ± 0.02 d | 50.73 ± 0.9 c | 559.83 ± 1.75 b | 8.98 ± 0.14 e | 8.7 ± 0 a | 55.28 ± 0.46 f | 71.83 ± 0.19 d |
Honey Snap | 6.05 ± 0.13 fgh | 2.46 ± 0.06 ij | 6.27 ± 0.05 l | 17.33 ± 0.30 j | 4.24 ± 0.1 k | 28.25 ± 0.16 j | 324 ± 1.52 g | 31.98 ± 0.82 k | 1.27 ± 0.03 q | 28.32 ± 0.65 j | 54.43 ± 0.99 h |
PED-18-5 | 4.12 ± 0.11 ij | 1.83 ± 0.04 l | 5.4 ± 0.03 m | 15.19 ± 0.14 k | 3.25 ± 0.07 n | 35.83 ± 0.91 h | 261.88 ± 4.5 j | 48.13 ± 0.17 j | 2.95 ± 0.01 m | 40.73 ± 1.02 h | 50.68 ± 0.4 i |
PED-18-6 | 7.26 ± 0.01 defg | 2.91 ± 0.04 b | 7.58 ± 0.01 f | 20.64 ± 0.16 def | 5.31 ± 0.09 d | 22.93 ± 0.38 k | 171.58 ± 1.16 m | 39.78 ± 0.89 cd | 4.55 ± 0.04 f | 63.38 ± 0.2 cd | 48.53 ± 0.38 j |
PED-18-7 | 3.4 ± 2.2 jk | 2.6 ± 0.03 fghi | 7.55 ± 0.05 f | 16.87 ± 0.40 j | 5.24 ± 0.11 de | 43.54 ± 1.02 e | 270.61 ± 2.39 ij | 32.13 ± 0.67 h | 4.45 ± 0.07 fg | 70.71 ± 0.18 a | 52.91 ± 0.44 h |
PED-18-8 | 7.02 ± 0.07 defg | 2.55 ± 0.04 ghi | 6.5 ± 0.02 k | 21.91 ± 0.10 c | 4.75 ± 0.07 gh | 28.13 ± 0.44 j | 93.43 ± 1.75 p | 35.98 ± 0.24 ef | 3.1 ± 0.08 l | 58.23 ± 1.18 e | 49.13 ± 0.49 ij |
PED-21-1 | 7.64 ± 0.03 cde | 2.64 ± 0.07 efgh | 6.74 ± 0.13 ij | 18.87 ± 0.24 h | 4.74 ± 0.02 gh | 11.43 ± 0.24 n | 275.88 ± 2.58 i | 43.33 ± 1.04 h | 3.25 ± 0.05 jkl | 48.73 ± 0.43 g | 69.73 ± 1.23 e |
PED-21-2 | 4.3 ± 0.10 ij | 1.44 ± 0 m | 4.19 ± 0.1 n | 14.73 ± 0.14 k | 3.98 ± 0.07 l | 23.98 ± 0.17 k | 191.08 ± 1.99 l | 32.23 ± 0.55 l | 2.15 ± 0.05 o | 31.78 ± 0.15 i | 28.73 ± 0.63 l |
PED-21-3 | 7.46 ± 0.01 cdef | 2.61 ± 0.06 fgh | 8.23 ± 0.02 cd | 22.14 ± 0.36 bc | 5.56 ± 0.05 c | 13.18 ± 0.16 m | 167.48 ± 0.7 m | 40.73 ± 0.66 h | 3.3 ± 0.04 jk | 61.83 ± 0.55 cd | 80.78 ± 0.84 b |
PED-21-4 | 6.22 ± 0.16 efgh | 2.56 ± 0.06 fghi | 7.15 ± 0.05 gh | 17.51 ± 0.18 ij | 4.32 ± 0.06 jk | 40.38 ± 0.32 f | 541.93 ± 7.61 c | 24.33 ± 0.13 gh | 3.55 ± 0.04 i | 54.93 ± 0.54 f | 72.63 ± 0.49 d |
PED-21-5 | 9.19 ± 0.05 ab | 3.28 ± 0.07 a | 9.28 ± 0.04 a | 25.02 ± 0.25 a | 6.04 ± 0.04 b | 17.13 ± 0.13 l | 347.88 ± 8.33 f | 35.48 ± 0.66 b | 5.15 ± 0.1 d | 70.88 ± 1.11 a | 77.48 ± 0.16 c |
PED-21-7 | 7.72 ± 0.12 cd | 2.82 ± 0.07 bcd | 7.99 ± 0.01 e | 21.36 ± 0.02 cd | 5.06 ± 0.05 ef | 13.88 ± 0.11 m | 328.43 ± 5.13 g | 34.98 ± 0.31 h | 3.35 ± 0.02 j | 58.03 ± 0.06 e | 73.38 ± 0.38 d |
HPM-1 | 10.2 ± 0.07 a | 2.84 ± 0 bc | 8.45 ± 0.18 c | 21.5 ± 0.18 cd | 4.48 ± 0.09 ij | 17.23 ± 0.04 l | 152.13 ± 0.55 n | 4.58 ± 0.11 ef | 3.15 ± 0.06 kl | 58.18 ± 0.73 e | 60.63 ± 0.66 g |
HPM-2 | 0.41 ± 0.01 l | 0.8 ± 0.01 o | 0.85 ± 0.02 p | 5.14 ± 0.10 m | 0.93 ± 0.01 p | 2.58 ± 0.06 p | 49.83 ± 1.19 q | 19.46 ± 0.15 n | 1.85 ± 0.04 p | 5.03 ± 0.08 l | 10.68 ± 0.11 m |
Range | 0.41–10.20 | 0.80–3.28 | 0.85–9.28 | 5.14–25.02 | 0.93–6.64 | 2.57–73.57 | 49.82–921.42 | 4.57–48.12 | 1.15–8.70 | 5.02–71.32 | 7.77–94.13 |
Mean | 6.52 | 2.45 | 6.80 | 18.62 | 4.51 | 31.16 | 289.34 | 30.52 | 3.74 | 53.49 | 55.65 |
CD (5%) | 1.29 | 0.13 | 0.22 | 0.85 | 0.19 | 1.47 | 11.26 | 1.48 | 0.14 | 2.31 | 1.99 |
Elements | Genotypic Variance | Phenotypic Variance | GCV (%) | PCV (%) | h2b (%) | GAPM (%) |
---|---|---|---|---|---|---|
Ca | 5.33 | 5.95 | 35.42 | 37.42 | 89.57 | 69.05 |
Mg | 0.36 | 0.37 | 24.65 | 24.86 | 98.53 | 50.35 |
P | 3.60 | 3.62 | 27.91 | 27.98 | 99.50 | 57.35 |
K | 19.86 | 20.14 | 23.94 | 24.10 | 98.64 | 48.97 |
S | 1.49 | 1.50 | 27.08 | 27.21 | 99.06 | 55.53 |
Cu | 272.94 | 273.76 | 53.02 | 53.10 | 99.70 | 109.06 |
Fe | 35,381.64 | 35,429.47 | 65.01 | 65.06 | 99.86 | 133.83 |
Mn | 109.43 | 110.25 | 34.28 | 34.41 | 99.25 | 70.35 |
Ni | 2.90 | 2.92 | 45.52 | 45.58 | 99.73 | 93.64 |
Zn | 281.65 | 283.64 | 31.38 | 31.49 | 99.30 | 64.41 |
Na | 443.55 | 445.05 | 37.85 | 37.92 | 99.66 | 77.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, S.; Dhall, R.K.; Singh, H.; Kumar, P.; Bhatia, D.; Kumari, P.; Rana, N. Assessing Elemental Diversity in Edible-Podded Peas: A Comparative Study of Pisum sativum L. var. macrocarpon and var. saccharatum through Principal Component Analysis, Correlation, and Cluster Analysis. Horticulturae 2024, 10, 890. https://doi.org/10.3390/horticulturae10080890
Yadav S, Dhall RK, Singh H, Kumar P, Bhatia D, Kumari P, Rana N. Assessing Elemental Diversity in Edible-Podded Peas: A Comparative Study of Pisum sativum L. var. macrocarpon and var. saccharatum through Principal Component Analysis, Correlation, and Cluster Analysis. Horticulturae. 2024; 10(8):890. https://doi.org/10.3390/horticulturae10080890
Chicago/Turabian StyleYadav, Saurabh, Rajinder Kumar Dhall, Hira Singh, Parteek Kumar, Dharminder Bhatia, Priyanka Kumari, and Neha Rana. 2024. "Assessing Elemental Diversity in Edible-Podded Peas: A Comparative Study of Pisum sativum L. var. macrocarpon and var. saccharatum through Principal Component Analysis, Correlation, and Cluster Analysis" Horticulturae 10, no. 8: 890. https://doi.org/10.3390/horticulturae10080890
APA StyleYadav, S., Dhall, R. K., Singh, H., Kumar, P., Bhatia, D., Kumari, P., & Rana, N. (2024). Assessing Elemental Diversity in Edible-Podded Peas: A Comparative Study of Pisum sativum L. var. macrocarpon and var. saccharatum through Principal Component Analysis, Correlation, and Cluster Analysis. Horticulturae, 10(8), 890. https://doi.org/10.3390/horticulturae10080890