Chemical Variability, Antioxidant and Larvicidal Efficacy of EOs from Citrus sinensis (L.) Osbeck Peel, Leaf, and Flower
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Extraction of Essential Oil
2.3. Chemical Profiling by Gas Chromatography–Mass Spectrometry
2.4. Enantiomeric Compound Analysis by Chiral GC/MS
2.5. Chemicals
2.6. Antioxidant Activity by DPPH Assay
2.7. Acute Toxicity Test
2.8. Larvicidal Assay
2.8.1. Sampling and Breeding of Aedes aegypti
2.8.2. Larvicidal Assay
2.9. Data Analysis
3. Results and Discussion
3.1. Isolation of EOs and Yields
3.2. Chemical Composition of Citrus EOs
3.3. Chiral Composition Analysis
3.4. Antioxidant Activity
3.5. Acute Toxicity
3.6. Larvicidal Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, G.A.; Terol, J.; Ibanez, V.; López-García, A.; Pérez-Román, E.; Borredá, C.; Domingo, C.; Tadeo, F.R.; Carbonell-Caballero, J.; Alonso, R.; et al. Genomics of the Origin and Evolution of Citrus. Nature 2018, 554, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Njoroge, S.M.; Phi, N.T.L.; Sawamura, M. Chemical Composition of Peel Essential Oils of Sweet Oranges (Citrus sinensis) from Uganda and Rwanda. J. Essent. Oil Bear. Plants 2009, 12, 26–33. [Google Scholar] [CrossRef]
- Rodrigues Da Silva, L.; Silva, B. (Eds.) Natural Bioactive Compounds from Fruits and Vegetables as Health Promoters Part I; Bentham Science Publishers: Sharjah, United Arab Emirates, 2016; ISBN 978-1-68108-239-4. [Google Scholar]
- Burt, S. Essential oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, V.; Paymal, N.; Quinton, C.; Tomi, F.; Luro, F. Investigations of the Chemical Composition and Aromatic Properties of Peel Essential oils throughout the Complete Phase of Fruit Development for Two Cultivars of Sweet Orange (Citrus sinensis (L.) Osb.). Plants 2022, 11, 2747. [Google Scholar] [CrossRef] [PubMed]
- Kammoun, A.K.; Altyar, A.E.; Gad, H.A. Comparative Metabolic Study of Citrus sinensis Leaves Cultivars Based on GC–MS and Their Cytotoxic Activity. J. Pharm. Biomed. Anal. 2021, 198, 113991. [Google Scholar] [CrossRef]
- Li, G.; Xiang, S.; Pan, Y.; Long, X.; Cheng, Y.; Han, L.; Zhao, X. Effects of Cold-Pressing and Hydrodistillation on the Active Non-Volatile Components in Lemon Essential Oil and the Effects of the Resulting Oils on Aging-Related Oxidative Stress in Mice. Front. Nutr. 2021, 8, 689094. [Google Scholar] [CrossRef]
- Park, M.K.; Cha, J.Y.; Kang, M.; Jang, H.W.; Choi, Y. The Effects of Different Extraction Methods on Essential oils from Orange and Tangor: From the Peel to the Essential Oil. Food Sci. Nutr. 2024, 12, 804–814. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, K.; Deng, W.; Zhong, B.; Yang, W.; Chun, J. Chemical Composition and Antimicrobial Activity of Gannan Navel Orange (Citrus sinensis Osbeck Cv. Newhall) Peel Essential oils. Food Sci. Nutr. 2018, 6, 1431–1437. [Google Scholar] [CrossRef]
- Manzur, M.; Luciardi, M.C.; Blázquez, M.A.; Alberto, M.R.; Cartagena, E.; Arena, M.E. Citrus sinensis Essential oils an Innovative Antioxidant and Antipathogenic Dual Strategy in Food Preservation against Spoliage Bacteria. Antioxidants 2023, 12, 246. [Google Scholar] [CrossRef]
- Bonaccorsi, I.; Sciarrone, D.; Cotroneo, A.; Mondello, L.; Dugo, P.; Dugo, G. Enantiomeric Distribution of Key Volatile Components in Citrus Essential oils. Rev. Bras. Farm. 2011, 21, 841–849. [Google Scholar] [CrossRef]
- Al Kamaly, O.; Numan, O.; Almrfadi, O.M.A.; Alanazi, A.S.; Conte, R. Separation and Evaluation of Potential Antioxidant, Analgesic, and Anti-Inflammatory Activities of Limonene-Rich Essential oils from Citrus sinensis (L.). Open Chem. 2022, 20, 1517–1530. [Google Scholar] [CrossRef]
- Conforti, F.; Statti, G.A.; Tundis, R.; Loizzo, M.R.; Menichini, F. In Vitro Activities of Citrus medica L. Cv. Diamante (Diamante Citron) Relevant to Treatment of Diabetes and Alzheimer’s Disease. Phytother. Res. 2007, 21, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Komori, T.; Fujiwara, R.; Tanida, M.; Nomura, J. Potential Antidepressant Effects of Lemon Odor in Rats. Eur. Neuropsychopharmacol. 1995, 5, 477–480. [Google Scholar] [CrossRef]
- Komori, T.; Fujiwara, R.; Tanida, M.; Nomura, J.; Yokoyama, M.M. Effects of Citrus Fragrance on Immune Function and Depressive States. Neuroimmunomodulation 1995, 2, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Dosoky, N.; Setzer, W. Biological Activities and Safety of Citrus spp. Essential oils. Int. J. Mol. Sci. 2018, 19, 1966. [Google Scholar] [CrossRef] [PubMed]
- Toscano-Garibay, J.D.; Arriaga-Alba, M.; Sánchez-Navarrete, J.; Mendoza-García, M.; Flores-Estrada, J.J.; Moreno-Eutimio, M.A.; Espinosa-Aguirre, J.J.; González-Ávila, M.; Ruiz-Pérez, N.J. Antimutagenic and Antioxidant Activity of the Essential oils of Citrus sinensis and Citrus latifolia. Sci. Rep. 2017, 7, 11479. [Google Scholar] [CrossRef] [PubMed]
- González-Mas, M.C.; Rambla, J.L.; López-Gresa, M.P.; Blázquez, M.A.; Granell, A. Volatile Compounds in Citrus Essential oils: A Comprehensive Review. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef]
- Bouaziz, M.; Yangui, T.; Sayadi, S.; Dhouib, A. Disinfectant Properties of Essential oils from Salvia officinalis L. Cultivated in Tunisia. Food Chem. Toxicol. 2009, 47, 2755–2760. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing: Carol Stream, IL, USA, 2007; Volume 4, p. 804. [Google Scholar]
- Satyal, P.; Jones, T.; Lopez, E.; McFeeters, R.; Ali, N.; Mansi, I.; Al-kaf, A.; Setzer, W. Chemotypic Characterization and Biological Activity of Rosmarinus Officinalis. Foods 2017, 6, 20. [Google Scholar] [CrossRef]
- Poudel, D.K.; Ojha, P.K.; Rokaya, A.; Satyal, R.; Satyal, P.; Setzer, W.N. Analysis of Volatile Constituents in Curcuma Species, Viz. C. Aeruginosa, C. Zedoaria, and C. Longa, from Nepal. Plants 2022, 11, 1932. [Google Scholar] [CrossRef]
- DeCarlo, A.; Johnson, S.; Okeke-Agulu, K.I.; Dosoky, N.S.; Wax, S.J.; Owolabi, M.S.; Setzer, W.N. Compositional Analysis of the Essential Oil of Boswellia Dalzielii Frankincense from West Africa Reveals Two Major Chemotypes. Phytochemistry 2019, 164, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Embarek, G.; Kokkalou, E.; Kefalas, P. Phenolic Profile and Antioxidant Activity of the Algerian Ripe Date Palm Fruit (Phoenix Dactylifera). Food Chem. 2005, 89, 411–420. [Google Scholar] [CrossRef]
- Sanchez-Moreno, C. Review: Methods Used to Evaluate the Free Radical Scavenging Activity in Foods and Biological Systems. Food Sci. Technol. Int. 2002, 8, 121–137. [Google Scholar] [CrossRef]
- Gribaldo, L.; Gennari, A.; Blackburn, K.; Clemedson, C.; Deguercy, A.; Meneguz, A.; Pfaller, W.; Ruhdel, I. 3.1. Acute Toxicity. Altern. Lab. Anim. 2005, 33, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Anwar, F.; Saleem, U.; Rehman, A.-U.; Ahmad, B.; Froeyen, M.; Mirza, M.U.; Kee, L.Y.; Abdullah, I.; Ahmad, S. Toxicity Evaluation of the Naphthalen-2-Yl 3,5-Dinitrobenzoate: A Drug Candidate for Alzheimer Disease. Front. Pharmacol. 2021, 12, 607026. [Google Scholar] [CrossRef]
- WHO-2005. WHO. Instructions for Determining the Susceptibility or Resistance of Mosquito Larvae to Insecticides; WHO/VBC: Geneva, Switzerland, 1981; Volume 81, p. 807. [Google Scholar]
- Giatropoulos, A.; Papachristos, D.P.; Kimbaris, A.; Koliopoulos, G.; Polissiou, M.G.; Emmanouel, N.; Michaelakis, A. Evaluation of Bioefficacy of Three Citrus Essential oils against the Dengue Vector Aedes Albopictus (Diptera: Culicidae) in Correlation to Their Components Enantiomeric Distribution. Parasitol. Res. 2012, 111, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, D.P.; Poudel, D.K.; Satyal, P.; Khadayat, K.; Dhami, S.; Aryal, D.; Chaudhary, P.; Ghimire, A.; Parajuli, N. Volatile Compounds and Antioxidant and Antimicrobial Activities of Selected Citrus Essential oils Originated from Nepal. Molecules 2021, 26, 6683. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Vashist, H. Hydrodistillation and Comparative Report of Percentage Yield on Leaves and Fruit Peels from Different Citrus Plants of Rutaceae Family. J. Plant Sci. 2015, 10, 75–78. [Google Scholar] [CrossRef]
- Miguel, M.G.; Dandlen, S.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Duarte, A.; Faisca, J. Essential Oils of Flowers of Citrus sinensis and Citrus clementina Cultivated in Algarve, Portugal. Acta Hortic. 2008, 89–94. [Google Scholar] [CrossRef]
- Dewi, I.A.; Prastyo, A.M.; Wijana, S. Extraction of Essential Oil from Baby Java Orange (Citrus sinensis) Solid Waste Using Water and Steam Distillation. IOP Conf. Ser. Earth Environ. Sci. 2018, 131, 012054. [Google Scholar] [CrossRef]
- Voo, S.S.; Grimes, H.D.; Lange, B.M. Assessing the Biosynthetic Capabilities of Secretory Glands in Citrus Peel. Plant Physiol. 2012, 159, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Brezo-Borjan, T.; Švarc-Gajić, J.; Morais, S.; Delerue-Matos, C.; Rodrigues, F.; Lončarević, I.; Pajin, B. Chemical and Biological Characterisation of Orange (Citrus sinensis) Peel Extracts Obtained by Subcritical Water. Processes 2023, 11, 1766. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Koteswararao, R.; Sinha, M.; Baral, E.; Cho, M.H. Citrus Essential oils: Extraction, Authentication and Application in Food Preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Shukla, R.; Prakash, B.; Kumar, A.; Singh, S.; Mishra, P.K.; Dubey, N.K. Chemical Profile, Antifungal, Antiaflatoxigenic and Antioxidant Activity of Citrus Maxima Burm. and Citrus sinensis (L.) Osbeck Essential oils and Their Cyclic Monoterpene, Dl-Limonene. Food Chem. Toxicol. 2010, 48, 1734–1740. [Google Scholar] [CrossRef] [PubMed]
- Michaelakis, A.; Papachristos, D.; Kimbaris, A.; Koliopoulos, G.; Giatropoulos, A.; Polissiou, M.G. Citrus Essential oils and Four Enantiomeric Pinenes against Culex pipiens (Diptera: Culicidae). Parasitol. Res. 2009, 105, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Eldahshan, O.A.; Halim, A.F. Comparison of the Composition and Antimicrobial Activities of the Essential oils of Green Branches and Leaves of Egyptian Navel Orange (Citrus sinensis (L.) Osbeck Var. Malesy). Chem. Biodivers. 2016, 13, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Kasali, A.A.; Lawal, O.A.; Eshilokun, A.O.; Olaniyan, A.A.; Opoku, A.R.; Setzer, W.N. Citrus Essential Oil of Nigeria. Part V: Volatile Constituents of Sweet Orange Leaf Oil (Citrus sinensis). Nat. Prod. Commun. 2011, 6, 875–878. [Google Scholar] [CrossRef] [PubMed]
- Wesolowska, A.; Grzeszczuk, M.; Jadczak, D. Comparison of the Chemical Composition of Essential oils Isolated by Water-Steam Distillation and Hydrodistillation from Garden Thyme (Thymus vulgaris L.). J. Essent. Oil Bear. Plants 2016, 19, 832–842. [Google Scholar] [CrossRef]
- Řebíčková, K.; Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P. Comparison of Chemical Composition and Biological Properties of Essential oils Obtained by Hydrodistillation and Steam Distillation of Laurus nobilis L. Plant Foods Hum. Nutr. 2020, 75, 495–504. [Google Scholar] [CrossRef]
- Bhalla, P.; Varshney, V.K. Comparative Study of Hydro- and Steam-Water Distillation for Isolation of Essential Oils from Needles of Cupressus Torulosa D. Don. J. Essent. Oil Bear. Plants 2023, 26, 1161–1171. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Ben Halima, N.; Smaoui, S.; Hamdi, N. Citrus Lemon Essential Oil: Chemical Composition, Antioxidant and Antimicrobial Activities with Its Preservative Effect against Listeria Monocytogenes Inoculated in Minced Beef Meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef]
- Meryem, S.; Mohamed, D.; Nour-eddine, C.; Faouzi, E. Chemical Composition, Antibacterial and Antioxidant Properties of Three Moroccan Citrus Peel Essential oils. Sci. Afr. 2023, 20, e01592. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Liu, H.; Liu, W.; Zhang, R.; Xian, M.; Liu, H. Biosynthesis and Production of Sabinene: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2018, 102, 1535–1544. [Google Scholar] [CrossRef]
- Dongre, P.; Doifode, C.; Choudhary, S.; Sharma, N. Botanical Description, Chemical Composition, Traditional Uses and Pharmacology of Citrus sinensis: An Updated Review. Pharmacol. Res.-Mod. Chin. Med. 2023, 8, 100272. [Google Scholar] [CrossRef]
- Paudel, P.N.; Satyal, P.; Setzer, W.N.; Awale, S.; Watanabe, S.; Maneenet, J.; Satyal, R.; Acharya, A.; Phuyal, M.; Gyawali, R. Chemical-Enantiomeric Characterization and In-Vitro Biological Evaluation of the Essential oils from Elsholtzia Strobilifera (Benth.) Benth. and E. blanda (Benth.) Benth. from Nepal. Nat. Prod. Commun. 2023, 18, 1934578X231189325. [Google Scholar] [CrossRef]
- Hong, J.H.; Khan, N.; Jamila, N.; Hong, Y.S.; Nho, E.Y.; Choi, J.Y.; Lee, C.M.; Kim, K.S. Determination of Volatile Flavour Profiles of Citrus Spp. Fruits by SDE-GC–MS and Enantiomeric Composition of Chiral Compounds by MDGC–MS. Phytochem. Anal. 2017, 28, 392–403. [Google Scholar] [CrossRef]
- Torres-Alvarez, C.; Núñez González, A.; Rodríguez, J.; Castillo, S.; LEssential oils-Rivas, C.; Báez-González, J.G. Chemical Composition, Antimicrobial, and Antioxidant Activities of Orange Essential Oil and Its Concentrated Oils. CyTA-J. Food 2016, 15, 129–135. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Piras, C.; Palma, E.; Cringoli, G.; Musolino, V.; Lupia, C.; Perri, M.R.; Statti, G.; Britti, D.; et al. In Vitro Evaluation of Acute Toxicity of Five Citrus Spp. Essential oils towards the Parasitic Mite Varroa Destructor. Pathogens 2021, 10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Tisserand, R.; Young, R. Essential Oil Profiles. In Essential Oil Safety; Elsevier: Amsterdam, The Netherlands, 2014; pp. 187–482. ISBN 978-0-443-06241-4. [Google Scholar]
- Miya, G.; Nyalambisa, M.; Oyedeji, O.; Gondwe, M.; Oyedeji, A. Chemical Profiling, Toxicity and Anti-Inflammatory Activities of Essential oils from Three Grapefruit Cultivars from KwaZulu-Natal in South Africa. Molecules 2021, 26, 3387. [Google Scholar] [CrossRef]
- El-Akhal, F.; Lalami, A.E.O.; Guemmouh, R. Larvicidal Activity of Essential oils of Citrus sinensis and Citrus aurantium (Rutaceae) Cultivated in Morocco against the Malaria Vector Anopheles labranchiae (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2015, 5, 458–462. [Google Scholar] [CrossRef]
- Galvão, J.G.; Silva, V.F.; Ferreira, S.G.; França, F.R.M.; Santos, D.A.; Freitas, L.S.; Alves, P.B.; Araújo, A.A.S.; Cavalcanti, S.C.H.; Nunes, R.S. β-Cyclodextrin Inclusion Complexes Containing Citrus sinensis (L.) Osbeck Essential Oil: An Alternative to Control Aedes aegypti Larvae. Thermochim. Acta 2015, 608, 14–19. [Google Scholar] [CrossRef]
- Jian, R.; Lin, Y.; Li, Y.; Wu, W.; Ren, X.; Liang, Z.; Kong, L.; Cai, J.; Lao, C.; Wu, M.; et al. Larvicidal Activity of Two Rutaceae Plant Essential oils and Their Constituents Against Aedes albopictus (Diptera: Culicidae) in Multiple Formulations. J. Med. Entomol. 2022, 59, 1669–1677. [Google Scholar] [CrossRef] [PubMed]
- Theochari, I.; Giatropoulos, A.; Papadimitriou, V.; Karras, V.; Balatsos, G.; Papachristos, D.; Michaelakis, A. Physicochemical Characteristics of Four Limonene-Based Nanoemulsions and Their Larvicidal Properties against Two Mosquito Species, Aedes albopictus and Culex pipiens molestus. Insects 2020, 11, 740. [Google Scholar] [CrossRef] [PubMed]
- Lucia, A.; Gonzalez Audino, P.; Seccacini, E.; Licastro, S.; Zerba, E.; Masuh, H. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J. Am. Mosq. Control Assoc. 2007, 23, 299–303. [Google Scholar] [CrossRef]
- Andrade-Ochoa, S.; Correa-Basurto, J.; Rodríguez-Valdez, L.M.; Sánchez-Torres, L.E.; Nogueda-Torres, B.; Nevárez-Moorillón, G.V. In Vitro and in Silico Studies of Terpenes, Terpenoids and Related Compounds with Larvicidal and Pupaecidal Activity against Culex quinquefasciatus Say (Diptera: Culicidae). Chem. Cent. J. 2018, 12, 53. [Google Scholar] [CrossRef]
Extraction Technique | Yield Percentage (v/w) | Location (GPS Mapping) | ||
---|---|---|---|---|
C. sinensis Peel | C. sinensis Leaf | C. sinensis Flower (Dry Sample) | ||
Hydro-distillation (HD) | 2.15 ± 0.25% | 0.75 ± 0.10% | 0.20 ± 0.05% | |
Hydro-distillation (HD) (Literature) | 1.83% [30] | 1.00% [31] | 0.05–0.08% [32] | Sindhuli 27°16′58″ N, 85°58′47″ E |
Steam distillation (SD) | 1.75 ± 0.20% | 0.78 ± 0.15% | 0.22 ± 0.06% | |
Steam distillation (SD) (Literature) | 0.63 ± 0.095% [33] | - | - |
RI (Lit) | Machine RI | Compounds | C. sinensis Peel | C. sinensis Leaf | C. sinensis Flower | |||
---|---|---|---|---|---|---|---|---|
HD% | SD% | HD% | SD% | HD% | SD% | |||
939 | 931 | α-Pinene | 0.51 | 0.59 | 3.19 | 2.12 | 2.23 | 1.79 |
979 | 978 | β-Pinene | 0.04 | 0.07 | 3.21 | 2.54 | 3.12 | 2.50 |
992 | 989 | Myrcene | 1.90 | 2.15 | 5.59 | 5.03 | 3.26 | 3.97 |
1006 | 1009 | δ-3-carene | 0.04 | 0.04 | 2.06 | 1.75 | 5.70 | 6.88 |
1015 | 1016 | α-Terpinene | 0.04 | - | 0.55 | 1.39 | - | 0.46 |
1026 | 1024 | p-Cymene | - | - | 3.77 | 0.84 | 6.87 | 1.11 |
1025 | 1028 | Limonene | 91.08 | 91.60 | 21.35 | 19.71 | 3.47 | 3.34 |
1054 | 1044 | trans-β-Ocimene | 0.05 | 0.05 | 2.13 | 3.26 | - | 5.15 |
1062 | 1058 | γ-Terpinene | 0.11 | 0.07 | 1.40 | 2.94 | - | 0.85 |
984 | 972 | Sabinene | 0.38 | 1.18 | 36.91 | 32.89 | 39.46 | 38.05 |
1080 | 1071 | cis-Sabinene hydrate | - | - | 0.38 | 0.77 | 1.57 | 0.81 |
1103 | 1099 | Linalool | 1.91 | 1.32 | 1.66 | 1.77 | 8.27 | 7.12 |
1153 | 1152 | Citronellal | 0.02 | 0.06 | - | 0.04 | 2.00 | 2.31 |
2300 | 2998 | n-Tricosane | - | - | - | 1.96 | - | - |
1176 | 1181 | Terpinen-4-ol | 0.21 | 0.10 | 7.36 | 5.62 | 9.91 | 3.43 |
1100 | 1086 | Terpinolene | 0.04 | 0.02 | 0.54 | 0.87 | - | 1.17 |
1218 | 1268 | Gerenial | 0.09 | 0.13 | - | - | 1.14 | 1.95 |
1392 | 1391 | β-Elemene | - | 0.02 | 1.17 | 1.76 | 0.86 | - |
1456 | 1452 | trans-β-Farnesene | - | - | 0.87 | 1.44 | - | 0.41 |
1573 | 1561 | trans-Nerolidol | - | - | 1.36 | 1.86 | - | 0.08 |
1693 | 1692 | β-Sinensal | 0.02 | 0.04 | - | 2.43 | 1.05 | 3.48 |
Terpenoids | C. sinensis Peel | C. sinensis Flower | C. Sinensis Leaf | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HD (S21) | SD (S22) | HD (S26) | SD (S27) | HD (S24) | SD (S25) | |||||||
(−) | (+) | (−) | (+) | (−) | (+) | (−) | (+) | (−) | (+) | (−) | (+) | |
α-Pinene | 2.27 | 97.73 | 1.13 | 98.87 | 6.77 | 93.23 | 7.53 | 92.47 | 5.13 | 94.87 | 5.17 | 94.83 |
α-Terpineol | 12.6 | 87.4 | 6.93 | 93.07 | 41.47 | 58.53 | 43.72 | 56.28 | 37.28 | 62.72 | 26.2 | 73.8 |
α-Thujene | - | - | - | - | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
β-Caryophyllene | - | - | - | - | 100 | 0 | 100 | 0 | - | - | 100 | 0 |
β-Elemene | - | - | - | - | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 |
β-Phellandrene | 0 | 100 | 0 | 100 | 10.87 | 89.13 | 11.95 | 88.05 | - | - | 12.28 | 87.72 |
β-Pinene | 0 | 100 | 0 | 100 | 54.76 | 45.24 | 55.93 | 44.07 | 46.11 | 53.89 | 46.99 | 53.01 |
cis-Sabinene hydrate | - | - | - | - | 3.92 | 96.08 | 4.68 | 95.32 | 3.48 | 96.52 | 3.51 | 96.49 |
Citronellal | - | - | - | - | - | - | - | - | 0 | 100 | 0 | 100 |
Citronellol | - | - | - | - | - | - | - | - | 0 | 100 | 0 | 100 |
Citronellyl acetate | - | - | - | - | - | - | - | - | 100 | 0 | 100 | 0 |
δ-3-Carene | - | - | - | - | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
Limonene | 0.7 | 99.3 | 0.59 | 99.41 | 4.6 | 95.4 | 4.62 | 95.38 | 33.74 | 66.62 | 28.95 | 70.15 |
Linalool | 9.79 | 90.21 | 5.3 | 94.7 | 15.36 | 84.64 | 12.87 | 87.13 | 12.14 | 87.86 | 12.15 | 87.85 |
Sabinene | 0 | 100 | 0 | 100 | 2.81 | 97.19 | 3.29 | 96.71 | 2.69 | 97.31 | 2.67 | 97.33 |
Terpinen-4-ol | 29.48 | 70.52 | 30.05 | 69.95 | 44.96 | 55.04 | 42.23 | 57.77 | 46.9 | 53.1 | 29.32 | 70.68 |
trans-Nerolidol | - | - | - | - | 2.38 | 97.72 | 2.1 | 97.9 | - | - | - | - |
EO Sample | IC50 (µL/mL) | |
---|---|---|
HD | SD | |
C. sinensis peel | 20.194 ± 0.538 | 6.851 ± 0.405 |
C. sinensis leaves | 26.393 ± 0.439 | 22.85 ± 0.418 |
C. sinensis flower | 36.770 ± 0.94 | 6.533 ± 0.44 |
Ascorbic Acid (Reference) | 2.43 ± 0.45 µg/mL |
Sample (CEO) | LD50 | Observation | Category | Remarks |
---|---|---|---|---|
Peels (HD & SD) | >2000 mg/kg | No death | Category 5 * (May be harmful if swallowed) | * Classification of substances according to the guidelines of the Globally Harmonized System (GHS) of Classification and Labeling of Chemicals, third edition. |
Leaves (HD & SD) | >2000 mg/kg | No death | ||
Flowers (HD & SD) | >2000 mg/kg | No death | ||
Control group | >2000 mg/kg | No death |
Mortality Percentage at Different Concentrations | LC50 (µL/mL) | LC90 (µL/mL) | R2 | ||||
---|---|---|---|---|---|---|---|
Concentrations (µL/mL) | 0.1 | 0.05 | 0.025 | 0.0125 | - | - | - |
C. sinensis (peels) | 100 | 100 | 60 | 40 | 0.0183 | 0.0331 | 0.94 |
C. Sinensis (leaves) | 100 | 40 | 0 | - | 0.0479 | 0.0659 | 0.98 |
Concentrations (µL/mL) | 0.01 | 0.005 | 0.0025 | 0.0013 | - | - | - |
d-Carvone | 0 | - | - | - | >0.01 | >0.01 | - |
β-Pinene | 40 | 0 | - | - | 0.0109 | 0.0165 | 1 |
Sabinene | 0 | - | - | - | >0.01 | >0.01 | - |
p-cymene | 20 | 0 | - | - | 0.0148 | 0.0264 | 1 |
Linalool | 0 | - | - | - | >0.01 | >0.01 | - |
d-limonene | 100 | 80 | 40 | 0 | 0.0031 | 0.0051 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhandari, D.P.; Chaudhary, P.; Upadhyaya, S.R.; Ranjitkar, R.; Satyal, R.; Adhikari, A.; Satyal, P.; Parajuli, N. Chemical Variability, Antioxidant and Larvicidal Efficacy of EOs from Citrus sinensis (L.) Osbeck Peel, Leaf, and Flower. Horticulturae 2024, 10, 566. https://doi.org/10.3390/horticulturae10060566
Bhandari DP, Chaudhary P, Upadhyaya SR, Ranjitkar R, Satyal R, Adhikari A, Satyal P, Parajuli N. Chemical Variability, Antioxidant and Larvicidal Efficacy of EOs from Citrus sinensis (L.) Osbeck Peel, Leaf, and Flower. Horticulturae. 2024; 10(6):566. https://doi.org/10.3390/horticulturae10060566
Chicago/Turabian StyleBhandari, Devi Prasad, Pratiksha Chaudhary, Siddha Raj Upadhyaya, Rajeshwor Ranjitkar, Rakesh Satyal, Achyut Adhikari, Prabodh Satyal, and Niranjan Parajuli. 2024. "Chemical Variability, Antioxidant and Larvicidal Efficacy of EOs from Citrus sinensis (L.) Osbeck Peel, Leaf, and Flower" Horticulturae 10, no. 6: 566. https://doi.org/10.3390/horticulturae10060566
APA StyleBhandari, D. P., Chaudhary, P., Upadhyaya, S. R., Ranjitkar, R., Satyal, R., Adhikari, A., Satyal, P., & Parajuli, N. (2024). Chemical Variability, Antioxidant and Larvicidal Efficacy of EOs from Citrus sinensis (L.) Osbeck Peel, Leaf, and Flower. Horticulturae, 10(6), 566. https://doi.org/10.3390/horticulturae10060566