Genetic Mapping for Leaf Shape and Leaf Size in Non-Heading Chinese Cabbage by a RIL Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Phenotypic Data Collection and Analysis
2.3. Construction of Genetic Map and QTL Analysis by Resequencing
2.4. Candidate Gene Analysis
3. Results
3.1. Phenotypic Variations and Genetic Analysis of Leaf-Related Traits in NHCC
3.2. Construction of Genetic Maps
3.3. QTL Mapping Analysis and Co-Localization of QTL
3.4. Candidate Genes Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, X.; Li, Y.; Liu, T. Advances in genetic breeding and molecular biology of non-heading Chinese cabbage. J. Nanjing Agric. Univ. 2022, 45, 864–873. [Google Scholar]
- Yang, D.; Niklas, K.J.; Xiang, S.; Sun, S. Size-dependent leaf area ratio in plant twigs: Implication for leaf size optimization. Ann. Bot. 2010, 105, 71–77. [Google Scholar] [CrossRef]
- Choi, S.R.; Yu, X.; Dhandapani, V.; Li, X.; Wang, Z.; Lee, S.Y.; Oh, S.H.; Pang, W.; Ramchiary, N.; Hong, C.P.; et al. Integrated analysis of leaf morphological and color traits in different populations of Chinese cabbage (Brassica rapa ssp. pekinensis). Theor. Appl. Genet. 2017, 130, 1617–1634. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z.; Wang, Y.; Yang, N.; Xin, X.; Yang, S.; Feng, H. Identification of quantitative trait loci for yellow inner leaves in Chinese cabbage (Brassica rapa L. ssp. pekinensis) based on SSR and SRAP markers. Sci. Hortic. 2012, 133, 10–17. [Google Scholar] [CrossRef]
- Li, F.; Kitashiba, H.; Inaba, K.; Nishio, T. A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res. 2009, 16, 311–323. [Google Scholar] [CrossRef]
- Xiao, D.; Wang, H.; Basnet, R.K.; Zhao, J.; Lin, K.; Hou, X.; Bonnema, G. Genetic dissection of leaf development in Brassica rapa using a genetical genomics approach. Plant Physiol. 2014, 164, 1309–1325. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Xu, C.; Wang, X.; Wang, S.; Zhang, Z.; Fei, Z.; Wang, Q. Construction of genetic linkage map using genotyping-by-sequencing and identification of QTLs associated with leaf color in spinach. Euphytica 2018, 214, 229. [Google Scholar] [CrossRef]
- Li, F.; Liu, Z.; Chen, H.; Wu, J.; Cai, X.; Wang, H.; Wang, X.; Liang, J. QTL mapping of leaf-related traits using a high-density bin map in Brassica rapa. Horticulturae 2023, 9, 433. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Tu, B.; Li, Y.; Chen, H.; Zhang, Q.; Liu, X. Characterization on a novel rolled leaves and short petioles soybean mutant based on seq-BSA and RNA-seq analysis. J. Plant Biol. 2022, 65, 261–277. [Google Scholar] [CrossRef]
- Wang, Y.G.; Zhang, L.; Ji, X.H.; Yan, J.F.; Liu, Y.T.; Lv, X.X.; Feng, H. Mapping of quantitative trait loci for the bolting trait in Brassica rapa under vernalizing conditions. Genet. Mol. Res. 2014, 13, 3927. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Ji, X.; Zhang, L.; Liu, Y.; Lv, X.; Feng, H. Identification and validation of a major QTL controlling the presence/absence of leaf lobes in Brassica rapa L. Euphytica 2015, 205, 761–771. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Zhang, B.; Yang, X.; Hammond, J.P.; Ding, G.; Wang, S.; Cai, H.; Wang, C.; Xu, F.; et al. Genome-wide association study dissects the genetic control of plant height and branch number in response to low-phosphorus stress in Brassica napus. Ann. Bot. 2021, 128, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Dumenil, J.; Lu, F.; Na, L.; Vanhaeren, H.; Naumann, C.; Klecker, M.; Prior, R.; Smith, C.; McKenzie, N.; et al. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Gene Dev. 2017, 31, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tu, Z.; Wang, M.; Zhang, Y.; Hu, Q.; Li, H. Genome-wide identification of GROWTH-REGULATING FACTORs in Liriodendron chinense and functional characterization of LcGRF2 in leaf size regulation. Plant Physiol. 2024, 206, 108204. [Google Scholar] [CrossRef] [PubMed]
- Vercruyssen, L.; Verkest, A.; Gonzalez, N.; Heyndrickx, K.S.; Eeckhout, D.; Han, S.; Jégu, T.; Archacki, R.; Van Leene, J.; Andriankaja, M.; et al. ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development. Plant Cell 2014, 26, 210–229. [Google Scholar] [CrossRef] [PubMed]
- Achard, P.; Gusti, A.; Cheminant, S.; Alioua, M.; Dhondt, S.; Coppens, F.; Beemster, G.T.S.; Genschik, P. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr. Biol. 2009, 19, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, L.; Xu, R.; Cui, R.; Hao, J.; Sun, C.; Li, Y. Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana. Plant Cell 2015, 27, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, N.; Pauwels, L.; Baekelandt, A.; De Milde, L.; Van Leene, J.; Besbrugge, N.; Heyndrickx, K.S.; Pérez, A.C.; Durand, A.N.; De Clercq, R.; et al. A repressor protein complex regulates leaf growth in Arabidopsis. Plant Cell 2015, 27, 2273–2287. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Wu, F.; Yu, X.; Bai, J.; Zhong, W.; He, Y. microRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in Chinese cabbage by differential cell division arrest in leaf regions. Plant Physiol. 2014, 164, 710–720. [Google Scholar]
- Hu, Y.; Qin, F.; Huang, L.; Sun, Q.; Li, C.; Zhao, Y.; Zhou, D. Rice histone deacetylase genes display specific expression patterns and developmental functions. Biochem. Biophys. Res. Commun. 2009, 388, 266–271. [Google Scholar] [CrossRef]
- Lan, T.H.; Peterson, A.H. Comparative mapping of QTLs determining the plant size of Brassica oleracea. Theor. Appl. Genet. 2001, 103, 383–397. [Google Scholar] [CrossRef]
- Sun, X.; Luo, S.; Luo, L.; Wang, X.; Chen, X.; Lu, Y.; Shen, S.; Zhao, J.; Bonnema, G. Genetic analysis of Chinese cabbage reveals correlation between rosette leaf and leafy head variation. Front. Plant Sci. 2018, 9, 1455. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Ma, L.; Liu, T.; Zhang, C.; Xiao, D.; Zheng, H.; Chen, F.; Hou, X. A chromosome-level reference genome of non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Hortic. Res. 2020, 7, 212. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Y.; Liu, T.; Zhang, C.; Xiao, D.; Hou, X. Non-heading Chinese cabbage database: An open-access platform for the genomics of Brassica campestris (syn. Brassica rapa) ssp. chinensis. Plants 2022, 11, 1005. [Google Scholar] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Taylor, J.; Butler, D. R Package ASMap: Efficient genetic linkage map construction and diagnosis. J. Stat. Softw. 2017, 79, 1–29. [Google Scholar] [CrossRef]
- Broman, K.W.; Wu, H.; Sen, Z.; Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef]
- Broman, K.W.; Gatti, D.M.; Simecek, P.; Furlotte, N.A.; Prins, P.; Sen, S.; Yandell, B.S.; Churchill, G.A. R/qtl2: Software for mapping quantitative trait loci with high-dimensional data and multiparent populations. Genetics 2019, 211, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Ikeuchi, M.; Yamaguchi, T.; Kazama, T.; Ito, T.; Horiguchi, G.; Tsukaya, H. ROTUNDIFOLIA4 regulates cell proliferation along the body axis in Arabidopsis shoot. Plant Cell Physiol. 2011, 52, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Spartz, A.K.; Lee, S.H.; Wenger, J.P.; Gonzalez, N.; Itoh, H.; Inzé, D.; Peer, W.A.; Murphy, A.S.; Overvoorde, P.J.; Gray, W.M. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J. 2012, 70, 978–990. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Huang, X.; Xie, L.; Tan, S.; Gbokie, T., Jr.; Bao, Y.; Xie, Z.; Yi, K. Identification and expression of SAUR genes in the CAM plant Agave. Genes 2019, 10, 555. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Cao, L.; Wang, S.; Li, Y.; Shi, X.; Liu, H.; Li, L.; Zhang, Z.; Fowke, L.C.; Wang, H.; et al. Downregulation of multiple CDK inhibitor ICK/KRP genes upregulates the E2F pathway and increases cell proliferation, and organ and seed sizes in Arabidopsis. Plant J. 2013, 75, 642–655. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Ko, J.; Lee, S.; Lee, Y.; Pak, J.; Kim, J.H. The Arabidopsis GRF-INTERACTING FACTOR gene family performs an overlapping function in determining organ size as well as multiple developmental properties. Plant Physiol. 2009, 151, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Chen, L.; Lu, Y.; Wu, Y.; Dumenil, J.; Zhu, Z.; Bevan, M.W.; Li, Y. The ubiquitin receptors DA1, DAR1, and DAR2 redundantly regulate endoreduplication by modulating the stability of TCP14/15 in Arabidopsis. Plant Cell 2015, 27, 649–662. [Google Scholar] [CrossRef]
- Baloban, M.; Vanstraelen, M.; Tarayre, S.; Reuzeau, C.; Cultrone, A.; Mergaert, P.; Kondorosi, E. Complementary and dose-dependent action of AtCCS52A isoforms in endoreduplication and plant size control. New Phytol. 2013, 198, 1049–1059. [Google Scholar] [CrossRef]
- Sankaranarayanan, S.; Samuel, M.A. A proposed role for selective autophagy in regulating auxin-dependent lateral root development under phosphate starvation in Arabidopsis. Plant Signal. Behav. 2015, 10, e989749. [Google Scholar] [CrossRef]
- Iwata, E.; Ikeda, S.; Matsunaga, S.; Kurata, M.; Yoshioka, Y.; Criqui, M.; Genschik, P.; Ito, M. GIGAS CELL1, a novel negative regulator of the anaphase-promoting complex/cyclosome, is required for proper mitotic progression and cell fate determination in Arabidopsis. Plant Cell 2011, 23, 4382–4393. [Google Scholar] [CrossRef]
- Churchman, M.L.; Brown, M.L.; Kato, N.; Kirik, V.; Hülskamp, M.; Inzé, D.; De Veylder, L.; Walker, J.D.; Zheng, Z.; Oppenheimer, D.G.; et al. SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. Plant Cell 2006, 18, 3145–3157. [Google Scholar] [CrossRef] [PubMed]
- Korbei, B.; Moulinier-Anzola, J.; De-Araujo, L.; Lucyshyn, D.; Retzer, K.; Khan, M.A.; Luschnig, C. Arabidopsis TOL proteins act as gatekeepers for vacuolar sorting of PIN2 plasma membrane protein. Curr. Biol. 2013, 23, 2500–2505. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, H.; Chen, M.; Li, X.; Wang, M.; Yang, Y.; Wang, C.; Huang, J.; Liu, G.; Liu, Y.; et al. ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis. Plant Cell 2014, 26, 3501–3518. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhou, X.; Xu, F.; Gao, J. Ectopic expression of a Chinese cabbage BrARGOS gene in Arabidopsis increases organ size. Transgenic Res. 2010, 19, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Manuela, D.; Xu, M. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 and 13 repress BLADE-ON-PETIOLE 1 and 2 directly to promote adult leaf morphology in Arabidopsis. J. Exp. Bot. 2023, 74, 1926–1939. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.H.; Spartz, A.K.; Park, M.Y.; Du, M.; Gray, W.M. Mutation of a conserved motif of PP2C.D phosphatases confers SAUR immunity and constitutive activity. Plant Physiol. 2019, 181, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Dhandapani, V.; Rameneni, J.J.; Li, X.; Sivanandhan, G.; Choi, S.R.; Pang, W.; Im, S.; Lim, Y.P. Genome-Wide Analysis and characterization of Aux/IAA family genes in Brassica rapa. PLoS ONE 2016, 11, e0151522. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Kim, G.T.; Shinozaki, K. Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J. 2000, 22, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Khan, R.; Zhou, L.; Wu, X.; Xu, N.; Ma, X.; Zhang, Y. Genome-Wide Identification Analysis of the auxin response factors family in Nicotiana tabacum and the function of NtARF10 in leaf size regulation. J. Plant Biol. 2021, 64, 281–297. [Google Scholar] [CrossRef]
- Hur, Y.S.; Um, J.H.; Kim, S.; Kim, K.; Park, H.J.; Lim, J.S.; Kim, W.Y.; Jun, S.E.; Yoon, E.K.; Lim, J.; et al. Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication. New Phytol. 2015, 205, 316–328. [Google Scholar] [CrossRef]
- Su, C.; Qiu, X.; Ji, Z. Study of strategies for selecting quantitative trait locus mapping procedures by computer simulation. Mol. Breed. 2013, 31, 947–956. [Google Scholar] [CrossRef]
- Weng, Y.; Colle, M.; Wang, Y.; Yang, L.; Rubinstein, M.; Sherman, A.; Ophir, R.; Grumet, R. QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theor. Appl. Genet. 2015, 128, 1747–1763. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.L.; Leong, W.F.; Brock, M.T.; Markelz, R.J.C.; Covington, M.F.; Devisetty, U.K.; Edwards, C.E.; Maloof, J.; Welch, S.; Weinig, C. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape. New Phytol. 2015, 208, 257. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Gao, Y.; Lu, Y.; Zhang, X.; Luo, S.; Li, X.; Liu, M.; Feng, D.; Gu, A.; Chen, X.; et al. Genetic analysis of the “head top shape” quality trait of Chinese cabbage and its association with rosette leaf variation. Hortic. Res. 2021, 8, 106. [Google Scholar] [CrossRef] [PubMed]
- Lou, P.; Zhao, J.; Kim, J.S.; Shen, S.; Del Carpio, D.P.; Song, X.; Jin, M.; Vreugdenhil, D.; Wang, X.; Koornneef, M.; et al. Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J. Exp. Bot. 2007, 58, 4005–4016. [Google Scholar] [CrossRef]
- Cang, Y.S.; Jian, W.Y.; XiaoYing, Z. Mapping and analysis QTL controlling some morphological traits in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Acta Genet. Sin. 2003, 30, 1153–1160. [Google Scholar]
Trait Name | Trait Description | Units | |
---|---|---|---|
LL | Lamina length | Length from the bottom of the lamina to the tip of the lamina | cm |
LW | Lamina width | Width of lamina at the widest point | cm |
PL | Petiole length | Length from the base of the petiole to the bottom of the lamina | cm |
PW | Petiole width | Width of petiole at the widest point | cm |
LFW | Lamina fresh weight | Fresh weight from the bottom of the lamina to the tip of the lamina | g |
PFW | Petiole fresh weight | Fresh weight from the base of the petiole to the bottom of the lamina | g |
PT | Petiole thickness | Thickness of petiole | cm |
LS | Leaf shape | Ratio of total leaf length to lamina width | |
LPLI | Index of lamina/petiole length | Ratio of lamina length to petiole length | |
PS | Petiole shape | Ratio of petiole length to petiole width | |
PFWI | Index of petiole fresh weight | Ratio of petiole fresh weight to total leaf fresh weight |
Source of Variation | LL | LW | LS | LPLI | PL | PW | PS | PT | LFW | PFW | PFWI |
---|---|---|---|---|---|---|---|---|---|---|---|
Genotype (G) | 3.88 | 1.75 | 0.21 | 0.12 | 1.94 | 0.19 | 1.06 | 1.95 | 4.12 | 12.90 | 0.0019 |
Location (L) | 1.71 | 0.83 | 0.00047 | 0.0022 | 0.70 | 0.06 | 0.00 | 0.70 | 9.08 | 20.50 | 0.00 |
G × L | 4.28 | 1.59 | 0.042 | 0.17 | 2.73 | 0.083 | 0.56 | 2.72 | 6.22 | 45.40 | 0.0023 |
Residual | 2.06 | 0.82 | 0.093 | 0.14 | 1.68 | 0.15 | 0.66 | 1.68 | 6.13 | 22.00 | 0.0030 |
Heritability (H2) | 0.43 | 0.46 | 0.56 | 0.28 | 0.33 | 0.41 | 0.46 | 0.33 | 0.25 | 0.19 | 0.25 |
Linkage Group (Chr) | Chr Length | Detected SNP | Mapped SNP | Map Length (cM) | Average Spacing (cM) | Maximum Spacing (cM) |
---|---|---|---|---|---|---|
A01 | 38,126,442 | 722,047 | 170 | 292.4 | 1.70 | 22.7 |
A02 | 33,817,099 | 753,934 | 164 | 227.2 | 1.40 | 10.6 |
A03 | 41,214,576 | 779,968 | 103 | 283.7 | 2.80 | 34.6 |
A04 | 23,891,077 | 530,781 | 51 | 130.0 | 2.60 | 17.4 |
A05 | 42,748,514 | 794,914 | 108 | 227.9 | 2.10 | 20 |
A06 | 43,549,656 | 897,224 | 485 | 349.7 | 0.70 | 7.4 |
A07 | 29,241,068 | 616,408 | 60 | 62.1 | 1.10 | 14.5 |
A08 | 23,546,603 | 559,964 | 144 | 203.7 | 1.40 | 15.7 |
A09 | 64,520,918 | 1,276,206 | 238 | 338.5 | 1.40 | 50.5 |
A10 | 23,121,789 | 433,993 | 95 | 178.9 | 1.90 | 16.4 |
Average | 736,543.9 | 161.8 | 229.4 | 1.40 | 21.0 | |
Summary | 7,365,439 | 1618 | 2294.1 | 1.40 | 50.5 |
Traits | Environment | QTL | Linkage Group | Peak Position (cM) | Genetic Interval (cM) | Physical Interval (bp) | LOD | Additive Effect | var% | Detected Method |
---|---|---|---|---|---|---|---|---|---|---|
LL | Baima | qLL.9.1 | A09 | 255 | 251.92–257.21 | 54,284,337–54,909,787 | 4.60 | 1.04 | 10.64% | CIM, MQM |
Baima | qLL.10.1 | A10 | 64 | 61.8–66.36 | 14,423,163–14,753,808 | 5.26 | 0.87 | 16.01% | CIM | |
Huzhou | qLL.9.2 | A09 | 236 | 228.5–238.26 | 51,166,169–53,344,508 | 12.65 | 0.93 | 27.16% | CIM | |
BLUP | qLL.9.2 | A09 | 234 | 228.5–238.26 | 51,166,169–53,344,508 | 9.26 | 0.51 | 21.03% | CIM | |
LW | Baima | qLW.9.1 | A09 | 259 | 258.2–258.895 | 54,979,140–55,034,347 | 258.55 | 0.61 | 8.86% | CIM |
Huzhou | qLW.1.1 | A01 | 26 | 19.48–35.20 | 989,993–1,872,968 | 4.87 | 0.58 | 9.80% | CIM | |
Huzhou | qLW.6.1 | A06 | 306 | 302.56–308.15 | 39,464,218–40,133,203 | 5.86 | 0.59 | 11.59% | CIM, MQM | |
Huzhou | qLW.9.2 | A09 | 204 | 202.4016–205.5288 | 47,132,468–47,510,459 | 10.15 | 0.68 | 21.16% | CIM, MQM | |
BLUP | qLW.6.2 | A06 | 289 | 287.492–290.5821 | 37,994,746–37,994,793 | 4.91 | 0.28 | 11.21% | CIM, MQM | |
BLUP | qLW.9.2 | A09 | 204 | 202.4016–205.5288 | 47,132,468–47,510,459 | 10.27 | 0.44 | 21.01% | CIM | |
LS | Baima | qLS.3.1 | A03 | 32 | 30.9917–32.67531 | 28,309,949–28,571,158 | 8.53 | −0.16 | 9.94% | CIM |
Baima | qLS.4.1 | A04 | 13 | 0–13.22851 | 4,135,569–4,221,964 | 6.75 | −0.20 | 14.55% | CIM | |
Huzhou | qLS.4.1 | A04 | 16 | 10.62462–24.93579 | 4,676,839–13,960,200 | 7.94 | −0.22 | 16.86% | CIM | |
BLUP | qLS.4.1 | A04 | 15 | 0–15.33323 | 4,052,077–4,221,964 | 6.88 | −0.18 | 19.82% | CIM | |
LPLI | Huzhou | qLPLI.6.1 | A06 | 114 | 111.6521–116.8251 | 9,114,145–10,250,895 | 6.62 | 0.19 | 16.28% | CIM, MQM |
BLUP | qLPLI.9.1 | A09 | 157 | 155.5247–158.1822 | 6,023,021–6,435,341 | 6.94 | −0.05 | 11.17% | CIM | |
PL | Huzhou | qPL.8.1 | A08 | 118 | 112.9256–120.7969 | 15,650,536–16,681,470 | 5.78 | −0.69 | 10.31% | CIM |
Huzhou | qPL.9.1 | A09 | 274 | 271.487–275.6874 | 55,973,892–56,514,679 | 10.0847876 | −2.14 | 22.56% | CIM, MQM | |
BLUP | qPL.8.2 | A08 | 172 | 171.4044–172.7959 | 7,016,354–8,537,378 | 6.14 | −0.30 | 13.88% | CIM, MQM | |
BLUP | qPL.9.2 | A09 | 245 | 243.6222–246.4983 | 55,241,258–55,583,460 | 10.63 | 0.46 | 20.28% | CIM | |
PW | Baima | qPW.1.1 | A01 | 237 | 234.4222–240.1689 | 33,706,868–34,001,075 | 8.88 | 0.15 | 16.35% | CIM |
Huzhou | qPW.1.2 | A01 | 150 | 140.0755–155.0015 | 28,431,036–30,881,834 | 8.49 | 0.16 | 20.26% | CIM | |
PS | Huzhou | qPS.1.1 | A01 | 227.5 | 224.3572–231.473 | 33,503,602–33,602,028 | 5.73 | −0.50 | 16.51% | CIM, MQM |
Huzhou | qPS.8.1 | A08 | 76.1 | 72.54486–79.48189 | 17,955,760–17,648,975 | 6.13 | −0.54 | 15.91% | CIM | |
BLUP | qPS.1.1 | A01 | 228 | 224.3572–231.473 | 33,503,602–33,602,028 | 7.98 | −0.41 | 21.24% | CIM | |
BLUP | qPS.8.2 | A08 | 126 | 120.7969–128.0647 | 14,932,889–16,681,470 | 7.08 | −0.33 | 13.44% | CIM | |
LFW | Baima | qLFW.9.1 | A09 | 259 | 258.1957–258.895 | 55,034,347–54,979,140 | 8.72 | 1.30 | 8.67% | CIM |
Huzhou | qLFW.9.2 | A09 | 74.9 | 71.86596–75.29802 | 1,527,172–1,736,911 | 9.69 | 0.44 | 24.59% | CIM | |
BLUP | qLFW.9.1 | A09 | 259 | 71.86596–258.895 | 1,527,172–55,006,529 | 7.21 | 0.40 | 9.34% | CIM | |
PFW | Huzhou | qPFW.9.1 | A09 | 233 | 228.5003–234.9453 | 51,166,169–52,736,112 | 10.15 | 0.99 | 22.73% | CIM |
BLUP | qPFW.9.2 | A09 | 259 | 258.1957–258.895 | 54,979,140–55,034,347 | 20.55 | 0.53 | 7.52% | CIM | |
PFWI | Huzhou | qPFWI.9.1 | A09 | 277.49 | 272.9204–278.5876 | 56,320,818–56,815,511 | 8.28 | 0.03 | 17.27% | CIM, MQM |
Huzhou | qPFWI.10.1 | A10 | 5.38 | 0–15.32951 | 96,585–1,129,590 | 5.79 | 0.03 | 11.02% | CIM, MQM | |
BLUP | qPFWI.9.1 | A09 | 280 | 275.6874–288.5661 | 56,514,702–57,563,461 | 6.78 | 0.01 | 16.51% | CIM, MQM | |
BLUP | qPFWI.10.1 | A10 | 17 | 6.337199–18.792343 | 679,925–1,343,752 | 5.52 | 0.01 | 14.11% | CIM, MQM |
QTL | Gene ID in Brassica campestris | Homologue in Arabidopsis | Gene Name | References |
---|---|---|---|---|
qLL.9.2 | BraC09g051900 | AT2G36985 | ROT4 | Ikeuchi et al., 2011 [32] |
qLL.9.2 | BraC09g051940 | AT3G53250 | SAUR57 | Spartz et al., 2012 [33]; Deng et al., 2019 [34] |
qPFW.9.1&qLL.9.2 | BraC09g050650 | AT3G50630 | KRP2 | Cheng et al., 2013 [35] |
qPFW.9.1&qLL.9.2 | BraC09g051590 | AT3G52910 | GRF4 | Lee et al., 2009 [36] |
qLW.1.1 | BraC01g001950 | AT4G36860 | DAR1 | Peng et al., 2015 [37] |
qLW.1.1 | BraC01g002470 | AT4G36110 | SAUR9 | Spartz et al., 2012 [33]; Deng et al., 2019 [34] |
qLW.1.1 | BraC01g003510 | AT4G34750 | SAUR49 | Spartz et al., 2012 [33]; Deng et al., 2019 [34] |
qLS.4.1 | BraC04g006480 | AT4G22910 | CCS52A1 | Baloban et al., 2013 [38] |
qLS.4.1 | BraC04g007040 | AT3G52910 | GRF4 | Lee et al., 2009 [36] |
qLS.4.1 | BraC04g007910 | AT1G65800 | RK2 | Sankaranarayanan et al., 2015 [39] |
qLS.4.1 | BraC04g014700 | AT2G04660 | APC2 | Eloy et al., 2011 [40] |
qLS.4.1 | BraC04g015220 | AT5G40460 | SMR6 | Michelle L et al., 2006 [41] |
qLPLI.6.1 | BraC06g016490 | AT1G21380 | TOL3 | Barbara et al., 2013 [42] |
qLPLI.6.1 | BraC06g016780 | AT1G21700 | SWI3C | Vercruyssen et al., 2014 [15] |
qLPLI.6.1 | BraC06g017160 | AT1G21380 | TOL3 | Barbara et al., 2013 [42] |
qLPLI.9.1 | BraC09g010470 | AT2G17800 | ROP3 | Huang et al., 2014 [43] |
qLPLI.9.1 | BraC09g010520 | AT2G18010 | SAUR10 | Spartz et al., 2012 [33]; Deng et al., 2019 [34] |
qPL.9.1&qPFWI.9.1 | BraC09g057880 | AT3G59900 | ARGOS | Wang et al., 2010 [44] |
qPL.9.2 | BraC09g056020 | AT3G57130 | BOP1 | Hu et al., 2023 [45] |
qPL.8.1&qPS.8.2 | BraC08g021310 | AT4G36110 | SAUR9 | Spartz et al., 2012 [33] |
qPW.1.2 | BraC01g036690 | AT3G20898 | SMR13 | Michelle L et al., 2006 [41] |
qPS.8.1 | BraC08g023640 | AT4G38520 | APD6 | Wong et al., 2019 [46] |
qPT.1.1 | BraC01g041240 | AT3G15540 | IAA19 | Parameswari et al., 2016 [47] |
qLFW9.2 | BraC09g002580 | AT3G27630 | SMR7 | Michelle L et al., 2006 [41] |
qPFWI.9.1 | BraC09g058530 | AT4G00100 | RPS13A | Ito et al., 2000 [48] |
qPFWI.9.1 | BraC09g059400 | AT3G61830 | ARF18 | Zhang et al., 2021 [49] |
qPFWI.9.1 | BraC09g059410 | AT3G61840 | ARF | Zhang et al., 2021 [49] |
qPFWI.9.1 | BraC09g059470 | AT3G61890 | HB12 | Hur et al., 2015 [50] |
qPFWI.9.1 | BraC09g059720 | AT3G62100 | IAA30 | Parameswari et al., 2016 [47] |
qPFWI.10.1 | BraC10g002600 | AT1G04100 | IAA10 | Parameswari et al., 2016 [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Bai, A.; Wang, X.; Zhang, F.; Yang, M.; Wang, Y.; Liu, T.; Hou, X.; Li, Y. Genetic Mapping for Leaf Shape and Leaf Size in Non-Heading Chinese Cabbage by a RIL Population. Horticulturae 2024, 10, 529. https://doi.org/10.3390/horticulturae10050529
Zhao T, Bai A, Wang X, Zhang F, Yang M, Wang Y, Liu T, Hou X, Li Y. Genetic Mapping for Leaf Shape and Leaf Size in Non-Heading Chinese Cabbage by a RIL Population. Horticulturae. 2024; 10(5):529. https://doi.org/10.3390/horticulturae10050529
Chicago/Turabian StyleZhao, Tianzi, Aimei Bai, Xinya Wang, Feixue Zhang, Miaomiao Yang, Yuhui Wang, Tongkun Liu, Xilin Hou, and Ying Li. 2024. "Genetic Mapping for Leaf Shape and Leaf Size in Non-Heading Chinese Cabbage by a RIL Population" Horticulturae 10, no. 5: 529. https://doi.org/10.3390/horticulturae10050529
APA StyleZhao, T., Bai, A., Wang, X., Zhang, F., Yang, M., Wang, Y., Liu, T., Hou, X., & Li, Y. (2024). Genetic Mapping for Leaf Shape and Leaf Size in Non-Heading Chinese Cabbage by a RIL Population. Horticulturae, 10(5), 529. https://doi.org/10.3390/horticulturae10050529