Pollen and Floral Organ Morphology of 18 Oil-Tea Genotypes and Its Systematic Significance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Morphology Studies
2.3. Data Analysis
3. Results
3.1. Characteristics of Flower Organ Morphology
3.2. Characteristics of Pollen Morphology
3.3. PCA and Cluster Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Teixeira, A.M.; Sousa, C. A Review on the Biological Activity of Camellia Species. Molecules 2021, 26, 2178. [Google Scholar] [CrossRef] [PubMed]
- Quan, W.X.; Wang, A.P.; Gao, C.; Li, C.C. Applications of Chinese Camellia oleifera and its By-Products: A Review. Front. Chem. 2022, 10, 921246. [Google Scholar] [CrossRef] [PubMed]
- Su, M.H.; Shi, M.C.; Lin, K. Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem. 2014, 156, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Li, T.; Huang, B.; Xu, L.; Wen, Q. Complete chloroplast genome of Camellia chekiangoleosa (Theaceae), a shrub with gorgeous flowers and rich seed oil. Mitochondrial DNA Part B Resour. 2021, 6, 840–841. [Google Scholar] [CrossRef]
- Long, L.; Gao, C.; Qiu, J.; Yang, L.; Wei, H.; Zhou, Y.C. Fatty acids and nutritional components of the seed oil from Wangmo red ball Camellia oleifera grown in the low-heat valley of Guizhou, China. Sci. Rep. 2022, 12, 16554. [Google Scholar] [CrossRef]
- Tao, L.Y.; Wang, Y.P.; Hu, Z.K.; Li, X.L.; Li, J.Y.; Fan, Z.Q.; Ye, N.; Yin, H.F. The complete chloroplast genome of Camellia vietnamensis, an economic shrub producing edible seed oil. Mitochondrial DNA Part B Resour. 2019, 4, 3736–3737. [Google Scholar]
- Qi, H.S.; Sun, X.X.; Yan, W.P.; Ye, H.; Chen, J.L.; Yu, J.; Jun, D.; Wang, C.; Xia, T.F.; Chen, X.; et al. Genetic relationships and low diversity among the tea-oil Camellia species in Sect. Oleifera, a bulk woody oil crop in China. Front. Plant Sci. 2020, 13, 996731. [Google Scholar] [CrossRef]
- Zhou, J.Q.; Lu, M.Q.; Yu, S.S.; Liu, Y.Y.; Yang, J.; Tan, X.F. In-Depth Understanding of Camellia oleifera Self-Incompatibility by Comparative Transcriptome, Proteome and Metabolome. Int. J. Mol. Sci. 2020, 21, 1600. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tang, X.X.; Chu, Q.L.; Zhang, M.Y.; Zhang, Y.Z.; Xu, B.H. Characterization of the Volatile Compounds in Camellia oleifera Seed Oil from Different Geographic Origins. Molecules 2022, 27, 308. [Google Scholar] [CrossRef]
- Zhang, J.W.; Huang, D.Z.; Zhao, X.J.; Hou, X.Y.; Di, D.L.; Wang, S.K.; Qian, J.S.; Sun, P. Pollen morphology of different species of Iris barbata and its systematic significance with scanning electron microscopy methods. Microsc. Res. Tech. 2021, 84, 1721–1739. [Google Scholar] [CrossRef]
- Lu, L.; Wang, H.; Blackmore, S.; Li, D.Z.; Dong, L.N. Pollen morphology of the tribe Rhinantheae (Orobanchaceae) and its systematic significances. Plant Syst. Evol. 2007, 268, 177–198. [Google Scholar] [CrossRef]
- Song, Y.Y.; Zhao, C.H.; Zhao, Y.Y.; Liu, J.X. Pollen morphology of Aletris L. (Nartheciaceae) and its systematic significance. Microsc. Res. Tech. 2019, 82, 2061–2071. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.-P.; Sharkey, T.-D. Pollen development at high temperature and role of carbon and nitrogen metabolites. Plant Cell Environ. 2019, 42, 2759–2775. [Google Scholar] [CrossRef] [PubMed]
- López-Orozco, R.; García-Mozo, H.; Oteros, J.; Galán, C. Long-term trends and influence of climate and land-use changes on pollen profiles of a Mediterranean oak forest. Sci. Total Environ. 2023, 897, 165400. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.M.; Zhao, Y.Y.; Zhao, C.H.; Liu, J.X. Taxonomic importance of pollen morphology in Veratrum L. (Melanthiaceae) using microscopic techniques. Microsc. Res. Tech. 2020, 83, 865–876. [Google Scholar] [CrossRef]
- Lubna; Zafar, M.; Ahmad, M.; Shah, G.M.; Khan, A.M.; Kilic, O.; Yilmaz, E.; Ozdemir, F.A.; Ali, M.I.; Shah, M.A.; et al. Application and implication of scanning electron microscopy for evaluation of palyno-morphological features of Vitaceae from Pakistan. Microsc. Res. Tech. 2020, 84, 608–617. [Google Scholar] [CrossRef]
- Cai, X.Y.; Hou, Y.Q.; Jawad, M.U.; Wang, H.; Xu, Y.C.; Zhang, J.; Wang, Y.H.; Liu, F.; Zhou, Z.L.; Hua, J.P.; et al. The morphological diversity of pollen in the genus Gossypium. J. Cotton Res. 2023, 6, 6. [Google Scholar] [CrossRef]
- Wei, Z.X.; Min, T.L.; Zavada, M.S. Pollen morphology of Camellia and its taxonomic significance. Plant Stud. Yunnan 1992, 3, 275–282, 347–354. [Google Scholar]
- Wang, X.N.; Chen, R.Z.; Jiang, L.J.; Liu, Z.L.; Peng, S.F.; Wang, R.; Ma, L.; Yang, X.H. Morphological and structural observation of pollen of Camellia oleifera by scanning electron microscopy. J. Cent. South Univ. For. Technol. 2010, 30, 67–71, 90. [Google Scholar]
- Xie, Y.Q. Analysis of pollen morphology and relationship of farmer varieties of Camellia meiocarpa. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2016, 40, 26–32. [Google Scholar]
- Yuan, B.; Yuan, J.K.; Huang, C.G.; Lian, J.R.; Li, Y.H.; Fan, X.M.; Yuan, D.Y. Pseudopollen in Camellia oleifera and its implications for pollination ecology and taxonomy. Front. Plant Sci. 2022, 13, 1032187. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.W.; Yuan, D.Y.; Li, Y.M.; Xiao, S.X.; Gong, S.F.; Zhang, J.; Li, S.F.; Luo, J. Identification of ploidy in Hainan oil tea. Sci. Silvae Sin. 2021, 57, 61–69. [Google Scholar]
- Li, Y.M.; Yuan, D.Y.; Ye, T.W.; Chen, Y.; Han, C.X.; Xiao, S.X. Karyotype analysis of 18 excellent single strains from F1 generation of interspecific hybridization of Camellia oleifera. Sci. Silvae Sin. 2022, 58, 165–174. [Google Scholar]
- Halbritter, H.; Ulrich, S.; Grímsson, F.; Weber, M.; Zetter, R.; Hesse, M.; Buchner, R.; Svojtka, M.; Frosch-Radivo, A. Illustrated Pollen Terminology, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2018; p. 483. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Ning, K.; Zhang, W.X.; Chen, H.; Lu, X.Q.; Zhang, D.L.; El-Kassaby, Y.A.; Bian, J. Phenotypic variation of floral organs in flowering crabapples and its taxonomic significance. BMC Plant Biol. 2021, 21, 503. [Google Scholar] [CrossRef] [PubMed]
- da Silva-Luz, C.L.; Pirani, J.R.; Mitchell, J.D.; Daly, D.; do Valle Capelli, N.; Demarco, D.; Pell, S.K.; Plunkett, G.M. Phylogeny of Schinus L (Anacardiaceae) with a new infrageneric classification and insights into evolution of spinescence and floral traits. Mol. Phylogenetics Evol. 2019, 133, 302–351. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Fan, J.J.; Zhao, M.M.; Zhang, D.L.; Li, Q.H.; Wang, G.B.; Zhang, W.X.; Cao, F.L. Phenotypic variation of floral organs in Malus using frequency distribution functions. BMC Plant Biol. 2019, 19, 574. [Google Scholar] [CrossRef] [PubMed]
- Nazish, M.; Althobaiti, A.T. Palyno-Morphological Characteristics as a Systematic Approach in the Identification of Halophytic Poaceae Species from a Saline Environment. Plants 2022, 11, 2618. [Google Scholar] [CrossRef] [PubMed]
- Carter, V.A.; Chiverrell, R.C.; Clear, J.L.; Kuosmanen, N.; Moravcová, A.; Svoboda, M.; Svobodová-Svitavská, H.; van Leeuwen, J.F.N.; van der Knaap, W.O.; Kuneš, P. Quantitative Palynology Informing Conservation Ecology in the Bohemian/Bavarian Forests of Central Europe. Front. Plant Sci. 2018, 8, 2268. [Google Scholar] [CrossRef]
- Zhao, R.; Xu, L.J.; Xu, X.S.; Li, Y.M.; Xiao, S.X.; Yuan, D.Y. Comparative Study on Pollen Viability of Camellia oleifera at Four Ploidy Levels. Agronomy 2022, 12, 2592. [Google Scholar] [CrossRef]
- Opedal, Ø.H.; Pérez-Barrales, R.; Brito, V.L.; Muchhala, N.; Capó, M.; Dellinger, A. Pollen as the link between floral phenotype and fitness. Am. J. Bot. 2023, 110, e16200. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.J.; Liang, C.; Lian, Y.F. Pollen Genetic Stability of Excellent Tea (Camellia sinensis) Germplasms. J. Tea Sci. 2000, 20, 12–18. [Google Scholar]
- Chen, C.S.; Peng, A.; Peng, Y.; Zhong, Q.S.; Chen, X.P.; Chen, R.B. Morphological Studies on Pollen of Camellias for 34 Species (Camellia Sinensis). Fujian J. Agric. Sci. 2012, 27, 1219–1226. [Google Scholar]
- Birjees, M.; Ahmad, M.; Zafar, M.; Khan, A.S.; Ullah, I. Palyno-anatomical characters and their systematic significance in the family Apiaceae from Chitral, eastern Hindu Kush, Pakistan. Microsc. Res. Tech. 2021, 85, 980–995. [Google Scholar] [CrossRef]
- Fan, T.F.; Potroz, M.G.; Tan, E.L.; Ibrahim, M.S.; Miyako, E.; Cho, N.J. Species-Specific Biodegradation of Sporopollenin-Based Microcapsules. Sci. Rep. 2019, 9, 9626. [Google Scholar] [CrossRef] [PubMed]
- Esfandani-bozchaloyi, S.; Zaman, W. Taxonomic significance of macro and micro-morphology of Geranium L. species Using Scanning Electron Microscopy. Microsc. Res. Tech. 2018, 81, 1520–1532. [Google Scholar] [CrossRef]
- Noroozi, M.; Ghahremaninejad, F.; Bogler, D.; Witherspoon, J.M.; Ryan, G.L.; Miller, J.S.; Riahi, M.; Cohen, J.I. Parsing a plethora of pollen: The role of pollen size and shape in the evolution of Boraginaceae. Cladistics 2021, 38, 204–226. [Google Scholar] [CrossRef]
- Chen, L.; Tong, Q.Q.; Gao, Q.K.; Shu, J.L.; Yu, F.L. Observations on Pollen Morphology of 8 Species and 1 Variety in Genus Camellia. J. Tea Sci. 1997, 17, 189–198. [Google Scholar]
- Teixido, A.L.; Aizen, M.A. Reproductive assurance weakens pollinator-mediated selection on flower size in an annual mixed-mating species. Ann. Bot. 2019, 123, 1067–1077. [Google Scholar] [CrossRef]
- Hao, K.; Tian, Z.X.; Wang, Z.C.; Huang, S.Q. Pollen grain size associated with pollinator feeding strategy. Proceedings. Biol. Sci. 2020, 287, 20201191. [Google Scholar] [CrossRef]
- De Storme, N.; Zamariola, L.; Mau, M.; Sharbel, T.F.; Geelen, D. Volume-based pollen size analysis: An advanced method to assess somatic and gametophytic ploidy in flowering plants. Plant Reprod. 2013, 26, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.B.; Kurti, A.; Lawhorn, A.J.; Litt, A.; McCarthy, E.W. Differential Gene Expression with an Emphasis on Floral Organ Size Differences in Natural and Synthetic Polyploids of Nicotiana tabacum (Solanaceae). Genes 2020, 11, 1097. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhao, Y.L.; Yang, G.Y.; Peng, J.; Chen, S.W.; Xu, Z.G. Determination of the evolutionary pressure on Camellia oleifera on Hainan Island using the complete chloroplast genome sequence. PeerJ 2019, 7, e7210. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guo, Y.J.; Hu, X.W.; Zhou, K.B. Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species from Hainan Province. Front. Plant Sci. 2022, 12, 798581. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ruan, C.J.; Ding, G.J.; Mopper, S. Genetic relationships in a germplasm collection of Camellia japonica and Camellia oleifera using SSR analysis. Genet. Mol. Res. 2017, 16, 16019526. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.Q.; Qi, H.S.; Li, Y.; Wu, Y.G.; Wang, Y.; Chen, J.M.; Yu, J. Assessment of the Genetic Relationship and Population Structure in Oil-Tea Camellia Species Using Simple Sequence Repeat (SSR) Markers. Genes 2022, 13, 2162. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Liang, D.Y.; Song, Z.J.; Tan, Y.; Guo, X.L.; Wang, D.L. Genetic Diversity Analysis and Core Germplasm Collection Construction of Camellia oleifera Based on Fruit Phenotype and SSR Data. Genes 2022, 13, 2351. [Google Scholar] [CrossRef]
Code | Genotype | Sampling Date | Ploidy | Code | Genotype | Sampling Date | Ploidy |
---|---|---|---|---|---|---|---|
no. 1 | C. gauchowensis ‘HM19’ | 2 December | 8n = 120x | no. 10 | C. hainanica | 6 December | 10n = 150x |
no. 2 | C. gauchowensis ‘HM349’ | 25 November | 8n = 120x | no. 11 | C. magniflora Chang | 6 February | 8n = 120x |
no. 3 | C. oleifera ‘ASX09’ | 2 December | 6n = 90x | no. 12 | C. mairei (H. Lév.) Melch. var. lapidea (Y.C. Wu) Sealy | 28 February | 2n = 30x |
no. 4 | C. hainanica ‘PX-6’ | 26 November | 10n = 150x | no. 13 | C. oleifera ‘HJ’ | 6 December | 6n = 90x |
no. 5 | C. meiocarpa ‘ZX0907’ | 2 December | 4n = 60x | no. 14 | C. oleifera ‘HS’ | 24 November | 6n = 90x |
no. 6 | C. oleifera ‘DY2’ | 28 November | 6n = 90x | no. 15 | C. oleifera ‘HX’ | 26 November | 6n = 90x |
no. 7 | C. oleifera ‘DZ1H’ | 15 December | 6n = 90x | no. 16 | C. osmantha | 22 November | 6n = 90x |
no. 8 | C. oleifera ‘CY67’ | 22 November | 6n = 90x | no. 17 | C. meiocarpa ‘LP’ | 3 December | 4n = 60x |
no. 9 | C. gauchowensis ‘XW’ | 15 December | 10n = 150x | no. 18 | C. yuhsienensis Hu | 24 February | 6n = 90x |
Code | Genotype | Petal Color | Corolla Diameter (mm) (CD) | Anther Number (AN) | Stamen Height (mm) (AH) | Petal Count (Petals per Flower) (PC) |
---|---|---|---|---|---|---|
no. 1 | C. gauchowensis ‘HM19’ | white | 59.11 ± 1.03 i | 112.75 ± 2.2 c | 16.10 ± 0.2 hij | 5 |
no. 2 | C. gauchowensis ‘HM349’ | white | 69.54 ± 1.39 ef | 92.90 ± 0.96 def | 15.77 ± 0.21 k | 5 |
no. 3 | C. oleifera ‘ASX09’ | white | 89.51 ± 2.11 a | 99.65 ± 4.03 d | 18.04 ± 0.25 ef | 6 (or 6 ± 1) |
no. 4 | C. hainanica ‘PX-6’ | white | 66.43 ± 1.65 fgh | 81.50 ± 3.01 g | 15.51 ± 0.28 j | 6 (or 6 ± 1) |
no. 5 | C. meiocarpa ‘ZX0907’ | white | 49.86 ± 0.73 j | 85.45 ± 3.06 efg | 17.07 ± 0.2 fgh | 6 (or 6 ± 1) |
no. 6 | C. oleifera ‘DY2’ | white | 79.76 ± 1.67 bc | 91.90 ± 1.35 def | 17.77 ± 0.28 efg | 6 (or 6 ± 1) |
no. 7 | C. oleifera ‘DZ1H’ | white | 84.15 ± 2.46 ab | 101.30 ± 1.3 d | 19.09 ± 0.33 cd | 6 (or 6 ± 1) |
no. 8 | C. oleifera ‘CY67’ | white | 73.80 ± 1.19 de | 94.50 ± 2.8 de | 16.37 ± 0.43 hij | 5 (or 6) |
no. 9 | C. gauchowensis ‘XW’ | white | 86.59 ± 1.67 a | 89.25 ± 4.15 efg | 15.52 ± 0.26 ij | 5 (or 6) |
no. 10 | C. hainanica | white | 75.71 ± 1.22 cd | 168.50 ± 3.82 a | 19.81 ± 0.26 c | 6 (or 6 ± 1) |
no. 11 | C. magniflora Chang | pink | 48.74 ± 1.73 jk | 150.75 ± 3.68 b | 36.54 ± 0.33 b | 6 (or 6 ± 1) |
no. 12 | C. mairei (H. Lév.) Melch. var. lapidea (Y.C. Wu) Sealy | rose bengal | 47.88 ± 1.72 jk | 175.65 ± 2.4 a | 39.88 ± 0.45 a | 6 (or 6 ± 1) |
no. 13 | C. oleifera ‘HJ’ | white | 64.70 ± 1.33 efgh | 70.90 ± 1.57 h | 12.00 ± 0.23 l | 5 |
no. 14 | C. oleifera ‘HS’ | white | 66.88 ± 1.36 fg | 113.50 ± 2.93 c | 18.72 ± 0.26 de | 6 (or 6 ± 1) |
no. 15 | C. oleifera ‘HX’ | white | 60.73 ± 2.19 hi | 115.60 ± 3.91 c | 16.94 ± 0.32 ghi | 6 (or 6 ± 1) |
no. 16 | C. osmantha | white | 70.24 ± 1.93 def | 83.45 ± 1.54 g | 15.77 ± 0.37 j | 6 (or 6 ± 1) |
no. 17 | C. meiocarpa ‘LP’ | white | 42.25 ± 1.37 k | 64.05 ± 3.02 h | 11.68 ± 0.12 l | 5 (or 6) |
no. 18 | C. yuhsienensis Hu | white | 61.44 ± 1.58 ghi | 46.50 ± 1.07 i | 11.11 ± 0.23 l | 5 (or 6) |
Code | Genotype | Pistil Height (mm) (PH) | Style Height (mm) (STH) | Cracking state of Stigma and style | Pistil and Stamen Relative Position |
---|---|---|---|---|---|
no. 1 | C. gauchowensis ‘HM19’ | 13.49 ± 0.15 e | 9.84 ± 0.09 f | 4 deep cracks | A < G |
no. 2 | C. gauchowensis ‘HM349’ | 13.95 ± 0.11 e | 11.24 ± 0.1 e | 3 shallow cracks | A > G (or A ≈ G) |
no. 3 | C. oleifera ‘ASX09’ | 12.10 ± 0.42 f | 8.49 ± 0.42 gh | 4 deep cracks | A > G |
no. 4 | C. hainanica ‘PX-6’ | 16.20 ± 0.2 cd | 12.55 ± 0.22 c | 3 deep cracks | A > G (or A ≈ G) |
no. 5 | C. meiocarpa ‘ZX0907’ | 12.39 ± 0.2 f | 9.47 ± 0.22 fg | 3 shallow cracks | A > G |
no. 6 | C. oleifera ‘DY2’ | 10.90 ± 0.12 g | 7.75 ± 0.12 hi | 3 (or 4) deep cracks | A > G (or A ≈ G) |
no. 7 | C. oleifera ‘DZ1H’ | 16.29 ± 0.18 c | 12.64 ± 0.19 cd | 5 (or 6) deep cracks | A > G |
no. 8 | C. oleifera ‘CY67’ | 15.86 ± 0.31 cd | 12.32 ± 0.31 cd | 3 (or 4) deep cracks | A > G (or A ≈ G) |
no. 9 | C. gauchowensis ‘XW’ | 15.27 ± 0.23 d | 11.67 ± 0.29 e | 5 (or 6) deep cracks | A > G |
no. 10 | C. hainanica | 17.39 ± 0.14 c | 13.57 ± 0.13 c | 3 (or 4) deep cracks | A > G (or A ≈ G) |
no. 11 | C. magniflora Chang | 31.03 ± 0.36 b | 27.59 ± 0.39 b | 3 (or 4) shallow cracks | A > G |
no. 12 | C. mairei (H. Lév.) Melch. var. lapidea (Y.C. Wu) Sealy | 39.52 ± 0.49 a | 36.04 ± 0.51 a | 3 shallow cracks | A > G |
no. 13 | C. oleifera ‘HJ’ | 13.62 ± 0.26 e | 9.95 ± 0.25 f | 3 (or 4) deep cracks | A > G |
no. 14 | C. oleifera ‘HS’ | 16.12 ± 0.17 cd | 11.64 ± 0.54 de | 4 (or 5) deep cracks | A > G |
no. 15 | C. oleifera ‘HX’ | 13.41 ± 0.38 e | 9.93 ± 0.31 f | 3 (or 4) deep cracks | A > G (or A ≈ G) |
no. 16 | C. osmantha | 10.61 ± 0.09 g | 7.33 ± 0.11 i | 3 (or 4) deep cracks | A > G |
no. 17 | C. meiocarpa ‘LP’ | 10.12 ± 0.11 g | 7.29 ± 0.07 i | 3 deep cracks | A > G (or A ≈ G) |
no. 18 | C. yuhsienensis Hu | 4.83 ± 0.06 h | 2.93 ± 0.05 j | 3 deep cracks | A > G |
Code | Genotype | Polar Axis Diameter (μm) (P) | Equatorial Axis Diameter (μm) (E) | P × E (μm2) |
---|---|---|---|---|
no. 1 | C. gauchowensis ‘HM19’ | 31.32 ± 0.34 f | 36.03 ± 0.35 b | 1128.46 ± 11.9 f |
no. 2 | C. gauchowensis ‘HM349’ | 31.92 ± 0.43 fg | 38.64 ± 0.3 bc | 1233.39 ± 16.1 d |
no. 3 | C. oleifera ‘ASX09’ | 31.92 ± 0.39 fg | 36.34 ± 0.26 defg | 1273.16 ± 22.4 d |
no. 4 | C. hainanica ‘PX-6’ | 31.94 ± 0.36 fg | 37.75 ± 0.3 bcd | 1205.74 ± 11.47 e |
no. 5 | C. meiocarpa ‘ZX0907’ | 30.21 ± 0.44 gh | 35.76 ± 0.51 efgh | 1080.31 ± 14.85 g |
no. 6 | C. oleifera ‘DY2’ | 28.30 ± 0.34 hi | 34.77 ± 0.4 ghij | 983.99 ± 13.94 h |
no. 7 | C. oleifera ‘DZ1H’ | 27.98 ± 0.4 i | 33.51 ± 0.4 ijk | 937.61 ± 11.7 h |
no. 8 | C. oleifera ‘CY67’ | 27.5 ± 0.35 i | 32.76 ± 0.28 k | 900.90 ± 17.22 h |
no. 9 | C. gauchowensis ‘XW’ | 34.88 ± 0.37 e | 41.62 ± 0.31 a | 1451.71 ± 11.9 c |
no. 10 | C. hainanica | 32.36 ± 0.33 f | 38.74 ± 0.36 b | 1253.63 ± 13.6 d |
no. 11 | C. magniflora Chang | 46.24 ± 1.52 b | 34.47 ± 0.92 hij | 1593.89 ± 32.9 b |
no. 12 | C. mairei (H. Lév.) Melch. var. Lapidea (Y.C. Wu) Sealy | 59.04 ± 0.74 a | 34.92 ± 0.54 fghi | 2061.68 ± 40.14 a |
no. 13 | C. oleifera ‘HJ’ | 32.73 ± 0.47 f | 37.04 ± 0.47 cde | 1212.32 ± 9.8 de |
no. 14 | C. oleifera ‘HS’ | 31.01 ± 0.45 fg | 36.75 ± 0.33 de | 1139.62 ± 39.9 ef |
no. 15 | C. oleifera ‘HX’ | 31.38 ± 0.41 fg | 35.99 ± 0.34 efgh | 1129.37 ± 22.9 f |
no. 16 | C. osmantha | 38.81 ± 0.39 d | 33.14 ± 0.3 jk | 1286.16 ± 10.8 d |
no. 17 | C. meiocarpa ‘LP’ | 32.49 ± 0.59 f | 36.42 ± 0.75 def | 1183.30 ± 11.8 de |
no. 18 | C. yuhsienensis Hu | 43.17 ± 0.41 c | 21.32 ± 0.42 l | 920.38 ± 44.25 h |
Code | Genotype | P/E | Pollen Shape | Polar View | Equatorial View | Exine Surface |
---|---|---|---|---|---|---|
no. 1 | C. gauchowensis ‘HM19’ | 0.84 ± 0.01 e | Oblate spheroid | Triangular shape | Oblate shape | Perforate |
no. 2 | C. gauchowensis ‘HM349’ | 0.83 ± 0.01 e | Oblate spheroid | Subcircular shape | Oblate shape | Perforate |
no. 3 | C. oleifera ‘ASX09’ | 0.88 ± 0.01 e | Sub-spheroid | Triangular shape | Spherical shape | Perforate |
no. 4 | C. hainanica ‘PX-6’ | 0.85 ± 0.01 e | Oblate spheroid | Triangular shape | Oblate shape | Verrucate |
no. 5 | C. meiocarpa ‘ZX0907’ | 0.85 ± 0.01 e | Oblate spheroid | Triangular shape | Oblate shape | Perforate |
no. 6 | C. oleifera ‘DY2’ | 0.82 ± 0.01 e | Oblate spheroid | Triangular shape | Oblate shape | Verrucate |
no. 7 | C. oleifera ‘DZ1H’ | 0.84 ± 0.01 e | Oblate spheroid | Triangular shape | Oblate shape | Perforate |
no. 8 | C. oleifera ‘CY67’ | 0.84 ± 0.01 e | Oblate spheroid | Triangular shape | Oblate shape | Perforate |
no. 9 | C. gauchowensis ‘XW’ | 0.84 ± 0.01 e | Oblate spheroid | Triangular shape | Oblate shape | Perforate |
no. 10 | C. hainanica | 0.84 ± 0.01 e | Oblate spheroid | Triangular shape | Oblate shape | Perforate |
no. 11 | C. magniflora Chang | 1.39 ± 0.06 c | prolate ellipsoid | Triangular shape | Oblong shape | Perforate |
no. 12 | C. mairei (H. Lév.) Melch. var. Lapidea (Y.C. Wu) Sealy | 1.70 ± 0.04 b | prolate ellipsoid | Subcircular shape | Oblong shape | Perforate |
no. 13 | C. oleifera ‘HJ’ | 0.89 ± 0.01 e | Sub-spheroid | Subcircular shape | Spherical shape | Perforate |
no. 14 | C. oleifera ‘HS’ | 0.89 ± 0.01 e | Sub-spheroid | Triangular shape | Spherical shape | Perforate |
no. 15 | C. oleifera ‘HX’ | 0.88 ± 0.01 e | Sub-spheroid | Subcircular shape | Spherical shape | Perforate |
no. 16 | C. osmantha | 1.10 ± 0.02 d | Sub-spheroid | Subcircular shape | Spherical shape | Perforate |
no. 17 | C. meiocarpa ‘LP’ | 0.90 ± 0.01 e | Sub-spheroid | Subcircular shape | Spherical shape | Perforate |
no. 18 | C. yuhsienensis Hu | 1.96 ± 0.04 a | prolate ellipsoid | Subcircular shape | Oblong shape | Reticulate |
Code | Genotype | Perforation Lumina Diameter (μm) (D) | Paraporal Muri Width (μm) (W) | D/W |
---|---|---|---|---|
no. 1 | C. gauchowensis ‘HM19’ | 0.34 ± 0.03 ghi | 1.06 ± 0.04 cd | 0.31 ± 0.01 g |
no. 2 | C. gauchowensis ‘HM349’ | 0.31 ± 0.01 hi | 1.40 ± 0.12 a | 0.25 ± 0.02 g |
no. 3 | C. Oleifera ‘ASX09’ | 0.35 ± 0.02 gh | 0.93 ± 0.03 de | 0.37 ± 0.03 de |
no. 4 | C. hainanica ‘PX-6’ | 0.42 ± 0.02 cdef | 1.05 ± 0.06 cd | 0.40 ± 0.01 de |
no. 5 | C. meiocarpa ‘ZX0907’ | 0.31 ± 0.02 hi | 0.92 ± 0.03 def | 0.33 ± 0.01 g |
no. 6 | C. oleifera ‘DY2’ | 0.56 ± 0.03 b | 0.91 ± 0.03 def | 0.62 ± 0.01 bc |
no. 7 | C. oleifera‘DZ1H’ | 0.43 ± 0.02 defgh | 1.25 ± 0.06 ab | 0.34 ± 0.01 fg |
no. 8 | C. oleifera ‘CY67’ | 0.55 ± 0.03 bcd | 1.25 ± 0.03 ab | 0.43 ± 0.01 ef |
no. 9 | C. gauchowensis ‘XW’ | 0.51 ± 0.04 bcde | 1.05 ± 0.05 cd | 0.49 ± 0.03 de |
no. 10 | C. hainanica | 0.35 ± 0.01 fghi | 1.15 ± 0.05 bc | 0.31 ± 0.01 g |
no. 11 | C. magniflora Chang | 0.29 ± 0.02 i | 1.01 ± 0.05 cde | 0.29 ± 0.01 g |
no. 12 | C. mairei (H. Lév.) Melch. var. lapidea (Y.C. Wu) Sealy | 0.46 ± 0.02 cdefg | 0.86 ± 0.03 ef | 0.53 ± 0.01 cd |
no. 13 | C. oleifera ‘HJ’ | 0.41 ± 0.02 efghi | 0.95 ± 0.04 def | 0.43 ± 0.01 ef |
no. 14 | C. oleifera ‘HS’ | 0.55 ± 0.04 bc | 1.29 ± 0.06 ab | 0.42 ± 0.01 ef |
no. 15 | C. oleifera ‘HX’ | 0.40 ± 0.02 efghi | 0.90 ± 0.04 def | 0.45 ± 0.01 de |
no. 16 | C. osmantha | 0.53 ± 0.02 bcde | 0.77 ± 0.04 f | 0.70 ± 0.01 b |
no. 17 | C. meiocarpa ‘LP’ | 0.48 ± 0.02 bcdef | 1.02 ± 0.05 cde | 0.47 ± 0.01 de |
no. 18 | C. yuhsienensis Hu | 1.22 ± 0.11 a | 0.90 ± 0.03 def | 1.30 ± 0.09 a |
Code | Genotype | Arc Width of Exine (μm) (a) | Arc Height of Exine (μm) (b) | b/a | Germination Furrow Width (μm) (WG) |
---|---|---|---|---|---|
no. 1 | C. gauchowensis ‘HM19’ | 40.94 ± 0.52 b | 13.37 ± 0.43 a | 0.33 ± 0.01 a | 8.88 ± 0.16 a |
no. 2 | C. Gauchowensis ‘HM349’ | 39.64 ± 0.29 bc | 11.16 ± 0.18 bc | 0.28 ± 0.01 b | 5.76 ± 0.13 f |
no. 3 | C. Oleifera ‘ASX09’ | 36.56 ± 0.36 efg | 9.93 ± 0.38 de | 0.27 ± 0.01 bcd | 6.87 ± 0.17 cd |
no. 4 | C. hainanica ‘PX-6’ | 35.62 ± 0.27 gh | 11.52 ± 0.22 b | 0.32 ± 0.01 a | 7.14 ± 0.17 c |
no. 5 | C. meiocarpa ‘ZX0907’ | 36.98 ± 0.37 ef | 9.29 ± 0.17 efg | 0.25 ± 0.01 cd | 8.57 ± 0.27 ab |
no. 6 | C. oleifera ‘DY2’ | 37.75 ± 0.39 de | 9.74 ± 0.26 def | 0.26 ± 0.01 bcd | 8.05 ± 0.18 b |
no. 7 | C. oleifera‘DZ1H’ | 35.73 ± 0.35 fgh | 8.94 ± 0.29 fg | 0.25 ± 0.01 cde | 8.49 ± 0.18 ab |
no. 8 | C. oleifera ‘CY67’ | 35.75 ± 0.17 fgh | 8.76 ± 0.26 fgh | 0.24 ± 0.01 cde | 6.20 ± 0.18 ef |
no. 9 | C. gauchowensis ‘XW’ | 43.10 ± 0.41 a | 11.77 ± 0.18 b | 0.27 ± 0.01 bc | 8.15 ± 0.21 b |
no. 10 | C. hainanica | 40.93 ± 0.32 b | 10.35 ± 0.28 cd | 0.25 ± 0.01 bcd | 6.84 ± 0.27 cde |
no. 11 | C. magniflora Chang | 26.79 ± 0.27 j | 6.81 ± 0.41 i | 0.25 ± 0.01 bcd | 7.25 ± 0.24 c |
no. 12 | C. mairei (H. Lév.) Melch. var. lapidea (Y.C. Wu) Sealy | 27.58 ± 0.36 j | 6.80 ± 0.21 i | 0.25 ± 0.01 cde | 3.02 ± 0.12 g |
no. 13 | C. oleifera ‘HJ’ | 35.54 ± 0.26 gh | 8.59 ± 0.28 gh | 0.24 ± 0.01 de | 6.12 ± 0.16 f |
no. 14 | C. oleifera ‘HS’ | 38.64 ± 0.27 cd | 8.51 ± 0.26 gh | 0.22 ± 0.01 e | 6.34 ± 0.14 def |
no. 15 | C. oleifera ‘HX’ | 34.67 ± 0.34 hi | 8.50 ± 0.25 gh | 0.25 ± 0.01 cde | 6.22 ± 0.12 def |
no. 16 | C. osmantha | 23.51 ± 0.25 k | 7.93 ± 0.26 h | 0.34 ± 0.01 a | 5.81 ± 0.09 f |
no. 17 | C. meiocarpa ‘LP’ | 33.97 ± 0.68 i | 9.09 ± 0.26 efg | 0.27 ± 0.01 bcd | 6.41 ± 0.17 def |
no. 18 | C. yuhsienensis Hu | 16.57 ± 0.25 l | 4.51 ± 0.11 j | 0.27 ± 0.01 bc | 2.55 ± 0.2 g |
Ploidy | CD | AN | SH | PH | STH | ||
---|---|---|---|---|---|---|---|
Ploidy | Pearson’s correlation coefficient (r) | 1 | 0.447 | 0.181 | 0.053 | 0.026 | 0.017 |
Significance (p) | 0.000 | 0.063 | 0.473 | 0.834 | 0.919 | 0.948 | |
Sample number (N) | 18 | 18 | 18 | 18 | 18 | 18 |
Ploidy | P | E | D | W | a | b | WG | ||
---|---|---|---|---|---|---|---|---|---|
Ploidy | Pearson’s correlation coefficient (r) | 1 | −0.136 | 0.271 | −0.052 | 0.073 | 0.334 | 0.414 | 0.302 |
Significance (p) | 0.000 | 0.591 | 0.276 | 0.839 | 0.775 | 0.176 | 0.088 | 0.224 | |
Sample number (N) | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Q.; Pan, Z.; Li, Y.; Xiong, H.; Masabni, J.; Yuan, D.; Zou, F. Pollen and Floral Organ Morphology of 18 Oil-Tea Genotypes and Its Systematic Significance. Horticulturae 2024, 10, 524. https://doi.org/10.3390/horticulturae10050524
Yin Q, Pan Z, Li Y, Xiong H, Masabni J, Yuan D, Zou F. Pollen and Floral Organ Morphology of 18 Oil-Tea Genotypes and Its Systematic Significance. Horticulturae. 2024; 10(5):524. https://doi.org/10.3390/horticulturae10050524
Chicago/Turabian StyleYin, Qian, Zhongfei Pan, Yanming Li, Huan Xiong, Joseph Masabni, Deyi Yuan, and Feng Zou. 2024. "Pollen and Floral Organ Morphology of 18 Oil-Tea Genotypes and Its Systematic Significance" Horticulturae 10, no. 5: 524. https://doi.org/10.3390/horticulturae10050524
APA StyleYin, Q., Pan, Z., Li, Y., Xiong, H., Masabni, J., Yuan, D., & Zou, F. (2024). Pollen and Floral Organ Morphology of 18 Oil-Tea Genotypes and Its Systematic Significance. Horticulturae, 10(5), 524. https://doi.org/10.3390/horticulturae10050524