Modulating ‘Xinomavro’ (Vitis vinifera L.) Vine Growth and Berry Composition: A Comparative Analysis of Rootstock Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Site and Experimental Design
2.2. Vine Water Potential and Leaf Gas Exchange
2.3. Leaf Area and Annual Shoot Growth Production
2.4. Berry Sampling and Must Analysis
2.5. Phenolic Content and Anthocyanins
2.6. Statistical Analysis
3. Results
3.1. Predawn, Stem, and Leaf Water Potentials
3.2. Gas Exchange
3.3. Vine Vegetative Growth and Grape Yield Components
3.4. Berry Composition
3.5. Multivariate Analysis
4. Discussion
4.1. Vine Water Status and Single-Leaf Gas Exchange
4.2. Vine Growth and Yield
4.3. Berry Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tandonnet, J.-P.; Cookson, S.J.; Vivin, P.; Ollat, N. Scion genotype controls biomass allocation and root development in grafted grapevine. Aust. J. Grape Wine Res. 2010, 16, 290–300. [Google Scholar] [CrossRef]
- Jones, T.H.; Cullis, B.R.; Clingeleffer, P.R.; Rühl, E.H. Effects of novel hybrid and traditional rootstocks on vigour and yield components of Shiraz grapevines. Aust. J. Grape Wine Res. 2009, 15, 284–292. [Google Scholar] [CrossRef]
- Keller, M.; Mills, L.J.; Harbertson, J.F. Rootstock Effects on Deficit-Irrigated Winegrapes in a Dry Climate: Vigor, Yield Formation, and Fruit Ripening. Am. J. Enol. Vitic. 2012, 63, 29–39. [Google Scholar] [CrossRef]
- Cookson, S.J.; Ollat, N. Grafting with rootstocks induces extensive transcriptional re-programming in the shoot apical meristem of grapevine. BMC Plant Biol. 2013, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Cochetel, N.; Escudié, F.; Cookson, S.J.; Dai, Z.; Vivin, P.; Bert, P.-F.; Muñoz, M.S.; Delrot, S.; Klopp, C.; Ollat, N.; et al. Root transcriptomic responses of grafted grapevines to heterogeneous nitrogen availability depend on rootstock genotype. J. Exp. Bot. 2017, 68, 4339–4355. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, N.; Koukourikou, M.; Karagiannidis, N.; Koukourikou, M.A. Effects of various rootstocks on xylem exudates cytokinin content, nutrient uptake and growth patterns of grapevine Vitis vinifera L. cv. Thompson seedless. EDP Sci. 2000, 20, 363. [Google Scholar]
- Lang, C.P.; Merkt, N.; Zörb, C. Different nitrogen (N) forms affect responses to N form and N supply of rootstocks and grafted grapevines. Plant Sci. 2018, 277, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, N.; Monte, R.; Varanini, Z.; Cesco, S.; Pinton, R. Induction of nitrate uptake in Sauvignon Blanc and Chardonnay grapevines depends on the scion and is affected by the rootstock. Aust. J. Grape Wine Res. 2015, 21, 331–338. [Google Scholar] [CrossRef]
- Csikasz-Krizsics, A.; Diofasi, L. Effects of rootstock-scion combinations on Macroelements availability of the vines/Alany-nemesfajta Kombinaciok Hatasa a Szolo Makroelem Felvetelere. J. Cent. Eur. Agric. 2008, 9, 495–505. [Google Scholar]
- Jin, K.; White, P.J.; Whalley, W.R.; Shen, J.; Shi, L. Shaping an Optimal Soil by Root-Soil Interaction; Trends in Plant Science; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 22. [Google Scholar]
- Kocsis, L.; Lehoczky, É. The Significance of Yield Production and Sugar Content of the Grapejuice with Macronutrients in Grape Rootstock–Scion Combinations on Dry Climatic Condition. Commun. Soil Sci. Plant Anal. 2002, 33, 3159–3166. [Google Scholar] [CrossRef]
- Wooldridge, J.; Louw, P.; Conradie, W.J. Effects of Rootstock on Grapevine Performance, Petiole and Must Composition, and Overall Wine Score of Vitis vinifera cv. Chardonnay and Pinot noir. S. Afr. J. Enol. Vitic. 2016, 31, 45–48. [Google Scholar] [CrossRef]
- Bascuñán-Godoy, L.; Franck, N.; Zamorano, D.; Sanhueza, C.; Carvajal, D.E.; Ibacache, A. Rootstock effect on irrigated grapevine yield under arid climate conditions are explained by changes in traits related to light absorption of the scion. Sci. Hortic. 2017, 218, 284–292. [Google Scholar] [CrossRef]
- Ozden, M.; Vardin, H.; Simsek, M.; Karaaslan, M. Effects of rootstocks and irrigation levels on grape quality of Vitis vinifera L. cv. Shiraz. Afr. J. Biotechnol. 2010, 9, 3801–3807. [Google Scholar]
- Gambetta, G.A.; Manuck, C.M.; Drucker, S.T.; Shaghasi, T.; Fort, K.; Matthews, M.A.; Walker, M.A.; McElrone, A.J. The relationship between root hydraulics and scion vigour across Vitis rootstocks: What role do root aquaporins play? J. Exp. Bot. 2012, 63, 6445–6455. [Google Scholar] [CrossRef] [PubMed]
- Corso, M.; Vannozzi, A.; Ziliotto, F.; Zouine, M.; Maza, E.; Nicolato, T.; Vitulo, N.; Meggio, F.; Valle, G.; Bouzayen, M.; et al. Grapevine Rootstocks Differentially Affect the Rate of Ripening and Modulate Auxin-Related Genes in Cabernet Sauvignon Berries. Front. Plant Sci. 2016, 7, 69. [Google Scholar] [CrossRef]
- Lee, J.; Steenwerth, K.L. Rootstock and vineyard floor management influence on ‘Cabernet Sauvignon’ grape yeast assimilable nitrogen (YAN). Food Chem. 2011, 127, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.R.d.; Da Mota, R.V.; França, D.V.C.; Pimentel, R.M.d.A.; Regina, M.d.A. Cabernet Sauvignon grapevine grafted onto rootstocks during the autumn-winter season in Southeastern Brazilian. Sci. Agric. 2015, 72, 138–146. [Google Scholar] [CrossRef]
- Satisha, J.; Ramteke, S.D.; Karibasappa, G.S. Physiological and Biochemical Characterisation of Grape Rootstocks. S. Afr. J. Enol. Vitic. 2007, 28, 163–168. [Google Scholar] [CrossRef]
- Zombardo, A.; Mica, E.; Puccioni, S.; Perria, R.; Valentini, P.; Mattii, G.B.; Cattivelli, L.; Storchi, P. Berry Quality of Grapevine under Water Stress as Affected by Rootstock–Scion Interactions through Gene Expression Regulation. Agronomy 2020, 10, 680. [Google Scholar] [CrossRef]
- Li, M.; Guo, Z.; Jia, N.; Yuan, J.; Han, B.; Yin, Y.; Sun, Y.; Liu, C.; Zhao, S. Evaluation of eight rootstocks on the growth and berry quality of ‘Marselan’ grapevines. Sci. Hortic. 2019, 248, 58–61. [Google Scholar] [CrossRef]
- Brancadoro, L.; Valenti, L.; Reina, A.; Scienza, A. Potassium content of grapevine during the vegetative period: The role of the rootstock. J. Plant Nutr. 1994, 17, 2165–2175. [Google Scholar] [CrossRef]
- Duchene, E. How can grapevine genetics contribute to the adaptation to climate change? OENO One 2016, 50. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One 2017, 51, 147. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; García de Cortázar-Atauri, I.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Chang. 2018, 8, 29–37. [Google Scholar] [CrossRef]
- Theocharis, S.; Taskos, D.; Gkrimpizis, T.; Nikolaou, K.-E.; Miliordos, D.-E.; Koundouras, S. Optimizing ‘Xinomavro’ (Vitis vinifera L.) Performance by Post-Bloom Basal Leaf Removal Applications. Horticulturae 2024, 10, 340. [Google Scholar] [CrossRef]
- Choné, X. Stem Water Potential is a Sensitive Indicator of Grapevine Water Status. Ann. Bot. 2001, 87, 477–483. [Google Scholar] [CrossRef]
- Romero, P.; Fernández-Fernández, J.I.; Martinez-Cutillas, A. Physiological Thresholds for Efficient Regulated Deficit-Irrigation Management in Winegrapes Grown under Semiarid Conditions. Am. J. Enol. Vitic. 2010, 61, 300–312. [Google Scholar] [CrossRef]
- Lopes, C.M.; Pinto, P.A. Estimation de la surface foliaire principale et secondaire d’un sarment de vigne. Progrés Agric. Vitic. 2000, 177, 160–166. [Google Scholar]
- Iland, P. Techniques for Chemical Analysis and Quality Monitoring during Winemaking; Patrick Iland Wine Promotions: Campbelltown, Australia, 2000; ISBN 064638435X. [Google Scholar]
- van Leeuwen, C. Soils and Terroir Expression in Wines. In Soil and Culture; Landa, E.R., Feller, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 453–465. ISBN 978-90-481-2960-7. [Google Scholar]
- Nikolaou, N.; Angelopoulos, K.; Karagiannidis, N. Effects of drought stress on mycorrhizal and non-mycorrhizal Cabernet Sauvignon grapevine, grafted onto various rootstocks. Exp. Agric. 2003, 39, 241–252. [Google Scholar] [CrossRef]
- Peiró, R.; Jiménez, C.; Perpiñà, G.; Soler, J.X.; Gisbert, C. Evaluation of the genetic diversity and root architecture under osmotic stress of common grapevine rootstocks and clones. Sci. Hortic. 2020, 266, 109283. [Google Scholar] [CrossRef]
- Bauerle, T.L.; Smart, D.R.; Bauerle, W.L.; Stockert, C.; Eissenstat, D.M. Root foraging in response to heterogeneous soil moisture in two grapevines that differ in potential growth rate. New Phytol. 2008, 179, 857–866. [Google Scholar] [CrossRef]
- Cuneo, I.F.; Barrios-Masias, F.; Knipfer, T.; Uretsky, J.; Reyes, C.; Lenain, P.; Brodersen, C.R.; Walker, M.A.; McElrone, A.J. Differences in grapevine rootstock sensitivity and recovery from drought are linked to fine root cortical lacunae and root tip function. New Phytol. 2021, 229, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Barrios-Masias, F.H.; Knipfer, T.; McElrone, A.J. Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization. J. Exp. Bot. 2015, 66, 6069–6078. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, C.; Trégoat, O.; Choné, X.; Bois, B.; Pernet, D.; Gaudillère, J.-P. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J. Int. Sci. Vigne Vin 2009, 43, 121–134. [Google Scholar] [CrossRef]
- Romero, P.; Botía, P.; Navarro, J.M. Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions. Agric. Water Manag. 2018, 209, 73–93. [Google Scholar] [CrossRef]
- Bota, B.J.; Flexas, J.; Medrano, H. Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Ann. Appl. Biol. 2001, 138, 353–361. [Google Scholar] [CrossRef]
- Medrano, H.; Escalona, J.M.; Bota, J.; Gulías, J.; Flexas, J. Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Ann. Bot. 2002, 89, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Cifre, J.; Bota, J.; Escalona, J.M.; Medrano, H.; Flexas, J. Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.). Agric. Ecosyst. Environ. 2005, 106, 159–170. [Google Scholar] [CrossRef]
- Nardini, A.; Salleo, S. Effects of the experimental blockage of the major veins on hydraulics and gas exchange of Prunus laurocerasus L. leaves. J. Exp. Bot. 2003, 54, 1213–1219. [Google Scholar] [CrossRef]
- Alsina, M.M.; Smart, D.R.; Bauerle, T.; de Herralde, F.; Biel, C.; Stockert, C.; Negron, C.; Save, R. Seasonal changes of whole root system conductance by a drought-tolerant grape root system. J. Exp. Bot. 2011, 62, 99–109. [Google Scholar] [CrossRef]
- Begg, J.E.; Turner, N.C. Water potential gradients in field tobacco. Plant Physiol. 1970, 46, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Marguerit, E.; Rossdeutsch, L.; Ollat, N.; Gambetta, G.A. The influence of grapevine rootstocks on scion growth and drought resistance. Theor. Exp. Plant Physiol. 2016, 28, 143–157. [Google Scholar] [CrossRef]
- Neal, S.; Trought, M.; West, B. Rootstock Evaluation for Premium Wine 2010-11; The New Zealand Institute for Plant & Food Research: Auckland, New Zealand, 2011. [Google Scholar]
- Walker, R.R.; Blackmore, D.H.; Clingeleffer, P.R.; Holt, H.; Pearson, W.; Francis, I.L. Effect of rootstock on yield, grape composition and wine sensory attributes of Shiraz grown in a moderately saline environment. Aust. J. Grape Wine Res. 2019, 25, 414–429. [Google Scholar] [CrossRef]
- Poni, S.; Bernizzoni, F.; Civardi, S.; Gatti, M.; Porro, D.; Camin, F. Performance and water-use efficiency (single-leaf vs. whole-canopy) of well-watered and half-stressed split-root Lambrusco grapevines grown in Po Valley (Italy). Agric. Ecosyst. Environ. 2009, 129, 97–106. [Google Scholar] [CrossRef]
- Agut, C.; Rodríguez-Lovelle, B.; Fabre, F. Incidence du porte-greffe sur le comportement du cépage Syrah. In Proceedings of the XIVth International GIESCO Viticulture Congress, Geisenheim, Germany, 23–27 August 2005; pp. 148–154. [Google Scholar]
- Satisha, J.; Somkuwar, R.G.; Sharma, J.; Upadhyay, A.K.; Adsule, P.G. Influence of Rootstocks on Growth Yield and Fruit Composition of Thompson Seedless Grapes Grown in the Pune Region of India. S. Afr. J. Enol. Vitic. 2010, 31, 1–8. [Google Scholar] [CrossRef]
- Marguerit, E.; Brendel, O.; Lebon, E.; van Leeuwen, C.; Ollat, N. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytol. 2012, 194, 416–429. [Google Scholar] [CrossRef]
- Gil, M.; Pascual, O.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I.; Zamora, F.; Canals, J.M. Influence of berry size on red wine colour and composition. Aust. J. Grape Wine Res. 2015, 21, 200–212. [Google Scholar] [CrossRef]
- Roby, G.; Matthews, M.A. Relative proportions of seed, skin and flesh, in ripe berries from Cabernet Sauvignon grapevines grown in a vineyard either well irrigated or under water deficit. Aust. J. Grape Wine Res. 2004, 10, 74–82. [Google Scholar] [CrossRef]
- Iland, P.; Dry, P.; Proffitt, T.; Tyerman, S. The Grapevine: From the Science to the Practice of Growing Vines for Wine; Patrick Iland Wine Promotions: Campbelltown, Australia, 2011; ISBN 978-0-9581605-5-1. [Google Scholar]
- Castellarin, S.D.; Matthews, M.A.; Di Gaspero, G.; Gambetta, G.A. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef]
- Koundouras, S.; Hatzidimitriou, E.; Karamolegkou, M.; Dimopoulou, E.; Kallithraka, S.; Tsialtas, J.T.; Zioziou, E.; Nikolaou, N.; Kotseridis, Y. Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. cabernet sauvignon grapes. J. Agric. Food Chem. 2009, 57, 7805–7813. [Google Scholar] [CrossRef] [PubMed]
- Diakou-Verdin, P.; Carde, J.-P.; Gaudillère, J.-P.; Barrieu, F.; Ollat, N.; Moing, A. Grape berry development: A review. J. Int. Des Sci. Vigne Vin 2002, 36, 109–131. [Google Scholar] [CrossRef]
Year | Rootstock | Ψdawn (MPa) | Ψleaf (MPa) | Ψstem (MPa) | ΔΨdawn–stem (MPa) | ΔΨstem–leaf (MPa) | Kplant (g MPa−1s−1) |
---|---|---|---|---|---|---|---|
2016 | 101-14 MGt | −0.52 b | −1.37 bc | −1.09 c | 0.57 a | 0.28 b | 0.22 c |
3309 C | −0.51 b | −1.40 c | −1.09 c | 0.58 a | 0.32 ab | 0.24 bc | |
110 R | −0.44 a | −1.33 b | −0.97 b | 0.54 a | 0.36 ab | 0.28 b | |
140 Ru | −0.43 a | −1.27 a | −0.87 a | 0.44 b | 0.40 a | 0.39 a | |
2017 | 101-14 MGt | −0.51 b | −1.39 c | −1.09 c | 0.58 a | 0.29 b | 0.23 c |
3309 C | −0.50 b | −1.41 c | −1.09 c | 0.59 a | 0.32 b | 0.24 c | |
110 R | −0.45 a | −1.32 b | −0.97 b | 0.53 b | 0.35 ab | 0.30 b | |
140 Ru | −0.42 a | −1.27 a | −0.88 a | 0.46 c | 0.39 a | 0.39 a | |
R × year | ns | ns | ns | ns | ns | ns |
Year | Rootstock | gs (mol H2O m−2s−1) | E (mmol H2O m−2s−1) | A (μmol CO2 m−2s−1) | WUE (mmol CO2 mol−1 H2O) |
---|---|---|---|---|---|
2016 | 101-14 MGt | 0.10 c | 3.40 c | 6.93 c | 89.92 a |
3309 C | 0.12 c | 3.84 c | 7.62 c | 68.38 ab | |
110 R | 0.17 b | 4.42 b | 10.46 b | 70.62 ab | |
140 Ru | 0.24 a | 5.83 a | 13.18 a | 56.32 b | |
2017 | 101-14 MGt | 0.10 c | 3.55 c | 7.27 c | 86.20 a |
3309 C | 0.11 c | 3.88 c | 7.65 c | 68.33 b | |
110 R | 0.19 b | 4.60 b | 11.11 b | 64.90 b | |
140 Ru | 0.24 a | 5.88 a | 13.38 a | 57.51 b | |
R × year | ns | ns | ns | ns |
Year | Rootstock | Total Soluble Solids (°Brix) | Titratable Acidity (g L−1) | pH | Total Anthocyanins (mg Berry−1) | Total Phenolics (au Berry−1) | Total Anthocyanins (mg g Berry−1) | Total Phenolics (au g Berry−1) |
---|---|---|---|---|---|---|---|---|
2016 | - | 22.4 a | 7.4 a | 3.3 a | 1.00 | 2.75 a | 0.55 a | 1.49 a |
2017 | - | 19.3 b | 4.9 b | 3.1 b | 0.90 | 2.37 b | 0.40 b | 1.10 b |
2016 | 101-14 MGt | 23.2 a | 6.3 b | 3.3 | 1.13 a | 2.74 | 0.67 a | 1.63 a |
3309 C | 23.1 a | 6.4 b | 3.3 | 1.08 a | 2.73 | 0.65 a | 1.64 a | |
110 R | 21.7 b | 8.1 a | 3.2 | 0.97 b | 2.67 | 0.48 b | 1.32 b | |
140 Ru | 21.7 b | 8.6 a | 3.2 | 0.83 c | 2.84 | 0.40 c | 1.37 b | |
2017 | 101-14 MGt | 20.7 a | 4.2 b | 3.2 | 0.99 a | 2.36 | 0.40 bc | 1.20 a |
3309 C | 19.2 bc | 5.1 a | 3.1 | 1.03 a | 2.36 | 0.46 a | 1.14 b | |
110 R | 18.7 bc | 5.3 a | 3.1 | 0.82 b | 2.38 | 0.39 bc | 1.03 c | |
140 Ru | 18.5 c | 5.1 a | 3.0 | 0.76 b | 2.37 | 0.36 c | 1.03 c | |
R × year | *** | *** | *** | ** | ns | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theocharis, S.; Gkrimpizis, T.; Karadimou, C.; Alatzas, A.; Koundouras, S.; Taskos, D. Modulating ‘Xinomavro’ (Vitis vinifera L.) Vine Growth and Berry Composition: A Comparative Analysis of Rootstock Effects. Horticulturae 2024, 10, 490. https://doi.org/10.3390/horticulturae10050490
Theocharis S, Gkrimpizis T, Karadimou C, Alatzas A, Koundouras S, Taskos D. Modulating ‘Xinomavro’ (Vitis vinifera L.) Vine Growth and Berry Composition: A Comparative Analysis of Rootstock Effects. Horticulturae. 2024; 10(5):490. https://doi.org/10.3390/horticulturae10050490
Chicago/Turabian StyleTheocharis, Serafeim, Theodoros Gkrimpizis, Christina Karadimou, Anastasios Alatzas, Stefanos Koundouras, and Dimitrios Taskos. 2024. "Modulating ‘Xinomavro’ (Vitis vinifera L.) Vine Growth and Berry Composition: A Comparative Analysis of Rootstock Effects" Horticulturae 10, no. 5: 490. https://doi.org/10.3390/horticulturae10050490
APA StyleTheocharis, S., Gkrimpizis, T., Karadimou, C., Alatzas, A., Koundouras, S., & Taskos, D. (2024). Modulating ‘Xinomavro’ (Vitis vinifera L.) Vine Growth and Berry Composition: A Comparative Analysis of Rootstock Effects. Horticulturae, 10(5), 490. https://doi.org/10.3390/horticulturae10050490