Sustainability Indicators for the Environmental Impact Assessment of Plant Protection Products Use in Moroccan Vineyards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Survey Execution
2.3. Agro-Environmental Indicators
2.3.1. Pesticide Intensity Index
2.3.2. Environmental Impact Quotient (EIQ)
2.3.3. Pesticide Environmental Risk Indicator Model (PERI)
Indicator | Formula | References |
---|---|---|
Number of Treatments (NT) | Total number of treatments that occur during a growing season | [29] |
Quantity of Active Substances Indicator (QASI) | QASI = Use of pesticides × Concentration of active ingredient | [37] |
Treatment Frequency Indicator (TFI) | TFI = ∑ × | [47] |
Environmental Impact Quotient (EIQ) | EIQ = {C(DT × 5) + (DT × P)] + [(C × (S + P)2 × SY] + (L)] + [(F × R) + (D × (S + P)/2 × 3) + (Z × P × 3) + (B × P × 5)]}/3 | [40] |
Environmental Impact Quotient Field Use Rate (EIQ-FUR) | EIQ-FUR = EIQ × % active ingredient × Rate | [42] |
Environmental Risk Score (ERS) | ERS = (GUS × Kh) + (B + W + D + A + S)/5 × Kow/10 | |
Final ERS (F-ERS) | Final Indicator of ER = ERS × (Actual Application Rate/Standard Application Rate) | [45] |
2.4. Life Cycle Assessment
2.5. Statistical Analysis
3. Results
3.1. Vineyard Characteristics and Management Practices
3.2. Treatments against the Main Diseases and Pests
3.3. Inventory and Characterization of Pesticide Use
3.4. Agro-Environmental Indicators and Pesticide Intensity Index
3.4.1. Number of Treatments
3.4.2. Quantity of Active Substances Indicator (QASI)
3.4.3. Treatment Frequency Indicator (TFI)
3.5. Environnemental Impact Quotient (EIQ)
3.6. PERI Models
3.7. Life Cycle Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- OIV: Database 2022. Available online: https://www.oiv.int/fr/what-we-do/data-discovery-report?oiv (accessed on 10 August 2023).
- Grimalt, S.; Dehouck, P. Review of analytical methods for the determination of pesticide residues in grapes. J. Chromatogr. A 2016, 1433, 1–23. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT-Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 30 November 2023).
- Travadon, R.; Lecomte, P.; Diarra, B.; Lawrence, D.P.; Renault, D.; Ojeda, H.; Rey, P.; Baumgartner, K. Grapevine pruning systems and cultivars influence the diversity of wood-colonizing fungi. Fungal Ecol. 2016, 24, 82–93. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Purcell, A.H. Xylella fastidiosa: Cause of Pierce’s disease of grapevine and other emergent diseases. Plant Dis. 2002, 86, 1056–1066. [Google Scholar] [CrossRef] [PubMed]
- Kado, C.I. Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Front. Microbiol. 2014, 5, 340. [Google Scholar] [CrossRef] [PubMed]
- Habbadi, K.; Duplay, Q.; Chapulliot, D.; Kerzaon, I.; Benkirane, R.; Benbouazza, A.; Wisniewski-Dyé, F.; Lavire, C.; Achbani, E.H.; Vial, L. Characterization and phylogenetic diversity of Allorhizobium vitis isolated from grapevine in Morocco. J. Appl. Microbiol. 2020, 128, 828–839. [Google Scholar] [CrossRef] [PubMed]
- Emmett, R.W.; Buchanan, G.A.; Magarey, P.A. Grapevine diseases and pest management. Aust. N. Z. Wine Ind. J. 1992, 7, 149–171. [Google Scholar]
- Carisse, O.; Bacon, R.; Lasnier, J.; McFadden-Smith, W. Identification Guide to the Major Diseases of Grapes; Agriculture and Agri-Food Canada: Québec, QC, Canada, 2006. [Google Scholar]
- Mosedale, J.R.; Abernethy, K.E.; Smart, R.E.; Wilson, R.J.; Maclean, I.M. Climate change impacts and adaptive strategies: Lessons from the grapevine. Glob. Chang. Biol. 2016, 22, 3814–3828. [Google Scholar] [CrossRef] [PubMed]
- Lebon, E.; Schultz, H.R. Modelling the Effect of Climate Change on Grapevine Water Relations. VII Int. Symp. Grapevine Physiol. Biotechnol. 2004, 689, 71–78. [Google Scholar]
- Lionello, P.; Abrantes, F.; Gacic, M.; Planton, S.; Trigo, R.; Ulbrich, U. The climate of the Mediterranean region: Research progress and climate change impacts. Reg. Environ. Chang. 2014, 14, 1679–1684. [Google Scholar] [CrossRef]
- MedECC, Mediterranean Experts on Climate and Environmental Change. Available online: https://zenodo.org/records/7224821 (accessed on 13 May 2023).
- FAOSTAT. FAOSTAT-Pesticides Consumption. 2021. Available online: https://www.fao.org/faostat/fr/#data/RP (accessed on 10 August 2023).
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Cerdà, A.; Tarolli, P. Soil water erosion on Mediterranean vineyards: A review. Catena 2016, 141, 1–21. [Google Scholar] [CrossRef]
- Okur, N.; Altindİşlİ, A.; Çengel, M.; Göçmez, S.; Kayikçioğlu, H.H. Microbial Biomass and Enzyme Activity in Vineyard Soils Under Organic and Conventional Farming Systems. Turk. J. Agric. 2009, 33, 413–423. [Google Scholar] [CrossRef]
- Blotevogel, S.; Oliva, P.; Sobanska, S.; Viers, J.; Vezin, H.; Audry, S.; Prunier, J.; Darrozes, J.; Orgogozo, L.; Courjault-Radé, P.; et al. The fate of Cu pesticides in vineyard soils: A case study using δ65Cu isotope ratios and EPR analysis. Chem. Geol. 2018, 477, 35–46. [Google Scholar] [CrossRef]
- Storchi, P.; Perria, R.; Carella, G.; Mugnai, L.; Landi, S.; Binazzi, F.; Ciofini, A. Soil management and plant protection strategies with reduced use of copper: Productive and environmental aspects in a Sangiovese vineyard. BIO Web Conf. 2022, 44, 03002. [Google Scholar] [CrossRef]
- Roviello, V.; Caruso, U.; Dal Poggetto, G.; Naviglio, D. Assessment of Copper and Heavy Metals in Family-Run Vineyard Soils and Wines of Campania Region, South Italy. Int. J. Environ. Res. Public Health 2021, 18, 8465. [Google Scholar] [CrossRef]
- Manjarres-López, D.P.; Andrades, M.S.; Sánchez-González, S.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J.; Herrero-Hernández, E. Assessment of pesticide residues in waters and soils of a vineyard region and its temporal evolution. Environ. Pollut. 2021, 284, 117463. [Google Scholar] [CrossRef] [PubMed]
- Suciu, N.; Farolfi, C.; Marsala, R.Z.; Russo, E.; De Crema, M.; Peroncini, E.; Tomei, F.; Antolini, G.; Marcaccio, M.; Marletto, V.; et al. Evaluation of groundwater contamination sources by plant protection products in hilly vineyards of Northern Italy. Sci. Total Environ. 2020, 749, 141495. [Google Scholar] [CrossRef]
- Radouane, E.M.; Chahlaoui, A.; Maliki, A.; Boudellah, A. Assessment and modeling of groundwater quality by using water quality index (WQI) and GIS technique in Meknes aquifer (Morocco). Geol. Ecol. Landsc. 2023, 7, 126–138. [Google Scholar] [CrossRef]
- Aakame, R.; Mohamed, F.; Elabidi, A.; Dussauze, J.; Laghzizal, M.; Saoiabi, A. Groundwater Contamination by Pesticides and Metals Elements in Agricultural areas of the Northwest of Morocco and Health hazard. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 68–71. [Google Scholar] [CrossRef]
- Berni, I.; Menouni, A.; El Ghazi, I.; Godderis, L.; Duca, R.C.; Jaafari, S.E. Health and ecological risk assessment based on pesticide monitoring in Saïss plain (Morocco) groundwater. Environ. Pollut. 2021, 276, 116638. [Google Scholar] [CrossRef] [PubMed]
- Fantke, P.; Jolliet, O. Life cycle human health impacts of 875 pesticides. Int. J. Life Cycle Assess. 2016, 21, 722–733. [Google Scholar] [CrossRef]
- Bragaglio, A.; Romano, E.; Brambilla, M.; Bisaglia, C.; Lazzari, A.; Giovinazzo, S.; Cutini, M. A comparison between two specialized dairy cattle farms in the upper Po Valley. Precision agriculture as a strategy to improve sustainability. Clean. Environ. Syst. 2023, 11, 100146. [Google Scholar] [CrossRef]
- Fouillet, E.; Delière, L.; Chartier, N.; Munier-Jolain, N.; Cortel, S.; Rapidel, B.; Merot, A. Reducing pesticide use in vineyards. Evidence from the analysis of the French DEPHY network. Eur. J. Agron. 2022, 136, 126503. [Google Scholar] [CrossRef]
- Hossard, L.; Guichard, L.; Pelosi, C.; Makowski, D. Lack of evidence for a decrease in synthetic pesticide use on the main arable crops in France. Sci. Total Environ. 2017, 575, 152–161. [Google Scholar] [CrossRef]
- Dugan, S.T.; Muhammetoglu, A.; Uslu, A. A combined approach for the estimation of groundwater leaching potential and environmental impacts of pesticides for agricultural lands. Sci. Total Environ. 2023, 901, 165892. [Google Scholar] [CrossRef]
- Gaona, L.; Bedmar, F.; Gianelli, V.; Faberi, A.J.; Angelini, H. Estimating the risk of groundwater contamination and environmental impact of pesticides in an agricultural basin in Argentina. Int. J. Environ. Sci. Technol. 2019, 16, 6657–6670. [Google Scholar] [CrossRef]
- HCP. Note D’information Relative aux Comptes Régionaux de l’année. 2019. Available online: https://www.hcp.ma/region-fes/attachment/2208443/ (accessed on 4 May 2024).
- ABHS. Inventaire du Degré de Pollution des Ressources en eau dans le Bassin de Sebou. 2015. Available online: https://www.abhsebou.ma/wp-content/uploads/2018/02/Brochure-IDP-2013.pdf (accessed on 8 March 2023).
- Morocco Free Map with Boundaries and Names. Available online: https://dmaps.com/carte.php?num_car=22743&lang=en (accessed on 27 February 2024).
- Google Earth. Available online: https://earth.google.com/web/@33.96069035,6.47707528,260.47109487a,416236.49269581d,30y,0h,0t,0r (accessed on 27 February 2024).
- Möhring, N.; Gaba, S.; Finger, R. Quantity-based indicators fail to identify extreme pesticide risks. Sci. Total Environ. 2019, 646, 503–523. [Google Scholar] [CrossRef]
- Pierlot, F.; Marks-Perreau, J.; Real, B.; Carluer, N.; Constant, T.; Lioeddine, A.; van Dijk, P.; Villerd, J.; Keichinger, O.; Cherrier, R.; et al. Predictive quality of 26 pesticide risk indicators and one flow model: A multisite assessment for water contamination. Sci. Total Environ. 2017, 605, 655–665. [Google Scholar] [CrossRef]
- Zemmouri, B.; Lammoglia, S.K.; Bouras, F.Z.; Seghouani, M.; Rebouh, N.Y.; Latati, M. Modelling human health risks from pesticide use in innovative legume-cereal intercropping systems in Mediterranean conditions. Ecotoxicol. Environ. Saf. 2022, 238, 113590. [Google Scholar] [CrossRef] [PubMed]
- Kovach, J.; Petzoldt, C.; Degni, J.; Tette, J. A Method to Measure the Environmental Impact of Pesticides; Cornell University: Ithaca, NY, USA, 1992. [Google Scholar]
- New York State IPM Program. Field Use EIQ Calculator Version 1.0. Available online: https://eiq.nysipm.org/calculator (accessed on 4 May 2024).
- Grant, J.A. Calculator for Field Use EIQ (Environmental Impact Quotient); New York State Integrated Pest Management Program, Cornell Cooperative Extension, Cornell University: New York, NY, USA, 2020. [Google Scholar]
- Muhammetoglu, A.; Durmaz, S.; Uslu, B. Evaluation of the Environmental Impact of Pesticides by Application of Three Risk Indicators. Environ. Forensics 2010, 11, 179–186. [Google Scholar] [CrossRef]
- Reus, J.A.W.A.; Leendertse, P.; Bockstaller, C.; Fomsgaard, I.; Gutsche, V.; Lewis, K.; Nilsson, C.; Pussemier, L.; Trevisan, M.; van Der Werf, H.; et al. Comparison and evaluation of eight pesticide environmental risk indicators developed in Europe and recommendations for future use. Agric. Ecosyst. Environ. 2002, 90, 177–187. [Google Scholar] [CrossRef]
- AFT. American Farmland Trust: Center for Agriculture in the Environment—Integrated Pest Management. Available online: https://farmland.org/about/how-we-work/research/ (accessed on 3 December 2023).
- Greitens, T.J.; Day, E. An alternative way to evaluate the environmental effects of integrated pest management: Pesticide risk indicators. Renew. Agric. Food Syst. 2007, 22, 213–222. [Google Scholar] [CrossRef]
- Brunet, N.; Guichard, L.; Omon, B.; Pingault, N.; Pley-Ber, E.; Seiler, A. L’indicateur de fréquence de traitements (IFT): Un indicateur pour une utilisation durable des pesticides. Courr. l’Environ. l’INRA 2008, 56, 131–141. [Google Scholar]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Organisation mondiale de la Santé. WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification, 2019th ed.; Organisation mondiale de la Santé: Genève, Switzerland, 2020. [Google Scholar]
- Lewis, K.; Tzilivakis, J.; Green, A.; Warner, D. Pesticide Properties DataBase (PPDB); University of Hertfordshire: Hertfordshire, UK, 2006. [Google Scholar]
- Ibrahim, Y.A. Health and Environmental Impacts of Pesticides: A Responsibility Principle and Two Novel Systems for Hazard Classification and External Cost Determination. J. Toxicol. Health 2016, 3, 1. [Google Scholar] [CrossRef]
- Beckie, H.J.; Sikkema, P.H.; Soltani, N.; Blackshaw, R.E.; Johnson, E.N. Environmental Impact of Glyphosate-Resistant Weeds in Canada. Weed Sci. 2014, 62, 385–392. [Google Scholar] [CrossRef]
- ONSSA: Office National de Sécurité Sanitaire des Produits Alimentaires. Index Phytosanitaire. Available online: https://eservice.onssa.gov.ma/IndPesticide.aspx (accessed on 5 December 2023).
- Buesa, I.; Mirás-Avalos, J.M.; De Paz, J.M.; Visconti, F.; Sanz, F.; Yeves, A.; Guerra, D.; Intrigliolo, D.S. Soil management in semi-arid vineyards: Combined effects of organic mulching and no-tillage under different water regimes. Eur. J. Agron. 2021, 123, 126198. [Google Scholar] [CrossRef]
- Herrero-Hernández, E.; Andrades, M.S.; Villalba Eguren, G.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S.; Marín-Benito, J.M. Organic Amendment for the Recovery of Vineyard Soils: Effects of a Single Application on Soil Properties over Two Years. Processes 2022, 10, 317. [Google Scholar] [CrossRef]
- Schneider, N.; Islam, M.; Wehrle, R.; Pätzold, S.; Brüggemann, N.; Töpfer, R.; Herzog, K. Deep incorporation of organic amendments into soils of a ‘Calardis Musqué’ vineyard: Effects on greenhouse gas emissions, vine vigor, and grape quality. Front. Plant Sci. 2023, 14, 1253458. [Google Scholar] [CrossRef]
- Wall, D.H.; Nielsen, U.N.; Six, J. Soil biodiversity and human health. Nature 2015, 528, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Tscharntke, T.; Grass, I.; Wanger, T.C.; Westphal, C.; Batáry, P. Restoring biodiversity needs more than reducing pesticides. Trends Ecol. Evol. 2022, 37, 115–116. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.M.; Seibert, D.; Quesada, H.B.; De Jesus Bassetti, F.; Fagundes-Klen, M.R.; Bergamasco, R. Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Saf. Environ. Prot. 2020, 135, 22–37. [Google Scholar] [CrossRef]
- Petit, A.N.; Fontaine, F.; Clément, C.; Vaillant-Gaveau, N. Photosynthesis Limitations of Grapevine after Treatment with the Fungicide Fludioxonil. J. Agric. Food Chem. 2008, 56, 6761–6767. [Google Scholar] [CrossRef] [PubMed]
- Teysseire, R.; Barron, E.; Baldi, I.; Bedos, C.; Chazeaubeny, A.; Menach, K.L.; Roudil, A.; Budzinski, H.; Delva, F. Pesticide Exposure of Residents Living in Wine Regions: Protocol and First Results of the Pestiprev Study. Int. J. Environ. Res. Public Health 2023, 20, 3882. [Google Scholar] [CrossRef] [PubMed]
- Lewis-Mikhael, A.M.; Bueno-Cavanillas, A.; Guiron, T.O.; Olmedo-Requena, R.; Delgado-Rodríguez, M.; Jiménez-Moleón, J.J. Occupational exposure to pesticides and prostate cancer: A systematic review and meta-analysis. Occup. Environ. Med. 2016, 73, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Furiosi, M.; Rossi, V.; Legler, S.; Caffi, T. Study on fungicides use in viticulture: Present and future scenarios to control powdery and downy mildew. BIO Web Conf. 2022, 50, 03006. [Google Scholar] [CrossRef]
- Simonovici, M. Enquête Pratiques phytosanitaires en viticulture. Agreste Les Doss. 2016, 2, 522. [Google Scholar]
- Fermaud, M.; Smits, N.; Merot, A.; Roudet, J.; Thiery, D.; Wéry, J.; Delbac, L. New multipest damage indicator to assess protection strategies in grapevine cropping systems. Aust. J. Grape Wine Res. 2016, 22, 450–461. [Google Scholar] [CrossRef]
- Hinckley, E.L.S.; Fendorf, S.; Matson, P. Short-term fates of high sulfur inputs in Northern California vineyard soils. Nutr. Cycl. Agroecosyst. 2011, 89, 135–142. [Google Scholar] [CrossRef]
- Eijsackers, H.; Beneke, P.; Maboeta, M.; Louw, J.P.E.; Reinecke, A.J. The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality. Ecotoxicol. Environ. Saf. 2005, 62, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Viti, C.; Quaranta, D.; De Philippis, R.; Corti, G.; Agnelli, A.; Cuniglio, R.; Giovannetti, L. Characterizing cultivable soil microbial communities from copper fungicide-amended olive orchard and vineyard soils. World J. Microbiol. Biotechnol. 2008, 24, 309–318. [Google Scholar] [CrossRef]
- Karimi, B.; Masson, V.; Guilland, C.; Leroy, E.; Pellegrinelli, S.; Giboulot, E.; Ranjard, L. Ecotoxicity of copper input and accumulation for soil biodiversity in vineyards. Environ. Chem. Lett. 2021, 19, 2013–2030. [Google Scholar] [CrossRef]
- Mailly, F.; Hossard, L.; Barbier, J.M.; Thiollet-Scholtus, M.; Gary, C. Quantifying the impact of crop protection practices on pesticide use in wine-growing systems. Eur. J. Agron. 2017, 84, 23–34. [Google Scholar] [CrossRef]
- Roškarič, M.; Paušič, A.; Valdhuber, J.; Lešnik, M.; Pulko, B. Development of a “0-Pesticide Residue” Grape and Wine Production System for Standard Disease-Susceptible Varieties. Agronomy 2023, 13, 586. [Google Scholar] [CrossRef]
- Ju, C.; Xu, J.; Wu, X.; Dong, F.; Liu, X.; Tian, C.; Zheng, Y. Effects of hexaconazole application on soil microbes community and nitrogen transformations in paddy soils. Sci. Total Environ. 2017, 609, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Siddamallaiah, L.; Matadha, N.Y.; Gadigeppa, S.; Raja, D.P.; Udupi, V.R. Persistence and dissipation study of azoxystrobin, buprofezin, dinocap and hexaconazole on mango (Mangifera indica L.). Environ. Sci. Pollut. Res. 2020, 27, 32820–32828. [Google Scholar] [CrossRef] [PubMed]
- Schummer, C.; Salquèbre, G.; Briand, O.; Millet, M.; Appenzeller, B.M. Determination of farm workers’ exposure to pesticides by hair analysis. Toxicol. Lett. 2012, 210, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Bayo, F.; Goka, K. Beekeeping and Bee Conservation—Advances in Research. In Impacts of Pesticides on Honey Bees; InTech Open Science: Rijeka, Croatia, 2016. [Google Scholar] [CrossRef]
- Johnson, R.M.; Dahlgren, L.; Siegfried, B.D.; Ellis, M.D. Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera). PLoS ONE 2013, 8, e54092. [Google Scholar] [CrossRef]
- Eon, P.; Robert, T.; Goutouly, J.-P.; Aurelle, V.; Cornu, J.-Y. Cover crop response to increased concentrations of copper in vineyard soils: Implications for copper phytoextraction. Chemosphere 2023, 329, 138604. [Google Scholar] [CrossRef]
- Román, C.; Llorens, J.; Uribeetxebarria, A.; Sanz, R.; Planas, S.; Arnó, J. Spatially variable pesticide application in vineyards: Part II, field comparison of uniform and map-based variable dose treatments. Biosyst. Eng. 2020, 195, 42–53. [Google Scholar] [CrossRef]
- Keulemans, W.; Bylemans, D.; De Coninck, B. Farming without Plant Protection Products: Can We Grow without Using Herbicides, Fungicides and Insecticides? Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
Category of Pesticides | QASI (kg/ha) | Frequency | Standard Deviation |
---|---|---|---|
Acaricides/insecticides | 3.07 | 6.89% | 3.61 |
Herbicides | 0.40 | 0.9% | 0.93 |
Fungicides | 41.13 | 92.21% | 24.84 |
Total | 44.60 | 100% | 24.88 |
Active Ingredient | Type | EIQ | a.i. % | Recommended Dose (Lbs AI/Acre) | Target | EIQ-FUR |
---|---|---|---|---|---|---|
Glyphosate-isopropylamine | H | 20.75 | 45 | 0.803 | Dicotyledonous weeds and annual grasses | 16.70 |
Oxyfluorfene | H | 33.82 | 48 | 0.857 | Dicotyledonous weeds and annual grasses | 29 |
Azoxystrobin | F | 26.92 | 25 | 0.178 | Plasmopara viticola/Erysiphe necator | 4.80 |
Copper hydroxide | F | 33.20 | 50 | 2.23 | Plasmopara viticola | 74.04 |
Copper oxychloride/Dimethomorph | F | 12.76 | 46 | 1.026 | Plasmopara viticola | 10.75 |
Copper oxychloride | F | 29.80 | 50 | 2.23 | Plasmopara viticola | 66.45 |
Copper sulfate | F | 61.90 | 20 | 2.14 | Plasmopara viticola | 132.50 |
Sulfur | F | 32.66 | 80 | 3.569 | Erysiphe necator | 116.60 |
Boscalid/Pyraclostrobin | F | 10.12 | 38 | 0.271 | Botrytis cinerea | 1.52 |
Cyprodinil/Fludioxonil | F | 16.01 | 62.5 | 0.344 | Botrytis cinerea | 2.83 |
Cymoxanil/Mancozeb | F | 19.30 | 74 | 1.092 | Plasmopara viticola | 16.34 |
Thiophanate-methyl | F | 23.82 | 45 | 1.205 | Erysiphe necator/Botrytis cinerea | 28.70 |
Thiophanate-methyl | F | 23.82 | 70 | 1.249 | Erysiphe necator/Botrytis cinerea | 29.80 |
Mancozeb/Metalaxyl | F | 17.51 | 72 | 1.606 | Erysiphe necator | 23.68 |
Mancozeb | F | 25.72 | 80 | 2.498 | Erysiphe necator/Guignardia bidwellii | 64.30 |
Maneb | F | 21.43 | 80 | 1.428 | Erysiphe necator/Guignardia bidwellii | 30.60 |
Paraffinic oil | F | 20.17 | 99 | 17.669 | Winter treatments | 356.40 |
Deltamethrin | I | 28.38 | 2.5 | 0.016 | Vine moth | 0.40 |
Malathion | I | 23.83 | 50 | 0.558 | Vine moth | 13.30 |
Spirotetramat | I | 35.29 | 10 | 0.134 | Mealybug | 4.70 |
Lambda-cyhalothrin | I | 44.17 | 5 | 0.011 | Leafhopper (Cicadellidae) | 0.60 |
Tau-fluvalinate | I | 23.17 | 24 | 0.054 | Leafhopper (Cicadellidae) | 1.20 |
Imidacloprid | I | 36.71 | 20 | 0.089 | Leafhopper (Cicadellidae) | 3.30 |
Abamectin | Ac | 34.68 | 20 | 0.008 | Phytophagous mites | 0.30 |
Dicofol | Ac | 29.92 | 25 | 0.446 | Phytophagous mites | 13.30 |
Parameter | Unit Per ha | Mancozeb | Copper | Sulfur |
---|---|---|---|---|
Fine particulate matter formation | kg PM2.5 eq | 0.248 | 0.325 | 0.0130 |
Fossil resource scarcity | kg oil eq | 12.736 | 4.860 | 14.8053 |
Freshwater ecotoxicity | kg 1,4-DCB | 15.871 | 45.921 | 0.0544 |
Freshwater eutrophication | kg P eq | 0.017 | 0.243 | 0.0005 |
Global warming | kg CO2 eq | 31.413 | 18.003 | 5.5255 |
Human carcinogenic toxicity | kg 1,4-DCB | 1.433 | 10.087 | 0.0879 |
Human non-carcinogenic toxicity | kg 1,4-DCB | 636.861 | 1617.053 | 1.5894 |
Ionizing radiation | kBq Co-60 eq | 2.743 | 1.265 | 0.2201 |
Land use | m2a crop eq | 0.727 | 1.269 | 0.0355 |
Marine ecotoxicity | kg 1,4-DCB | 22.683 | 66.036 | 0.0821 |
Marine eutrophication | kg N eq | 0.009 | 0.014 | 0.0001 |
Mineral resource scarcity | kg Cu eq | 0.522 | 3.403 | 0.0074 |
Ozone formation, human health | kg NOx eq | 0.079 | 0.138 | 0.0155 |
Ozone formation, terrestrial ecosystems | kg NOx eq | 0.081 | 0.141 | 0.0172 |
Stratospheric ozone depletion | kg CFC11 eq | 0.000013 | 0.000030 | 0.000005 |
Terrestrial acidification | kg SO2 eq | 0.774 | 0.943 | 0.0390 |
Terrestrial ecotoxicity | kg 1,4-DCB | 390.655 | 6098.526 | 4.8357 |
Water consumption | m3 | 0.680 | 0.382 | 0.0313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoujil, F.; Litskas, V.; Yahyaoui, H.; El Allaoui, N.; Benbouazza, A.; Aziz, A.; Hafidi, M.; Habbadi, K. Sustainability Indicators for the Environmental Impact Assessment of Plant Protection Products Use in Moroccan Vineyards. Horticulturae 2024, 10, 473. https://doi.org/10.3390/horticulturae10050473
Aoujil F, Litskas V, Yahyaoui H, El Allaoui N, Benbouazza A, Aziz A, Hafidi M, Habbadi K. Sustainability Indicators for the Environmental Impact Assessment of Plant Protection Products Use in Moroccan Vineyards. Horticulturae. 2024; 10(5):473. https://doi.org/10.3390/horticulturae10050473
Chicago/Turabian StyleAoujil, Faiçal, Vassilis Litskas, Hiba Yahyaoui, Nadia El Allaoui, Abdellatif Benbouazza, Aziz Aziz, Majida Hafidi, and Khaoula Habbadi. 2024. "Sustainability Indicators for the Environmental Impact Assessment of Plant Protection Products Use in Moroccan Vineyards" Horticulturae 10, no. 5: 473. https://doi.org/10.3390/horticulturae10050473
APA StyleAoujil, F., Litskas, V., Yahyaoui, H., El Allaoui, N., Benbouazza, A., Aziz, A., Hafidi, M., & Habbadi, K. (2024). Sustainability Indicators for the Environmental Impact Assessment of Plant Protection Products Use in Moroccan Vineyards. Horticulturae, 10(5), 473. https://doi.org/10.3390/horticulturae10050473