Application of the Cryo-Drying Technique in Maintaining Bioactive and Antioxidant Properties in Basil Leaves (Ocimum basilicum)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Sample
2.2. Biometric Characterization of the Leaves
2.3. Freeze-Drying Process and Physical Analyses
2.4. Analyses of Bioactive Compounds
2.4.1. Ascorbic Acid Content (AA)
2.4.2. Flavonoid Content
2.4.3. Total Phenolic Content
2.4.4. Antioxidant Activity Was Evaluated Using the ABTS [2,2’-Azinobis 3-ethylbenzthiazoline-6-sulfonic acid] Radical Scavenging Methodology
2.4.5. Carotenoids
2.4.6. Chlorophyll Content
2.5. Instrumental Color
2.6. Fourier Transform Infrared Spectroscopy (FT-IR)
2.7. Thermogravimetric Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Biometric Analysis of Leaves Fresh
3.2. Evaluation of the Physical Characteristics
3.3. Bioactive Compounds and Vitamin C
3.4. Analysis of Colorimetric Variation
3.5. Analysis of Chemical Clusters by Fourier Transform Infrared Spectroscopy (FTIR)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaves, R.P.F.; Araújo, A.L.D.; Lopes, A.S.; Pena, R.D.S. Convective Drying of Purple Basil (Ocimum basilicum L.) Leaves and Stability of Chlorophyll and Phenolic Compounds during the Process. Plants 2023, 12, 127. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-rad, J.; Adetunji, C.O.; Olaniyan, O.T.; Ojo, S.K.; Samuel, M.O.; Temitayo, B.T.; Roli, O.I.; Nimota, O.O.; Oluwabunmi, B.T.; Adetunji, J.B.; et al. Antimicrobial, antioxidant and other pharmacological activities of Ocimum Species: Potential to be used as food preservatives and functional ingredients. Food Rev. Int. 2021, 39, 1547–1577. [Google Scholar] [CrossRef]
- Kim, D.-S.; Hong, S.-J.; Yoon, S.; Jo, S.-M.; Jeong, H.; Youn, M.-Y.; Kim, Y.-J.; Kim, J.-K.; Shin, E.-C. Olfactory Stimulation with Volatile Aroma Compounds of Basil (Ocimum basilicum L.) Essential Oil and Linalool Ameliorates White Fat Accumulation and Dyslipidemia in Chronically Stressed Rats. Nutrients 2022, 14, 1822. [Google Scholar] [CrossRef] [PubMed]
- Gurav, T.P.; Dholakia, B.B.; Giri, A.P. A glance at the chemodiversity of cimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil. Phytochem. Rev. 2022, 21, 879–913. [Google Scholar] [CrossRef] [PubMed]
- Popović, V.; Šarčević-Todosijević, L.; Petrović, B.; Ignjatov, M.; Popović, B.D.; Vukomanović, P.; Milošević, D.; Filipović, V. Economic Justification Application of Medicinal Plants in Cosmetic and Pharmacy for the Drugs Discovery. In An Introduction to Medicinal Herbs; Emerald, M., Ed.; NOVA Science publishers: Hauppauge, NY, USA, 2021; Chapter 3; pp. 63–106. [Google Scholar]
- Cheng, B.; Ping, J.; Chai, J.; Jiang, Y.; Li, D.; Bao, W.; Liu, B.; Norde, W.; Li, Y. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Res. Int. 2019, 120, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.B.A.; Yagi, S.; Tzanova, T.; Schohn, H.; Abdelgadir, H.; Stefanucci, A.; Mollica, A.; Fawzimahomoodally, M.; Adlan, T.; Zengini, G. Chemical profile, antiproliferative, antioxidant and enzyme inhibuition activities of Ocimum basilicum L. and Pulicaria undulata (L.) C.A. Mey. Grown in Sudan. S. Afr. J. Bot. 2020, 132, 403–409. [Google Scholar] [CrossRef]
- Teofilović, B.; Grujić-Letić, N.; Karadžić, M.; Kovačević, S.; Podunavac-Kuzmanović, S.; Gligorić, E.; Gadzuríc, S. Analysis of functional ingredients and composition of Ocimum basilicum. S. Afr. J. Bot. 2021, 141, 227–234. [Google Scholar] [CrossRef]
- Kumar, A.; Mosa, K.A.; Ji, L.; Kage, U.; Dhokane, D.; Karre, S.; Madalageri, D.; Pathania, N. Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Crit. Rev. Food Sci. Nutr. 2017, 58, 1791–1807. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Lal, R.K.; Maurya, R.; Mishra, A.; Yadav, A.K.; Pandey, G.; Rout, P.K.; Chanotiya, C.S. Chemical diversity of essential oil among basil genotypes (Ocimum viride Willd.) across the years. Ind. Crops Prod. 2021, 173, 114153. [Google Scholar] [CrossRef]
- Dharsono, H.D.A.; Putri, S.A.; Kurnia, D.; Dudi, D.; Satari, M.H. Ocimum Species: A Review on Chemical Constituents and Antibacterial Activity. Molecules 2022, 27, 6350. [Google Scholar] [CrossRef]
- Gavrić, T.; Jurković, J.; Gadžo, D.; Čengić, L.; Sijahović, E.; Bašić, F. Fertilizer effect on some basil bioactive compounds and yield. Cienc. Agrotec. 2021, 45, 3121. [Google Scholar] [CrossRef]
- Filipović, V.; Kljajić, N. Soil moisture as one of the limiting factors in the production of medicinal plants. In Agricultural Management Strategies in a Changing Economy; IGI Global: Hershey, PA, USA, 2015; Volume 2, Chapter 6; pp. 119–137. [Google Scholar] [CrossRef]
- Grández-Yoplac, D.E.; Mori-Mestanza, D.; Muñóz-Astecker, L.D.; Cayo-Colca, I.S.; Castro-Alayo, E.M. Kinetics Drying of Blackberry Bagasse and Degradation of Anthocyanins and Bioactive Properties. Antioxidants 2021, 10, 548. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Arya, M.; Priyanka, N.; Giridhar, P.; Shetty, N.P.; Sudheer, K.Y.; Mahadevappa, P. Evaluation of Various Drying Methods on Bioactives, Ascorbic Acid and Antioxidant Potentials of Talinum triangulare L., foliage. Plant Foods Hum. Nutr. 2020, 75, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Santos, O.V.; Cunha, N.S.R.; Duarte, S.P.A.; Soares, S.D.; Costa, R.S.; Mendes, P.M.; Martins, M.G.; Nascimento, F.C.A.; Figueira, M.S.; Teixeira-Costa, B.E. Determination of bioactive compounds obtained by the green extraction of taioba leaves (Xanthosoma taioba) on hydrothermal processing. Food Sci. Technol. 2022, 42, e22422. [Google Scholar] [CrossRef]
- Santos, O.V.; Soares, S.D.; Vieira, E.L.S.; Martins, M.G.; Nascimento, F.C.; Teixeira-Costa, B.E. Physicochemical properties and bioactive composition of the lyophilized Acmella oleracea powder. J. Food Process. 2021, 26, 45. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists—OAC. Handbook off Chemical Analysis, 12th ed.; AOAC: Washington, DC, USA, 1992. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; AOAC: Rockville, VA, USA, 2016. [Google Scholar]
- IAL—Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz: Métodos Químicos e Físicos para Análise de Alimentos; IMESP: São Paulo, Brazil, 1985; 533p. [Google Scholar]
- Yaman, C.; Erenler, R.; Atalar, M.N.; Adem, S.; Çalişkan, U.K. Phytochemical Properties, Antioxidant and in Vitro/in Silico Anti-Acetylcholinesterase Activities of Hypericum heterophyllum Leaf from Türkiye. Braz. Arch. Biol. Technol. 2024, 67, e24230043. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists—AOAC. Official Methods of Analysis of the AOAC; AOAC: Washington, DC, USA, 1997; Version 2; pp. 16–17. [Google Scholar]
- Lees, D.H.; Francis, F.J. Standardization of pigment analyses in cranberries. HortScience 1972, 7, 83–84. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Casazza, A.A.; Perego, P. Valorization of olive oil solid waste using high pressure–high temperature reactor. Food Chem. 2011, 128, 704–710. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Perez-Jimenez, J.; Saura-Calixto, F.; Mancinifilho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–10002. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Press: Washington, DC, USA, 2001; p. 64. [Google Scholar]
- Davies, B.H.; Carotenoids; Goodwin, T.W. (Eds.) Chemistry and Biochemistry of Plant Pigments; Academic: London, UK, 1976; p. 38. [Google Scholar]
- Nagata, M.; Yamashita, I. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. Nippon. Shokuhin Kogyo Gakkaishi. 2022, 39, 925–928. Available online: https://www.jstage.jst.go.jp/article/nskkk1962/39/10/39_10_925/_article (accessed on 13 January 2023).
- Mclellan, M.R.; Lind, L.R.; Kime, R.W. Hue angle determinations and statistical analysis for multiquadrant Hunter L,a,b data. J. Food Qual. 1995, 18, 235–240. [Google Scholar] [CrossRef]
- Statistic for Windows: Release 7.0 A. Statsoft Inc.: Tulsa, OK, USA, 2000.
- Du, F.; Guan, C.; Jiao, Y. Molecular Mechanisms of Leaf Morphogenesis. Mol. Plant 2018, 11, 1117–1134. Available online: https://www.cell.com/molecular-plant/pdf/S1674-205230193-X.pdf (accessed on 13 January 2023). [PubMed]
- Prinsi, B.; Negrini, N.; Morgutti, S.; Luca Espen, L. Nitrogen Starvation and Nitrate or Ammonium Availability Differently Affect Phenolic Composition in Green and Purple Basil. Agronomy 2020, 10, 498. [Google Scholar] [CrossRef]
- Maddi, R.; Amani, P.; Bhavitha, S.; Gayathri, T.; Lohitha. A review on Ocimum species: Ocimum americanum L., Ocimum basilicum L., Ocimum gratissimum L. and Ocimum tenuiflorum L. Int. J. Res. Ayurveda Pharm. 2019, 10, 41–48. [Google Scholar] [CrossRef]
- Fernandes, V.F.; Bezerra, L.A.; Mielke, M.S.; Silva, D.C.; Costa, L.C.B. Anatomia e ultraestrutura foliar de Ocimum gratissimum sob diferentes níveis de radiação luminosa. Cienc. Rural 2014, 44, 1037–1042. [Google Scholar] [CrossRef]
- Silva, C.F.G.; Mendes, M.P.; Almeida, V.V.; Michels, R.N.; Sakanaka, L.S.; Tonin, L.T.D. Parâmetros de qualidade físico-químicos e avaliação da atividade antioxidante de folhas de Plectranthus barbatus Andr. (Lamiaceae) submetidas a diferentes processos de secagem. Rev. Braz. Plantas Med. 2016, 18, 48–56. [Google Scholar] [CrossRef]
- Rasera, G.B.; Castro, R.J.R. Germinação de grãos: Uma revisão sistemática de como os processos bioquímicos envolvidos afetam o conteúdo e o perfil de compostos fenólicos e suas propriedades antioxidantes. Braz. J. Nat. Sci. 2020, 3, 287–300. [Google Scholar] [CrossRef]
- Soares, V.G.; Oliveira, T.M.; Pinto, E. Teor De Compostos Fenólicos e Análises Físico-Químicas em Diferentes Condimentos In Natura e Desidratado. Rebagro 2021, 11, 859–862. [Google Scholar] [CrossRef]
- Martino, L.; Caputo, L.; Amato, G.; Vincenzo, F. Postharvest Microwave Drying of Basil (Ocimum basilicum L.): The Influence of Treatments on the Quality of Dried Products. Foods 2022, 11, 1029. [Google Scholar] [CrossRef] [PubMed]
- Henrique, V.A.; Ferreira, L.P.; Nunes, C.D. Análise Físico-Química e Antioxidante de Manjericão (Ocimum Basilicum L.) Orgânico. Rev. Interdiscip. Pensamento Científico 2017, 3, 85–97. [Google Scholar] [CrossRef]
- Vieira, C.B.S.; Orlanda, J.F.F. Atividade antioxidante e fotoprotetora do extrato etanólico de Ocimum gratissimum L. (alfavaca, Lamiaceae). Rev. Cuba. Plantas Med. 2018, 23, 3. Available online: https://revplantasmedicinales.sld.cu/index.php/pla/article/view/626 (accessed on 13 January 2023).
- Thamkaew, G.; Sjöholm, I.; Galindo, F.G. A review of drying methods for improving the quality of dried herbs. Crit. Rev. Food Sci. Nutr. 2020, 61, 1763–1786. [Google Scholar] [CrossRef] [PubMed]
- Sikorska-Zimny, K.; Lisiecki, P.; Gonciarz, W.; Szemraj, M.; Ambroziak, M.; Suska, O.; Turkot, O.; Stanowska, M.; Rustkowski, K.; Chmiela, M.; et al. Influence of Agronomic Practice on Total Phenols, Carotenoids, Chlorophylls Content, and Biological Activities in Dry Herbs Water Macerates. Molecules 2021, 26, 1047. [Google Scholar] [CrossRef] [PubMed]
- Othman, A.J.; Vodorezova, E.S.; Mardini, M.; Hanana, M.B. Dataset for the content of bioactive components and phytonutrients of (Ocimum basilicum and Brassica rapa) microgreens. Data Brief 2022, 40, 107737. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.D.; Martens, W.; Karim, M.A.; Joardder, M.U.H. Nutritional quality of heat-sensitive food materials in intermittent microwave convective drying. Food Nutr. Res. 2018, 62, 1292. [Google Scholar] [CrossRef]
- Feszterová, M.; Kowalska, M.; Mišiaková, M. Stability of Vitamin C Content in Plant and Vegetable Juices under Different Storing Conditions. Appl. Sci. 2023, 13, 10640. [Google Scholar] [CrossRef]
- Shonte, T.T.; Duodu, K.G.; de Kock, H.L. Effect of drying methods on chemical composition and antioxidant activity of underutilised stinging nettle leaves. Heliyon 2020, 6, e03938. [Google Scholar] [CrossRef] [PubMed]
- Prinsi, B.; Morgutti, S.; Negrini, N.; Faoro, F.; Espen, L. Insight into Composition of Bioactive Phenolic Compounds in Leaves and Flowers of Green and Purple Basil. Plants 2019, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Sipos, L.; Balázs, L.; Székely, G.; Jung, A.; Sárosi, S.; Radácsi, P. Optimization of basil (Ocimum basilicum L.) production in LED light environments—A review. Sci. Hortic. 2021, 289, 110486. [Google Scholar] [CrossRef]
- Tafese Awulachew, M. Understanding Basics of Wheat Grain and Flour Quality. J. Health Environ. Res. 2020, 6, 10. [Google Scholar] [CrossRef]
- Anusmitha, K.M.; Aruna, M.; Job, J.T.; Narayanankutty, A.; Benil, P.B.; Rajagopal, R.; Barceló, A.A.D. Phytochemical analysis, antioxidant, anti-inflammatory, anti-genotoxic, and anticancer activities of different Ocimum plant extracts prepared by ultrasound-assisted method. Physiol. Mol. Plant Pathol. 2022, 117, 101746. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0885576521001478 (accessed on 13 January 2023). [CrossRef]
- Ullah, S.; Rauf, N.; Hussain, A.; Sheikh, I.A.; Farooq, M. HPLC profile of phenolic acids and flavonoids of Ocimum sanctum and O. basilicum. Int. J. Plant Based Pharm. 2022, 2, 205–209. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Y.; Lai, S.; Cao, H.; Guan, Y.; San Cheang, W.; Liu, B.; Zhao, K.; Miao, H.; Riviera, C.; et al. Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Trends Food Sci. Technol. 2019, 85, 55–66. [Google Scholar] [CrossRef]
- Baskaran, K.; Safana, A.; Namitha, V.; Abishek, M.; Dinesh Raja, S.; Henry, S.; Haseera, N.; Varghese, S. In vitro free radical scavenging and antioxidant effect of Ocimum basilicum. Int. J. Pharm. Sci. Rev. 2023, 25, 163–169. [Google Scholar]
- Cvitković, D.; Lisica, P.; Zorić, Z.; Repajić, M.; Pedisić, S.; Dragović-Uzelac, V.; Balbino, S. Composition and Antioxidant Properties of Pigments of Mediterranean Herbs and Spices as Affected by Different Extraction Methods. Foods 2021, 10, 2477. [Google Scholar] [CrossRef] [PubMed]
- Colle, I.J.P.; Lemmens, L.; Knockaert, G.; Van Loey, A.; Hendrickx, M. Carotene Degradation and Isomerization during Thermal Processing: A Review on the Kinetic Aspects. Crit. Rev. Food Sci. Nutr. 2015, 56, 1844–1855. [Google Scholar]
- Cano-Chauca, M.N.; Lima, W.J.N.; Brandi, I.V.; Vieira, C.R.; Rodrigues, D.S.; Lima, J.P.; Bispo, N.F.; Souza, D.M.B. Parâmetros técnicos do processo de secagem de pimentão (Capsicum annuum L.)/Technical parameters of the bell pepper drying process (Capsicum annuum L.). Braz. J. Dev. 2021, 7, 105156–105163. [Google Scholar] [CrossRef]
- Vadiveloo, M.; Principato, L.; Morwitz, V.; Mattei, J. Sensory variety in shape and color influences fruit and vegetable intake, liking, and purchase intentions in some subsets of adults: A randomized pilot experiment. Food Qual. Pref. 2019, 71, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.S.; Verçosa, R.M.; Teixeira, S.M.L.; Teixeira-costa, B.E. Calcium oxalate content from two Amazonian amilaceous roots and the functional properties of their isolated starches. Food Sci. Technol. 2020, 40, 705–711. Available online: https://www.scielo.br/j/cta/a/FMHQYpym63s4dtxF3PYJrbc/?format=pdf&lang=en (accessed on 13 January 2023). [CrossRef]
- Jefferson, A.; Adolphus, K. The Effects of Intact Cereal Grain Fibers, Including Wheat Bran on the Gut Microbiota Composition of Healthy Adults: A Systematic Review. Front. Nutr. 2019, 6, 33. [Google Scholar] [CrossRef]
Basil | Water Activity | Humidity (%) | pH | ATT (g/100 g Citric Acid) |
---|---|---|---|---|
FBL | 0.98 ± 0.0004 | 87.9 ± 0.388 | 6.89 ± 0.105 | 0.160 ± 0.064 |
PBL | 0.33 ± 0.001 | 5.2 ± 0.568 | 6.64 ± 0.043 | 2.078 ± 0.036 |
Bioactive Compound | FBL | PBL |
---|---|---|
Chlorophyll a (μg/100 g) | 2287.8 ± 0.02 | 1003.8 ± 0.03 |
Chlorophyll b (μg/100 g) | 2607.4 ± 0.23 | 2287.8 ± 0.02 |
Vitamin C (mg/100 g) | 95.0 ± 0.50 | 63.30 ± 0.70 |
Total polyphenols (mg EAG/g) | 1.80 ± 0.01 | 3.90 ± 0.57 |
Flavonoids (mg GAE/g) | 0.73 ± 1.20 | 1.78 ± 0.01 |
Antioxidant activity (µg TE/g) | 9.75 ± 1.30 | 12.35 ± 1.07 |
Total carotenoids (mg/100 g) | 16.71 ± 0.92 | 20.60 ± 0.97 |
Parameters | FBL | PBL |
---|---|---|
ΔL* | 34.05 ± 5.052 | 23.10 ± 0.890 |
Δa* | −14.95 ± 1.490 | −3.22 ± 0.058 |
Δb* | 21.76 ± 2.393 | 13.05 ± 0.270 |
ΔC* | 26.40 | 13.44 |
ΔE* | 18.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho, J.V.D.; de Freitas, R.V.; Bezerra, C.V.; Teixeira-Costa, B.E.; dos Santos, O.V. Application of the Cryo-Drying Technique in Maintaining Bioactive and Antioxidant Properties in Basil Leaves (Ocimum basilicum). Horticulturae 2024, 10, 457. https://doi.org/10.3390/horticulturae10050457
de Carvalho JVD, de Freitas RV, Bezerra CV, Teixeira-Costa BE, dos Santos OV. Application of the Cryo-Drying Technique in Maintaining Bioactive and Antioxidant Properties in Basil Leaves (Ocimum basilicum). Horticulturae. 2024; 10(5):457. https://doi.org/10.3390/horticulturae10050457
Chicago/Turabian Stylede Carvalho, Jade Vitória Duarte, Rafaela Valente de Freitas, Carolina Vieira Bezerra, Bárbara E. Teixeira-Costa, and Orquídea Vasconcelo dos Santos. 2024. "Application of the Cryo-Drying Technique in Maintaining Bioactive and Antioxidant Properties in Basil Leaves (Ocimum basilicum)" Horticulturae 10, no. 5: 457. https://doi.org/10.3390/horticulturae10050457
APA Stylede Carvalho, J. V. D., de Freitas, R. V., Bezerra, C. V., Teixeira-Costa, B. E., & dos Santos, O. V. (2024). Application of the Cryo-Drying Technique in Maintaining Bioactive and Antioxidant Properties in Basil Leaves (Ocimum basilicum). Horticulturae, 10(5), 457. https://doi.org/10.3390/horticulturae10050457