Application of the Cryo-Drying Technique in Maintaining Bioactive and Antioxidant Properties in Basil Leaves (Ocimum basilicum)
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Sample
2.2. Biometric Characterization of the Leaves
2.3. Freeze-Drying Process and Physical Analyses
2.4. Analyses of Bioactive Compounds
2.4.1. Ascorbic Acid Content (AA)
2.4.2. Flavonoid Content
2.4.3. Total Phenolic Content
2.4.4. Antioxidant Activity Was Evaluated Using the ABTS [2,2’-Azinobis 3-ethylbenzthiazoline-6-sulfonic acid] Radical Scavenging Methodology
2.4.5. Carotenoids
2.4.6. Chlorophyll Content
2.5. Instrumental Color
2.6. Fourier Transform Infrared Spectroscopy (FT-IR)
2.7. Thermogravimetric Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Biometric Analysis of Leaves Fresh
3.2. Evaluation of the Physical Characteristics
3.3. Bioactive Compounds and Vitamin C
3.4. Analysis of Colorimetric Variation
3.5. Analysis of Chemical Clusters by Fourier Transform Infrared Spectroscopy (FTIR)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaves, R.P.F.; Araújo, A.L.D.; Lopes, A.S.; Pena, R.D.S. Convective Drying of Purple Basil (Ocimum basilicum L.) Leaves and Stability of Chlorophyll and Phenolic Compounds during the Process. Plants 2023, 12, 127. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-rad, J.; Adetunji, C.O.; Olaniyan, O.T.; Ojo, S.K.; Samuel, M.O.; Temitayo, B.T.; Roli, O.I.; Nimota, O.O.; Oluwabunmi, B.T.; Adetunji, J.B.; et al. Antimicrobial, antioxidant and other pharmacological activities of Ocimum Species: Potential to be used as food preservatives and functional ingredients. Food Rev. Int. 2021, 39, 1547–1577. [Google Scholar] [CrossRef]
- Kim, D.-S.; Hong, S.-J.; Yoon, S.; Jo, S.-M.; Jeong, H.; Youn, M.-Y.; Kim, Y.-J.; Kim, J.-K.; Shin, E.-C. Olfactory Stimulation with Volatile Aroma Compounds of Basil (Ocimum basilicum L.) Essential Oil and Linalool Ameliorates White Fat Accumulation and Dyslipidemia in Chronically Stressed Rats. Nutrients 2022, 14, 1822. [Google Scholar] [CrossRef] [PubMed]
- Gurav, T.P.; Dholakia, B.B.; Giri, A.P. A glance at the chemodiversity of cimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil. Phytochem. Rev. 2022, 21, 879–913. [Google Scholar] [CrossRef] [PubMed]
- Popović, V.; Šarčević-Todosijević, L.; Petrović, B.; Ignjatov, M.; Popović, B.D.; Vukomanović, P.; Milošević, D.; Filipović, V. Economic Justification Application of Medicinal Plants in Cosmetic and Pharmacy for the Drugs Discovery. In An Introduction to Medicinal Herbs; Emerald, M., Ed.; NOVA Science publishers: Hauppauge, NY, USA, 2021; Chapter 3; pp. 63–106. [Google Scholar]
- Cheng, B.; Ping, J.; Chai, J.; Jiang, Y.; Li, D.; Bao, W.; Liu, B.; Norde, W.; Li, Y. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Res. Int. 2019, 120, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.B.A.; Yagi, S.; Tzanova, T.; Schohn, H.; Abdelgadir, H.; Stefanucci, A.; Mollica, A.; Fawzimahomoodally, M.; Adlan, T.; Zengini, G. Chemical profile, antiproliferative, antioxidant and enzyme inhibuition activities of Ocimum basilicum L. and Pulicaria undulata (L.) C.A. Mey. Grown in Sudan. S. Afr. J. Bot. 2020, 132, 403–409. [Google Scholar] [CrossRef]
- Teofilović, B.; Grujić-Letić, N.; Karadžić, M.; Kovačević, S.; Podunavac-Kuzmanović, S.; Gligorić, E.; Gadzuríc, S. Analysis of functional ingredients and composition of Ocimum basilicum. S. Afr. J. Bot. 2021, 141, 227–234. [Google Scholar] [CrossRef]
- Kumar, A.; Mosa, K.A.; Ji, L.; Kage, U.; Dhokane, D.; Karre, S.; Madalageri, D.; Pathania, N. Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Crit. Rev. Food Sci. Nutr. 2017, 58, 1791–1807. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Lal, R.K.; Maurya, R.; Mishra, A.; Yadav, A.K.; Pandey, G.; Rout, P.K.; Chanotiya, C.S. Chemical diversity of essential oil among basil genotypes (Ocimum viride Willd.) across the years. Ind. Crops Prod. 2021, 173, 114153. [Google Scholar] [CrossRef]
- Dharsono, H.D.A.; Putri, S.A.; Kurnia, D.; Dudi, D.; Satari, M.H. Ocimum Species: A Review on Chemical Constituents and Antibacterial Activity. Molecules 2022, 27, 6350. [Google Scholar] [CrossRef]
- Gavrić, T.; Jurković, J.; Gadžo, D.; Čengić, L.; Sijahović, E.; Bašić, F. Fertilizer effect on some basil bioactive compounds and yield. Cienc. Agrotec. 2021, 45, 3121. [Google Scholar] [CrossRef]
- Filipović, V.; Kljajić, N. Soil moisture as one of the limiting factors in the production of medicinal plants. In Agricultural Management Strategies in a Changing Economy; IGI Global: Hershey, PA, USA, 2015; Volume 2, Chapter 6; pp. 119–137. [Google Scholar] [CrossRef]
- Grández-Yoplac, D.E.; Mori-Mestanza, D.; Muñóz-Astecker, L.D.; Cayo-Colca, I.S.; Castro-Alayo, E.M. Kinetics Drying of Blackberry Bagasse and Degradation of Anthocyanins and Bioactive Properties. Antioxidants 2021, 10, 548. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Arya, M.; Priyanka, N.; Giridhar, P.; Shetty, N.P.; Sudheer, K.Y.; Mahadevappa, P. Evaluation of Various Drying Methods on Bioactives, Ascorbic Acid and Antioxidant Potentials of Talinum triangulare L., foliage. Plant Foods Hum. Nutr. 2020, 75, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Santos, O.V.; Cunha, N.S.R.; Duarte, S.P.A.; Soares, S.D.; Costa, R.S.; Mendes, P.M.; Martins, M.G.; Nascimento, F.C.A.; Figueira, M.S.; Teixeira-Costa, B.E. Determination of bioactive compounds obtained by the green extraction of taioba leaves (Xanthosoma taioba) on hydrothermal processing. Food Sci. Technol. 2022, 42, e22422. [Google Scholar] [CrossRef]
- Santos, O.V.; Soares, S.D.; Vieira, E.L.S.; Martins, M.G.; Nascimento, F.C.; Teixeira-Costa, B.E. Physicochemical properties and bioactive composition of the lyophilized Acmella oleracea powder. J. Food Process. 2021, 26, 45. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists—OAC. Handbook off Chemical Analysis, 12th ed.; AOAC: Washington, DC, USA, 1992. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; AOAC: Rockville, VA, USA, 2016. [Google Scholar]
- IAL—Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz: Métodos Químicos e Físicos para Análise de Alimentos; IMESP: São Paulo, Brazil, 1985; 533p. [Google Scholar]
- Yaman, C.; Erenler, R.; Atalar, M.N.; Adem, S.; Çalişkan, U.K. Phytochemical Properties, Antioxidant and in Vitro/in Silico Anti-Acetylcholinesterase Activities of Hypericum heterophyllum Leaf from Türkiye. Braz. Arch. Biol. Technol. 2024, 67, e24230043. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists—AOAC. Official Methods of Analysis of the AOAC; AOAC: Washington, DC, USA, 1997; Version 2; pp. 16–17. [Google Scholar]
- Lees, D.H.; Francis, F.J. Standardization of pigment analyses in cranberries. HortScience 1972, 7, 83–84. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Casazza, A.A.; Perego, P. Valorization of olive oil solid waste using high pressure–high temperature reactor. Food Chem. 2011, 128, 704–710. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Perez-Jimenez, J.; Saura-Calixto, F.; Mancinifilho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–10002. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Press: Washington, DC, USA, 2001; p. 64. [Google Scholar]
- Davies, B.H.; Carotenoids; Goodwin, T.W. (Eds.) Chemistry and Biochemistry of Plant Pigments; Academic: London, UK, 1976; p. 38. [Google Scholar]
- Nagata, M.; Yamashita, I. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. Nippon. Shokuhin Kogyo Gakkaishi. 2022, 39, 925–928. Available online: https://www.jstage.jst.go.jp/article/nskkk1962/39/10/39_10_925/_article (accessed on 13 January 2023).
- Mclellan, M.R.; Lind, L.R.; Kime, R.W. Hue angle determinations and statistical analysis for multiquadrant Hunter L,a,b data. J. Food Qual. 1995, 18, 235–240. [Google Scholar] [CrossRef]
- Statistic for Windows: Release 7.0 A. Statsoft Inc.: Tulsa, OK, USA, 2000.
- Du, F.; Guan, C.; Jiao, Y. Molecular Mechanisms of Leaf Morphogenesis. Mol. Plant 2018, 11, 1117–1134. Available online: https://www.cell.com/molecular-plant/pdf/S1674-205230193-X.pdf (accessed on 13 January 2023). [PubMed]
- Prinsi, B.; Negrini, N.; Morgutti, S.; Luca Espen, L. Nitrogen Starvation and Nitrate or Ammonium Availability Differently Affect Phenolic Composition in Green and Purple Basil. Agronomy 2020, 10, 498. [Google Scholar] [CrossRef]
- Maddi, R.; Amani, P.; Bhavitha, S.; Gayathri, T.; Lohitha. A review on Ocimum species: Ocimum americanum L., Ocimum basilicum L., Ocimum gratissimum L. and Ocimum tenuiflorum L. Int. J. Res. Ayurveda Pharm. 2019, 10, 41–48. [Google Scholar] [CrossRef]
- Fernandes, V.F.; Bezerra, L.A.; Mielke, M.S.; Silva, D.C.; Costa, L.C.B. Anatomia e ultraestrutura foliar de Ocimum gratissimum sob diferentes níveis de radiação luminosa. Cienc. Rural 2014, 44, 1037–1042. [Google Scholar] [CrossRef]
- Silva, C.F.G.; Mendes, M.P.; Almeida, V.V.; Michels, R.N.; Sakanaka, L.S.; Tonin, L.T.D. Parâmetros de qualidade físico-químicos e avaliação da atividade antioxidante de folhas de Plectranthus barbatus Andr. (Lamiaceae) submetidas a diferentes processos de secagem. Rev. Braz. Plantas Med. 2016, 18, 48–56. [Google Scholar] [CrossRef]
- Rasera, G.B.; Castro, R.J.R. Germinação de grãos: Uma revisão sistemática de como os processos bioquímicos envolvidos afetam o conteúdo e o perfil de compostos fenólicos e suas propriedades antioxidantes. Braz. J. Nat. Sci. 2020, 3, 287–300. [Google Scholar] [CrossRef]
- Soares, V.G.; Oliveira, T.M.; Pinto, E. Teor De Compostos Fenólicos e Análises Físico-Químicas em Diferentes Condimentos In Natura e Desidratado. Rebagro 2021, 11, 859–862. [Google Scholar] [CrossRef]
- Martino, L.; Caputo, L.; Amato, G.; Vincenzo, F. Postharvest Microwave Drying of Basil (Ocimum basilicum L.): The Influence of Treatments on the Quality of Dried Products. Foods 2022, 11, 1029. [Google Scholar] [CrossRef] [PubMed]
- Henrique, V.A.; Ferreira, L.P.; Nunes, C.D. Análise Físico-Química e Antioxidante de Manjericão (Ocimum Basilicum L.) Orgânico. Rev. Interdiscip. Pensamento Científico 2017, 3, 85–97. [Google Scholar] [CrossRef]
- Vieira, C.B.S.; Orlanda, J.F.F. Atividade antioxidante e fotoprotetora do extrato etanólico de Ocimum gratissimum L. (alfavaca, Lamiaceae). Rev. Cuba. Plantas Med. 2018, 23, 3. Available online: https://revplantasmedicinales.sld.cu/index.php/pla/article/view/626 (accessed on 13 January 2023).
- Thamkaew, G.; Sjöholm, I.; Galindo, F.G. A review of drying methods for improving the quality of dried herbs. Crit. Rev. Food Sci. Nutr. 2020, 61, 1763–1786. [Google Scholar] [CrossRef] [PubMed]
- Sikorska-Zimny, K.; Lisiecki, P.; Gonciarz, W.; Szemraj, M.; Ambroziak, M.; Suska, O.; Turkot, O.; Stanowska, M.; Rustkowski, K.; Chmiela, M.; et al. Influence of Agronomic Practice on Total Phenols, Carotenoids, Chlorophylls Content, and Biological Activities in Dry Herbs Water Macerates. Molecules 2021, 26, 1047. [Google Scholar] [CrossRef] [PubMed]
- Othman, A.J.; Vodorezova, E.S.; Mardini, M.; Hanana, M.B. Dataset for the content of bioactive components and phytonutrients of (Ocimum basilicum and Brassica rapa) microgreens. Data Brief 2022, 40, 107737. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.D.; Martens, W.; Karim, M.A.; Joardder, M.U.H. Nutritional quality of heat-sensitive food materials in intermittent microwave convective drying. Food Nutr. Res. 2018, 62, 1292. [Google Scholar] [CrossRef]
- Feszterová, M.; Kowalska, M.; Mišiaková, M. Stability of Vitamin C Content in Plant and Vegetable Juices under Different Storing Conditions. Appl. Sci. 2023, 13, 10640. [Google Scholar] [CrossRef]
- Shonte, T.T.; Duodu, K.G.; de Kock, H.L. Effect of drying methods on chemical composition and antioxidant activity of underutilised stinging nettle leaves. Heliyon 2020, 6, e03938. [Google Scholar] [CrossRef] [PubMed]
- Prinsi, B.; Morgutti, S.; Negrini, N.; Faoro, F.; Espen, L. Insight into Composition of Bioactive Phenolic Compounds in Leaves and Flowers of Green and Purple Basil. Plants 2019, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Sipos, L.; Balázs, L.; Székely, G.; Jung, A.; Sárosi, S.; Radácsi, P. Optimization of basil (Ocimum basilicum L.) production in LED light environments—A review. Sci. Hortic. 2021, 289, 110486. [Google Scholar] [CrossRef]
- Tafese Awulachew, M. Understanding Basics of Wheat Grain and Flour Quality. J. Health Environ. Res. 2020, 6, 10. [Google Scholar] [CrossRef]
- Anusmitha, K.M.; Aruna, M.; Job, J.T.; Narayanankutty, A.; Benil, P.B.; Rajagopal, R.; Barceló, A.A.D. Phytochemical analysis, antioxidant, anti-inflammatory, anti-genotoxic, and anticancer activities of different Ocimum plant extracts prepared by ultrasound-assisted method. Physiol. Mol. Plant Pathol. 2022, 117, 101746. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0885576521001478 (accessed on 13 January 2023). [CrossRef]
- Ullah, S.; Rauf, N.; Hussain, A.; Sheikh, I.A.; Farooq, M. HPLC profile of phenolic acids and flavonoids of Ocimum sanctum and O. basilicum. Int. J. Plant Based Pharm. 2022, 2, 205–209. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Y.; Lai, S.; Cao, H.; Guan, Y.; San Cheang, W.; Liu, B.; Zhao, K.; Miao, H.; Riviera, C.; et al. Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Trends Food Sci. Technol. 2019, 85, 55–66. [Google Scholar] [CrossRef]
- Baskaran, K.; Safana, A.; Namitha, V.; Abishek, M.; Dinesh Raja, S.; Henry, S.; Haseera, N.; Varghese, S. In vitro free radical scavenging and antioxidant effect of Ocimum basilicum. Int. J. Pharm. Sci. Rev. 2023, 25, 163–169. [Google Scholar]
- Cvitković, D.; Lisica, P.; Zorić, Z.; Repajić, M.; Pedisić, S.; Dragović-Uzelac, V.; Balbino, S. Composition and Antioxidant Properties of Pigments of Mediterranean Herbs and Spices as Affected by Different Extraction Methods. Foods 2021, 10, 2477. [Google Scholar] [CrossRef] [PubMed]
- Colle, I.J.P.; Lemmens, L.; Knockaert, G.; Van Loey, A.; Hendrickx, M. Carotene Degradation and Isomerization during Thermal Processing: A Review on the Kinetic Aspects. Crit. Rev. Food Sci. Nutr. 2015, 56, 1844–1855. [Google Scholar]
- Cano-Chauca, M.N.; Lima, W.J.N.; Brandi, I.V.; Vieira, C.R.; Rodrigues, D.S.; Lima, J.P.; Bispo, N.F.; Souza, D.M.B. Parâmetros técnicos do processo de secagem de pimentão (Capsicum annuum L.)/Technical parameters of the bell pepper drying process (Capsicum annuum L.). Braz. J. Dev. 2021, 7, 105156–105163. [Google Scholar] [CrossRef]
- Vadiveloo, M.; Principato, L.; Morwitz, V.; Mattei, J. Sensory variety in shape and color influences fruit and vegetable intake, liking, and purchase intentions in some subsets of adults: A randomized pilot experiment. Food Qual. Pref. 2019, 71, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.S.; Verçosa, R.M.; Teixeira, S.M.L.; Teixeira-costa, B.E. Calcium oxalate content from two Amazonian amilaceous roots and the functional properties of their isolated starches. Food Sci. Technol. 2020, 40, 705–711. Available online: https://www.scielo.br/j/cta/a/FMHQYpym63s4dtxF3PYJrbc/?format=pdf&lang=en (accessed on 13 January 2023). [CrossRef]
- Jefferson, A.; Adolphus, K. The Effects of Intact Cereal Grain Fibers, Including Wheat Bran on the Gut Microbiota Composition of Healthy Adults: A Systematic Review. Front. Nutr. 2019, 6, 33. [Google Scholar] [CrossRef]
Basil | Water Activity | Humidity (%) | pH | ATT (g/100 g Citric Acid) |
---|---|---|---|---|
FBL | 0.98 ± 0.0004 | 87.9 ± 0.388 | 6.89 ± 0.105 | 0.160 ± 0.064 |
PBL | 0.33 ± 0.001 | 5.2 ± 0.568 | 6.64 ± 0.043 | 2.078 ± 0.036 |
Bioactive Compound | FBL | PBL |
---|---|---|
Chlorophyll a (μg/100 g) | 2287.8 ± 0.02 | 1003.8 ± 0.03 |
Chlorophyll b (μg/100 g) | 2607.4 ± 0.23 | 2287.8 ± 0.02 |
Vitamin C (mg/100 g) | 95.0 ± 0.50 | 63.30 ± 0.70 |
Total polyphenols (mg EAG/g) | 1.80 ± 0.01 | 3.90 ± 0.57 |
Flavonoids (mg GAE/g) | 0.73 ± 1.20 | 1.78 ± 0.01 |
Antioxidant activity (µg TE/g) | 9.75 ± 1.30 | 12.35 ± 1.07 |
Total carotenoids (mg/100 g) | 16.71 ± 0.92 | 20.60 ± 0.97 |
Parameters | FBL | PBL |
---|---|---|
ΔL* | 34.05 ± 5.052 | 23.10 ± 0.890 |
Δa* | −14.95 ± 1.490 | −3.22 ± 0.058 |
Δb* | 21.76 ± 2.393 | 13.05 ± 0.270 |
ΔC* | 26.40 | 13.44 |
ΔE* | 18.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho, J.V.D.; de Freitas, R.V.; Bezerra, C.V.; Teixeira-Costa, B.E.; dos Santos, O.V. Application of the Cryo-Drying Technique in Maintaining Bioactive and Antioxidant Properties in Basil Leaves (Ocimum basilicum). Horticulturae 2024, 10, 457. https://doi.org/10.3390/horticulturae10050457
de Carvalho JVD, de Freitas RV, Bezerra CV, Teixeira-Costa BE, dos Santos OV. Application of the Cryo-Drying Technique in Maintaining Bioactive and Antioxidant Properties in Basil Leaves (Ocimum basilicum). Horticulturae. 2024; 10(5):457. https://doi.org/10.3390/horticulturae10050457
Chicago/Turabian Stylede Carvalho, Jade Vitória Duarte, Rafaela Valente de Freitas, Carolina Vieira Bezerra, Bárbara E. Teixeira-Costa, and Orquídea Vasconcelo dos Santos. 2024. "Application of the Cryo-Drying Technique in Maintaining Bioactive and Antioxidant Properties in Basil Leaves (Ocimum basilicum)" Horticulturae 10, no. 5: 457. https://doi.org/10.3390/horticulturae10050457
APA Stylede Carvalho, J. V. D., de Freitas, R. V., Bezerra, C. V., Teixeira-Costa, B. E., & dos Santos, O. V. (2024). Application of the Cryo-Drying Technique in Maintaining Bioactive and Antioxidant Properties in Basil Leaves (Ocimum basilicum). Horticulturae, 10(5), 457. https://doi.org/10.3390/horticulturae10050457