Analysis of the Antioxidant Mechanism of Ozone Treatment to Extend the Shelf Life and Storage Quality of ‘Korla’ Fragrant Pears Based on Label-Free Proteomics
Abstract
:1. Introduction
2. Material and Method
2.1. Fruit Samples and Ozone Treatment
2.2. Rotting Rate
2.3. Respiration Rate
2.4. Weight Loss
2.5. Firmness
2.6. Malondialdehyde (MDA) Content
2.7. Superoxide Anion (O−−) Generation Rate and Hydrogen Peroxide (H2O2) Content
2.8. Superoxide Dismutase (SOD), Catalase (CAT), and Peroxidase (POD) Activity
2.9. Proteomics Detection and Analysis
2.10. Statistic Analysis
3. Results and Discussion
3.1. Physical Quality Traits
3.2. Antioxidant Index
3.3. Identification and Expression Analysis of Antioxidant Proteins
3.4. Correlation between Physicochemical Quality and Proteins
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Liu, H.; Gong, P.; He, X.; Wang, J.; Wang, Z.; Zhang, J. Irrigation method and volume for korla fragrant pear: Impact on soil water and salinity, yield, and fruit quality. Agronomy 2022, 12, 1980. [Google Scholar] [CrossRef]
- Han, S.; Zhao, J.; Liu, Y.; Xi, L.; Liao, J.; Liu, X.; Su, G. Effects of green manure planting mode on the quality of korla fragrant pears (Pyrus sinkiangensis yu). Front. Plant Sci. 2022, 13, 1027595. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Pan, L.; Sun, K.; Tu, S.; Sun, Y.; Wei, Y.; Tu, K. Differentiation of deciduous-calyx and persistent-calyx pears using hyperspectral reflectance imaging and multivariate analysis. Comput. Electron. Agric. 2017, 137, 150–156. [Google Scholar] [CrossRef]
- Jia, X.; Wang, W.; Du, Y.; Tong, W.; Wang, Z.; Gul, H. Optimal storage temperature and 1-mcp treatment combinations for different marketing times of korla xiang pears. J. Integr. Agric. 2018, 17, 693–703. [Google Scholar] [CrossRef]
- Wang, J.; Lv, M.; He, H.; Jiang, Y.; Yang, J.; Ji, S. Glycine betaine alleviated peel browning in cold-stored ‘nanguo’ pears during shelf life by regulating phenylpropanoid and soluble sugar metabolisms. Sci. Hortic. 2020, 262, 109100. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Xu, X. Application and research progress of cold storage technology in cold chain transportation and distribution. J. Therm. Anal. Calorim. 2019, 139, 1419–1434. [Google Scholar] [CrossRef]
- Meena, N.K.; Vinod, B.R.; Menaka, M. Ethylene control in postharvest handling of fruits and vegetables. In Postharvest Physiology and Handling of Horticultural Crops; CRC Press: Boca Raton, FL, USA, 2024; Volume 167–195. [Google Scholar]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Sójka, M.; Balawejder, M. Changes in phenolic compounds profile and glutathione status in raspberry fruit during storage in ozone-enriched atmosphere. Postharvest Biol. Technol. 2020, 168, 111277. [Google Scholar] [CrossRef]
- Tabakoğlu, N.; Karaca, H. Effects of ozone-enriched storage atmosphere on postharvest quality of black mulberry fruits (Morus nigra L.). LWT 2018, 92, 276–281. [Google Scholar] [CrossRef]
- Siriprom, W.; Teanchai, K.; Chamchoi, N. Quality assessment of different ozone treatments to extend shelf-life of banana (Musa acuminata). Mater. Today Proc. 2022, 65, 2452–2455. [Google Scholar] [CrossRef]
- Allai, F.M.; Azad, Z.R.A.A.; Mir, N.A.; Gul, K. Recent advances in non-thermal processing technologies for enhancing shelf life and improving food safety. Appl. Food Res. 2022, 3, 100258. [Google Scholar] [CrossRef]
- R Alencar, E. Effectiveness of ozone on postharvest conservation of pear (Pyrus communis L.). J. Food Process. Technol. 2014, 5, 317. [Google Scholar] [CrossRef]
- Min, D.; Li, F.; Ali, M.; Zhang, X.; Liu, Y. Application of methyl jasmonate to control disease of postharvest fruit and vegetables: A meta-analysis. Postharvest Biol. Technol. 2024, 208, 112667. [Google Scholar] [CrossRef]
- Li, N.; Zhai, K.; Yin, Q.; Gu, Q.; Zhang, X.; Melencion, M.G.; Chen, Z. Crosstalk between melatonin and reactive oxygen species in fruits and vegetables post-harvest preservation: An update. Front. Nutr. 2023, 10, 1143511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, N.; Zhang, H.; Chen, C.; Li, L.; Dong, C.; Cheng, Y. Comparative transcriptomic analysis of cantaloupe melon under cold storage with ozone treatment. Food Res. Int. 2021, 140, 109993. [Google Scholar] [CrossRef]
- Zhang, H.; Li, K.; Zhang, X.; Dong, C.; Ji, H.; Ke, R.; Ban, Z.; Hu, Y.; Lin, S.; Chen, C. Effects of ozone treatment on the antioxidant capacity of postharvest strawberry. RSC Adv. 2020, 10, 38142–38157. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Tian, Y.; Xing, J.; Chong, Y.; Chen, C.; Hou, Z. Coexpression modules constructed identifies regulation pathways of winter jujube (Ziziphus jujuba mill. ‘dongzao’) following postharvest treatment with ozone. Postharvest Biol. Technol. 2023, 197, 112183. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, G.; Han, Z.; Li, Q.; Chen, Y.; Li, D. Effect of ozone on the antioxidant capacity of “qiushui” pear (Pyrus pyrifolia nakai cv. Qiushui) during postharvest storage. J. Food Qual. 2013, 36, 190–197. [Google Scholar] [CrossRef]
- Minas, I.S.; Tanou, G.; Belghazi, M.; Job, D.; Manganaris, G.A.; Molassiotis, A.; Vasilakakis, M. Physiological and proteomic approaches to address the active role of ozone in kiwifruit post-harvest ripening. J. Exp. Bot. 2012, 63, 2449–2464. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Song, J.; Toivonen, P.; Gong, Y.; Forney, C.; Palmer, L.C.; Fillmore, S.; Pang, X.; Zhang, Z. Proteomic changes in ‘ambrosia’ apple fruit during cold storage and in response to delayed cooling treatment. Postharvest Biol. Technol. 2018, 137, 66–76. [Google Scholar] [CrossRef]
- Li, H.; James, A.; He, X.; Zhang, M.; Cai, Q.; Wang, Y. Effect of hypobaric treatment on the quality and reactive oxygen species metabolism of blueberry fruit at storage. CYTA J. Food 2019, 17, 937–948. [Google Scholar] [CrossRef]
- Li, C.; Wang, M.; Guo, Y.; Zhang, S.; Xu, H.; Ge, Y. Activation of the calcium signaling, mitogen-activated protein kinase cascade and phenylpropane metabolism contributes to the induction of disease resistance in pear fruit upon phenylalanine treatment. Postharvest Biol. Technol. 2024, 210, 112782. [Google Scholar] [CrossRef]
- Salehi, F. Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: A review. Int. J. Fruit Sci. 2020, 20, 506–520. [Google Scholar] [CrossRef]
- Xu, F.; Liu, S.; Liu, Y.; Wang, S. Effect of mechanical vibration on postharvest quality and volatile compounds of blueberry fruit. Food Chem. 2021, 349, 129216. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, C.; Cheng, Y.; Hou, J.; Zhang, J.; Ge, Y. Postharvest application of acibenzolar-s-methyl delays the senescence of pear fruit by regulating reactive oxygen species and fatty acid metabolism. J. Agric. Food. Chem. 2020, 68, 4991–4999. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Luo, M.; Zhou, X.; Zhou, Q.; Ji, S. Influence of melatonin treatment on peel browning of cold-stored “nanguo” pears. Food Bioprocess Technol. 2020, 13, 1478–1490. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Zhang, H.; Ban, Z.; Li, L.; Dong, C.; Ji, H.; Xue, W. Label-free quantitative proteomics to investigate the response of strawberry fruit after controlled ozone treatment. RSC Adv. 2019, 9, 676–689. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, Y.; Wang, Y.; Li, B.; Gu, X.; Zhang, X.; Boateng, N.A.S.; Zhang, H. Effect of β-glucan on the biocontrol efficacy of cryptococcus podzolicus against postharvest decay of pears and the possible mechanisms involved. Postharvest Biol. Technol. 2020, 160, 111057. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Fan, X.; Wang, J.; Liang, L.; Yan, S.; Xiao, L. Relationship between activated oxygen metabolism and browning of “yali” pears during storage. J. Food Process. Preserv. 2020, 44, e14392. [Google Scholar] [CrossRef]
- Guo, Y.; Li, C.; Wang, M.; Xu, H.; Zhang, S.; Liu, J.; Jin, Y.; Ge, Y. Postharvest caffeic acid dipping enhances disease resistance and storage capacity of ‘zaosu’ pear fruit via regulating phenylpropane metabolism. Postharvest Biol. Technol. 2024, 209, 112716. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, H.; Chen, Y.; Wang, H.; Lin, M.; Ritenour, M.A.; Lin, Y. The role of ros-induced change of respiratory metabolism in pulp breakdown development of longan fruit during storage. Food Chem. 2020, 305, 125439. [Google Scholar] [CrossRef] [PubMed]
- Meitha, K.; Pramesti, Y.; Suhandono, S. Reactive oxygen species and antioxidants in postharvest vegetables and fruits. Int. J. Food Sci. 2020, 2020, 8817778. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Yang, H.; Cheng, S.; Zhang, Z.; Zhang, L.; Su, R.; Li, Y.; Zhan, X.; Yang, B.; Lin, L.; et al. Combination effects of ultrasound and citral nanoemulsion against shigella flexneri and the preservation effect on fresh-cut carrots. Food Control 2023, 155, 110069. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Y.; Einhorn, T.C. Postharvest physiology, storage quality and physiological disorders of ‘gem’ pear (Pyrus communis L.) Treated with 1-methylcyclopropene. Sci. Hortic. 2018, 240, 631–637. [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Wei, B.; Cheng, S.; Zhou, Q.; Ji, S. Gaba application improves the mitochondrial antioxidant system and reduces peel browning in ‘nanguo’ pears after removal from cold storage. Food Chem. 2019, 297, 124903. [Google Scholar] [CrossRef] [PubMed]
No. | Protein Name | Organism | Accession Number a | PI b | MW [kDa] | Mascot Score c | Matched Peptides Number | Sequence Coverage (%) |
---|---|---|---|---|---|---|---|---|
CAT1 | Catalase | Pyrus ussuriensis | A0A5N5I2Y7 | 7.17 | 56.9 | 12,207 | 15 | 71 |
CAT2 | Catalase | Pyrus ussuriensis | A0A5N5I0U4 | 7.28 | 56.9 | 4549 | 2 | 35 |
POD1 | Peroxidase | Pyrus ussuriensis | A0A5N5GTX5 | 9.5 | 41.1 | 3139 | 10 | 45 |
POD2 | Peroxidase | Pyrus ussuriensis | M1JUJ2 | 9.47 | 34.4 | 1732 | 11 | 41 |
POD3 | Peroxidase | Pyrus ussuriensis | A0A5N5FMS2 | 9.36 | 41 | 1788 | 8 | 47 |
POD4 | Peroxidase | Pyrus ussuriensis | A0A5N5FAU1 | 8.7 | 37.2 | 1151 | 14 | 57 |
POD5 | Peroxidase | Pyrus ussuriensis | A0A5N5GAP5 | 8.5 | 35.4 | 425 | 9 | 30 |
POD6 | Peroxidase | Pyrus ussuriensis | A0A5N5FK11 | 6.64 | 41.8 | 256 | 5 | 14 |
POD7 | Peroxidase | Pyrus ussuriensis | A0A5N5H1T5 | 8.06 | 33.9 | 142 | 4 | 17 |
POD8 | Peroxidase | Pyrus ussuriensis | A0A5N5GNW2 | 4.7 | 37.1 | 291 | 3 | 13 |
POD9 | Peroxidase | Pyrus ussuriensis | A0A5N5FCM2 | 8.28 | 35.9 | 130 | 3 | 12 |
POD10 | Peroxidase | Pyrus ussuriensis | A0A7C8ZGJ7 | 8.65 | 36.3 | 106 | 1 | 4 |
SOD1 | Superoxide dismutase [Cu-Zn] | Pyrus ussuriensis | A0A5N5GHU4 | 6.68 | 22.4 | 1278 | 2 | 46 |
SOD2 | Superoxide dismutase [Cu-Zn] | Pyrus ussuriensis | A0A5N5FU31 | 6.51 | 22.4 | 987 | 1 | 35 |
SOD3 | Superoxide dismutase [Cu-Zn] | Pyrus ussuriensis | A0A5N5HUZ3 | 7.01 | 18 | 779 | 7 | 58 |
SOD4 | Superoxide dismutase | Pyrus ussuriensis | A0A5N5HPK7 | 6.4 | 85.1 | 1533 | 5 | 8 |
SOD5 | Superoxide dismutase | Pyrus ussuriensis | A0A5N5F0X8 | 8.22 | 63.5 | 688 | 10 | 15 |
SOD6 | Superoxide dismutase | Pyrus ussuriensis | A0A6J1DNG7 | 8.69 | 26 | 12 | 2 | 13 |
SOD7 | Superoxide dismutase | Pyrus ussuriensis | A0A7C8ZM23 | 5.87 | 15.2 | 240 | 1 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Zhang, X.; Li, M.; Zhang, N.; Dong, C.; Ji, H.; Zheng, P.; Ban, Z.; Mei, X.; Gu, C.; et al. Analysis of the Antioxidant Mechanism of Ozone Treatment to Extend the Shelf Life and Storage Quality of ‘Korla’ Fragrant Pears Based on Label-Free Proteomics. Horticulturae 2024, 10, 424. https://doi.org/10.3390/horticulturae10050424
Lin S, Zhang X, Li M, Zhang N, Dong C, Ji H, Zheng P, Ban Z, Mei X, Gu C, et al. Analysis of the Antioxidant Mechanism of Ozone Treatment to Extend the Shelf Life and Storage Quality of ‘Korla’ Fragrant Pears Based on Label-Free Proteomics. Horticulturae. 2024; 10(5):424. https://doi.org/10.3390/horticulturae10050424
Chicago/Turabian StyleLin, Shaohua, Xiaojun Zhang, Mo Li, Na Zhang, Chenghu Dong, Haipeng Ji, Pufan Zheng, Zhaojun Ban, Xing Mei, Changyu Gu, and et al. 2024. "Analysis of the Antioxidant Mechanism of Ozone Treatment to Extend the Shelf Life and Storage Quality of ‘Korla’ Fragrant Pears Based on Label-Free Proteomics" Horticulturae 10, no. 5: 424. https://doi.org/10.3390/horticulturae10050424
APA StyleLin, S., Zhang, X., Li, M., Zhang, N., Dong, C., Ji, H., Zheng, P., Ban, Z., Mei, X., Gu, C., & Chen, C. (2024). Analysis of the Antioxidant Mechanism of Ozone Treatment to Extend the Shelf Life and Storage Quality of ‘Korla’ Fragrant Pears Based on Label-Free Proteomics. Horticulturae, 10(5), 424. https://doi.org/10.3390/horticulturae10050424