Detection of Hardening in Mangosteens Using near-Infrared Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. NIR-HSI Acquisition
2.3. Firmness Measurement
3. Data Analysis
4. Results and Discussion
Size | Weight per Fruit (g) | Number of Samples | Firmness (N) |
---|---|---|---|
1 | >125 | 10 | 8.61 ± 1.61 b |
2 | 101–125 | 10 | 9.49 ± 0.86 ab |
3 | 76–100 | 10 | 10.04 ± 1.32 ab |
4 | 55–75 | 10 | 10.50 ± 1.31 ab |
5 | 30–55 | 10 | 13.44 ± 9.46 a |
Group | Number of Samples | Data Set | Range (N) | Mean (N) | SD (N) |
---|---|---|---|---|---|
A | 196 | calibration set | 4.51–48.55 | 16.42 | 11.99 |
84 | prediction set | 4.91–47.29 | 16.71 | 12.28 | |
B | 196 | calibration set | 3.82–49.87 | 14.91 | 11.84 |
84 | prediction set | 4.53–44.79 | 14.97 | 11.56 |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalick, L.S.; Khan, H.A.; Maung, E.; Baez, Y.; Atkinson, A.N.; Wallace, C.E.; Watanapokasin, R. Mangosteen for malignancy prevention and intervention: Current evidence, molecular mechanisms, and future perspectives. Pharmacol. Res. 2023, 188, 106630. [Google Scholar] [CrossRef] [PubMed]
- FAO. Major Tropical Fruits. Available online: https://www.fao.org/3/cc9308en/cc9308en.pdf (accessed on 26 February 2024).
- Kanchanapoom, K.; Kanchanapoom, M. Mangosteen. In Tropical and Subtropical Fruit; Shaw, P.E., Chan, H.T., Jr., Nagy, S., Eds.; AgScience Inc.: Auburndale, FL, USA, 1998; pp. 191–216. [Google Scholar]
- Ketsa, S.; Koolpluksee, M. Some physical and biochemical characteristics of damaged pericarp of mangosteen fruit after impact. Postharvest Biol. Technol. 1993, 2, 209–215. [Google Scholar] [CrossRef]
- Bunsiri, A.; Ketsa, S.; Paull, R.E. Phenolic metabolism and lignin synthesis in damaged pericarp of mangosteen fruit after impact. Postharvest Biol. Technol. 2003, 29, 61–71. [Google Scholar] [CrossRef]
- Vance, C.P.; Kirk, T.K.; Sherwood, R.T. Lignification as a mechanism of disease resistance. Ann. Rev. Phytopathol. 1980, 18, 259–288. [Google Scholar] [CrossRef]
- Christiernin, M. Lignin composition in cambial tissues of poplar. Plant Physiol. Biochem. 2006, 44, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Radin, J.W.; Ackerson, R.C. Water relations of cotton plants under nitrogen deficiency. II. Stomatal conductance, photosynthesis and abscisic acid accumulation during drought. Plant Physiol. 1982, 87, 115–119. [Google Scholar] [CrossRef]
- Morgan, J.A. The effects of N nutrition on the water relations and gas exchange characteristics of wheat (Triticum aestivum L.). Plant Physiol. 1986, 80, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Oey, M.L.; Vanstreels, E.; De Baerdemaeker, J.; Tijskens, E.; Ramon, H.; Hertog, M.L.A.T.M.; Nicolaï, B. Effect of turgor on micromechanical and structural properties of apple tissue: A quantitative analysis. Postharvest Biol. Technol. 2007, 44, 240–247. [Google Scholar] [CrossRef]
- Ketsa, S.; Atantee, S. Phenolics, lignin, peroxidase activity and increased firmness of damaged pericarp of mangosteen fruit after impact. Postharvest Biol. Technol. 1998, 14, 117–124. [Google Scholar] [CrossRef]
- ElMasry, G.; Sun, D.W. Principles of hyperspectral imaging technology. In Hyperspectral Imaging for Food Quality Analysis and Control; Sun, D.W., Ed.; Academic Press: San Diego, CA, USA, 2010; pp. 3–43. [Google Scholar]
- Kim, M.S.; Lefcourt, A.M.; Chao, K.; Chen, Y.R.; Kim, I.; Chan, D.E. Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging. Trans. ASAE 2002, 45, 2027–2037. [Google Scholar] [CrossRef]
- Polder, G.; Van der Heijden, G.W.A.M.; Young, I.T. Spectral image analysis for measuring ripeness of tomatoes. Trans. ASAE 2002, 45, 1155–1161. [Google Scholar] [CrossRef]
- Lu, R. Detection of bruises on apples using near-infrared hyperspectral imaging. Trans. ASAE 2003, 46, 523–530. [Google Scholar] [CrossRef]
- Lu, R. Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biol. Technol. 2004, 31, 147–157. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, R.; Tao, Y.; Wang, C.Y.; Kim, M.S.; Lefcourt, A.M. A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chilling damage inspection. Trans. ASAE 2004, 47, 1313–1320. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.R.; Wang, C.Y.; Chan, D.E.; Kim, M.S. Development of hyperspectral imaging technique for the detection of chilling injury in cucumbers; spectral and image analysis. Appl. Eng. Agric. 2006, 22, 101–111. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R. Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. J. Food Eng. 2010, 96, 583–590. [Google Scholar] [CrossRef]
- Mendoza, F.; Lu, R.; Ariana, D.; Cen, H.; Bailey, B. Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 2011, 62, 149–160. [Google Scholar] [CrossRef]
- Leiva-Valenzuela, G.A.; Lu, R.; Aguilera, J.M. Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. J. Food Eng. 2013, 115, 91–98. [Google Scholar] [CrossRef]
- Rajkumar, P.; Wang, N.; Elmasry, G.; Raghavan, G.S.V.; Gariepy, Y. Studies on banana fruit quality and maturity stages using hyperspectral imaging. J. Food Eng. 2012, 108, 194–200. [Google Scholar] [CrossRef]
- Yang, C.; Lee, W.S.; Gader, P. Hyperspectral band selection for detecting different blueberry fruit maturity stage. Comput. Electron. Agric. 2014, 109, 23–31. [Google Scholar] [CrossRef]
- Vélez-Rivera, N.; Gómez-Sanchis, J.; Chanona-Pérez, J.; Carrasco, J.J.; Millán-Giraldo, M.; Lorente, D.; Cubero, S.; Blasco, J. Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosyst. Eng. 2014, 122, 91–98. [Google Scholar] [CrossRef]
- Yu, K.; Zhao, Y.; Li, X.; Shao, Y.; Zhu, F.; He, Y. Identification of crack features in fresh jujube using Vis/NIR hyperspectral imaging combined with image processing. Comput. Electron. Agric. 2014, 103, 1–10. [Google Scholar] [CrossRef]
- Li, J.; Huang, W.; Tian, X.; Wang, C.; Fan, S.; Zhao, C. Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging. Comput. Electron. Agric. 2016, 127, 582–592. [Google Scholar] [CrossRef]
- Ortac, G.; Bilgi, A.S.; Tasdemir, K.; Kalkan, H. A hyperspectral imaging-based control system for quality assessment of dried figs. Comput. Electron. Agric. 2016, 130, 38–47. [Google Scholar] [CrossRef]
- Teerachaichayut, S.; Ho, H.T. Non-destructive prediction of total soluble solids, titratable acidity and maturity index of limes by near infrared hyperspectral imaging. Postharvest Biol. Technol. 2017, 133, 20–25. [Google Scholar] [CrossRef]
- Amodio, M.L.; Capotorto, I.; Chaudhry, M.M.A.; Colelli, G. The use of hyperspectral imaging to predict the distribution of internal constituents and to classify edible fennel heads based on the harvest time. Comput. Electron. Agric. 2017, 134, 1–10. [Google Scholar] [CrossRef]
- Suktanarak, S.; Teerachaichayut, S. Non-destructive quality assessment of hens’ eggs using hyperspectral images. J. Food Eng. 2017, 215, 97–103. [Google Scholar] [CrossRef]
- Sricharoonratana, M.; Thompson, A.K.; Teerachaichayut, S. Use of near infrared hyperspectral imaging as a nondestructive method of determining and classifying shelf life of cakes. LWT-Food Sci. Technol. 2021, 136, 110369. [Google Scholar] [CrossRef]
- Xuan, G.; Gao, C.; Shao, Y.; Wang, X.; Wang, Y.; Wang, K. Maturity determination at harvest and spatial assessment of moisture content in okra using Vis-NIR hyperspectral imaging. Postharvest Biol. Technol. 2021, 180, 111597. [Google Scholar] [CrossRef]
- Khamsopha, D.; Woranitta, S.; Teerachaichayut, S. Utilizing near infrared hyperspectral imaging for quantitatively predicting adulteration in tapioca starch. Food Control 2021, 123, 107781. [Google Scholar] [CrossRef]
- Florián-Huamán, J.; Cruz-Tirado, J.P.; Fernandes Barbin, D.; Siche, R. Detection of nutshells in cumin powder using NIR hyperspectral imaging and chemometrics tools. J. Food Compos. Anal. 2022, 108, 104407. [Google Scholar] [CrossRef]
- Sahachairungueng, W.; Teerachaichayut, S. Nondestructive quality assessment of longans using near infrared hyperspectral imaging. Agric. Eng. Int. CIGR J. 2022, 24, 217–227. [Google Scholar] [CrossRef]
- Li, X.; Cai, M.; Li, M.; Wei, X.; Liu, Z.; Wang, J.; Jia, K.; Han, Y. Combining Vis-NIR and NIR hyperspectral imaging techniques with a data fusion strategy for the rapid qualitative evaluation of multiple qualities in chicken. Food Control 2023, 145, 109416. [Google Scholar] [CrossRef]
- Saha, D.; Senthilkumar, T.; Singh, C.B.; Manickavasagan, A. Quantitative detection of metanil yellow adulteration in chickpea flour using line-scan near-infrared hyperspectral imaging with partial least square regression and one-dimensional convolutional neural network. J. Food Compos. Anal. 2023, 120, 105290. [Google Scholar] [CrossRef]
- Tantinantrakun, A.; Thompson, A.K.; Terdwongworakul, A.; Teerachaichayut, S. Assessment of Nitrite Content in Vienna Chicken Sausages Using Near-Infrared Hyperspectral Imaging. Foods 2003, 12, 2793. [Google Scholar] [CrossRef] [PubMed]
- Tantinantrakun, A.; Sukwanit, S.; Thompson, A.K.; Teerachaichayut, S. Nondestructive evaluation of SW-NIRS and NIR-HSI for predicting the maturity index of intact pineapples. Postharvest Biol. Technol. 2023, 195, 112141. [Google Scholar] [CrossRef]
- Lu, R. Nondestructive measurement of firmness and soluble solids content for apple fruit using hyperspectral scattering images. Sens. Instrum. Food Qual Saf. 2007, 1, 19–27. [Google Scholar] [CrossRef]
- Xie, C.; Chu, B.; He, Y. Prediction of banana color and firmness using a novel wavelengths selection method of hyperspectral imaging. Food Chem. 2018, 245, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; He, J.; Zheng, S.; Ye, D. Modeling for SSC and firmness detection of persimmon based on NIR hyperspectral imaging by sample partitioning and variables selection. Infrared Phys. Technol. 2020, 105, 103099. [Google Scholar] [CrossRef]
- Xu, M.; Sun, j.; Yao, K.; Cai, Q.; Shen, J.; Tian, Y.; Zhou, X. Developing deep learning based regression approaches for prediction of firmness and pH in Kyoho grape using Vis/NIR hyperspectral imaging. Infrared Phys. Technol. 2022, 120, 104003. [Google Scholar] [CrossRef]
- Codex Stan 204-1997; Standard for Mangosteen. FAO: Rome, Italy, 2005; p. 2.
- Feng, Y.Z.; Sun, D.W. Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets. Talanta 2013, 109, 74–83. [Google Scholar] [CrossRef]
- ElMasry, G.; Wang, N.; ElSayed, A.; Ngadi, M. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. J. Food Eng. 2007, 8, 98–107. [Google Scholar] [CrossRef]
- Esquerre, C.; Gowen, A.A.; O’Donnell, C.P.; Downey, G. Initial studies on the quantitation of bruise damage and freshness in mushrooms using visible-near infrared spectroscopy. J. Agric. Food Chem. 2009, 57, 903–1907. [Google Scholar] [CrossRef]
- Barbin, D.; ElMasry, G.; Sun, D.W.; Allen, P. Near-infrared hyperspectral imaging for grading and classification of pork. Meat Sci. 2012, 90, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Marmo, C.A.; Bramlage, W.J.; Weis, S.A. Effect of fruit maturity, size, and mineral concentrations on predicting the storage life of ‘McIntosh’ apples. J. Am. Soc. Hortic. Sci. 1985, 110, 499–502. [Google Scholar] [CrossRef]
- Siddiqui, S.; Bangerth, F. Effect of pre-harvest application of calcium on flesh firmness and cell-wall composition of apples-influence of fruit size. J. Hortic. Sci. 1995, 70, 263–269. [Google Scholar] [CrossRef]
- Harker, F.R.; Redgwell, R.J.; Hallett, I.C.; Murray, S.H.; Carter, G. Texture of fresh fruit. Hortic. Rev. 1997, 20, 121–224. [Google Scholar] [CrossRef]
- Goffinet, M.C.; Robinson, T.L.; Lakso, A.N. A comparison of ‘Empire’ apple fruit size and anatomy in unthinned and hand-thinned trees. J. Hortic. Sci. 1995, 70, 375–387. [Google Scholar] [CrossRef]
- Volz, R.K.; Harker, F.R.; Hallett, I.C.; Lang, A. Development of texture in apple fruit-a biophysical perspective. Acta Hortic. 2004, 636, 473–479. [Google Scholar] [CrossRef]
- Ge´nard, M.; Bertin, N.; Borel, C.; Bussie`res, P.; Gautier, H.; Habib, R.; Le´chaudel, M.; Lecomte, A.; Lescourret, F.; Lobit, P.; et al. Towards a virtual fruit focusing on quality: Modelling features and potential uses. J. Exp. Bot. 2007, 58, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Saei, A.; Tustin, D.S.; Zamani, Z.; Talaie, A.; Hall, A.J. Cropping effects on the loss of apple fruit firmness during storage: The relationship between texture retention and fruit dry matter concentration. Sci. Hortic. 2011, 130, 256–265. [Google Scholar] [CrossRef]
- Williams, P. Implementation of near-infrared technology. In Near-Infrared Technology in the Agricultural and Food Industries; Williams, P., Norris, K., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 2001; pp. 145–169. [Google Scholar]
- Ozaki, Y.; Huck, C.; Tsuchikawa, S.; Engelsen, S.B. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications; Springer: Singapore, 2021. [Google Scholar]
- Lu, R.; Guyer, D.E.; Beaudry, R.M. Determination of firmness and sugar content of apples using near-infrared diffuse reflectance. J. Texture Stud. 2000, 31, 615–630. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Chen, Z.; Han, D. Development of multi-cultivar models for predicting the soluble solid content and firmness of European pear (Pyrus communis L.) using portable vis–NIR spectroscopy. Postharvest Biol. Technol. 2017, 129, 143–151. [Google Scholar] [CrossRef]
- Ma, T.; Xia, Y.; Inagaki, T.; Tsuchikawa, S. Rapid and nondestructive evaluation of soluble solids content (SSC) and firmness in apple using Vis–NIR spatially resolved spectroscopy. Postharvest Biol. Technol. 2021, 173, 111417. [Google Scholar] [CrossRef]
- Yu, Y.; Yao, M. A portable NIR system for nondestructive assessment of SSC and firmness of Nanguo pears. LWT-Food Sci. Technol. 2022, 167, 113809. [Google Scholar] [CrossRef]
Spectral Pretreatment | Group A | Group B | ||||||
---|---|---|---|---|---|---|---|---|
N | LV | Rcv | RMSECV (N) | N | LV | Rcv | RMSECV (N) | |
Original | 196 | 11 | 0.83 | 6.74 | 196 | 10 | 0.78 | 7.38 |
Smoothing | 196 | 10 | 0.82 | 6.79 | 196 | 10 | 0.80 | 7.12 |
1st Derivative | 196 | 8 | 0.79 | 7.26 | 196 | 8 | 0.78 | 7.44 |
2nd Derivative | 196 | 7 | 0.56 | 9.74 | 196 | 13 | 0.67 | 9.10 |
MSC | 196 | 9 | 0.80 | 7.13 | 196 | 9 | 0.80 | 7.16 |
SNV | 196 | 9 | 0.80 | 7.27 | 196 | 7 | 0.80 | 7.07 |
Smoothing + MSC | 196 | 9 | 0.81 | 7.02 | 196 | 9 | 0.79 | 7.20 |
Smoothing + SNV | 196 | 9 | 0.81 | 7.02 | 196 | 9 | 0.79 | 7.21 |
Spectral Pretreatment | Group A | Group B | ||||
---|---|---|---|---|---|---|
N | Rcv | RMSECV (N) | N | Rcv | RMSECV (N) | |
Original | 196 | 0.62 | 9.44 | 196 | 0.67 | 8.83 |
Smoothing | 196 | 0.55 | 10.13 | 196 | 0.68 | 8.84 |
1st Derivative | 196 | 0.78 | 7.57 | 196 | 0.75 | 7.98 |
2nd Derivative | 196 | 0.61 | 9.62 | 196 | 0.62 | 9.31 |
MSC | 196 | 0.74 | 8.08 | 196 | 0.62 | 9.32 |
SNV | 196 | 0.74 | 8.06 | 196 | 0.71 | 8.72 |
Smoothing + MSC | 196 | 0.73 | 8.16 | 196 | 0.71 | 8.63 |
Smoothing + SNV | 196 | 0.73 | 8.17 | 196 | 0.71 | 8.62 |
Group | Spectral Pretreatment | N | LV | Prediction Set | |
---|---|---|---|---|---|
Rp | RMSEP (N) | ||||
A | Original | 84 | 10 | 0.87 | 6.25 |
B | SNV | 84 | 7 | 0.83 | 6.50 |
Group | Spectral Pretreatment | N | Prediction Set | |
---|---|---|---|---|
Rp | RMSEP (N) | |||
A | 1st Derivative | 84 | 0.78 | 7.83 |
B | 1st Derivative | 84 | 0.75 | 7.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Workhwa, S.; Khanthong, T.; Manmak, N.; Thompson, A.K.; Teerachaichayut, S. Detection of Hardening in Mangosteens Using near-Infrared Hyperspectral Imaging. Horticulturae 2024, 10, 345. https://doi.org/10.3390/horticulturae10040345
Workhwa S, Khanthong T, Manmak N, Thompson AK, Teerachaichayut S. Detection of Hardening in Mangosteens Using near-Infrared Hyperspectral Imaging. Horticulturae. 2024; 10(4):345. https://doi.org/10.3390/horticulturae10040345
Chicago/Turabian StyleWorkhwa, Saranya, Thitirat Khanthong, Napatsorn Manmak, Anthony Keith Thompson, and Sontisuk Teerachaichayut. 2024. "Detection of Hardening in Mangosteens Using near-Infrared Hyperspectral Imaging" Horticulturae 10, no. 4: 345. https://doi.org/10.3390/horticulturae10040345
APA StyleWorkhwa, S., Khanthong, T., Manmak, N., Thompson, A. K., & Teerachaichayut, S. (2024). Detection of Hardening in Mangosteens Using near-Infrared Hyperspectral Imaging. Horticulturae, 10(4), 345. https://doi.org/10.3390/horticulturae10040345