Optimising Sowing Density for Microgreens Production in Rapini, Kale and Cress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Common Elements of the Three Experiments
2.2. First Experiment: Species and Sowing Densities
2.3. Second Experiment: Rapini Landraces, Sowing Density and Harvest Time
2.4. Third Experiment: Kale Landraces and Sowing Density
3. Results
3.1. First Experiment: Species and Sowing Densities
3.2. Second Experiment: Rapini Landraces, Sowing Density and Harvest Time
3.3. Third Experiment: Kale Landraces and Sowing Density
4. Discussion
4.1. Sowing Density, Yield, and Growth
4.2. Sowing Density, Landrace, and Commercial Stage
4.3. Harvest Time, Landrace, and Commercial Stage
4.4. Microgreens Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Treadwell, D.; Hochmuth, R.; Landrum, L.; Laughlin, W. Microgreens: A New Specialty Crop. Available online: https://journals.flvc.org/edis/article/view/123356 (accessed on 13 March 2023).
- Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Soteriou, G.A.; Giordano, M.; Palladino, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Phenolic Constitution, Phytochemical and Macronutrient Content in Three Species of Microgreens as Modulated by Natural Fiber and Synthetic Substrates. Antioxidants 2020, 9, 252. [Google Scholar] [CrossRef]
- Bulgari, R.; Baldi, A.; Ferrante, A.; Lenzi, A. Yield and Quality of Basil, Swiss Chard, and Rocket Microgreens Grown in a Hydroponic System. N. Z. J. Crop Hortic. Sci. 2017, 45, 119–129. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Renna, M.; Crupi, P.; Lovece, A.; Corbo, F.; Santamaria, P. Yield and Quality Characteristics of Brassica Microgreens as Affected by the NH4:NO3 Molar Ratio and Strength of the Nutrient Solution. Foods 2020, 9, 677. [Google Scholar] [CrossRef]
- Lee, J.; Pill, W.; Cobb, B. Seed Treatments to Advance Greenhouse Establishment of Beet and Chard Microgreens. J. Hortic. Sci. Biotechnol. 2004, 79, 565–570. [Google Scholar] [CrossRef]
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, Microgreens and “Baby Leaf” Vegetables BT—Minimally Processed Refrigerated Fruits and Vegetables; Springer: Berlin/Heidelberg, Germany, 2017; pp. 403–432. ISBN 978-1-4939-7018-6. [Google Scholar]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-Scale Vegetable Production and the Rise of Microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 752/2014. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32014R0752&from=EN (accessed on 15 May 2023).
- Bulgari, R.; Negri, M.; Santoro, P.; Ferrante, A. Quality Evaluation of Indoor-Grown Microgreens Cultivated on Three Different Substrates. Horticulturae 2021, 7, 96. [Google Scholar] [CrossRef]
- Wieth, A.R.; Pinheiro, W.D.; Duarte, T.d.S. Purple Cabbage Microgreens Grown in Different Substrates and Nutritive Solution Concentrations. Rev. Caatinga 2019, 32, 976–985. [Google Scholar] [CrossRef]
- Kamal, K.Y.; Khodaeiaminjan, M.; El-Tantawy, A.A.; Moneim, D.A.; Salam, A.A.; Ash-shormillesy, S.M.A.I.; Attia, A.; Ali, M.A.S.; Herranz, R.; El-Esawi, M.A.; et al. Evaluation of Growth and Nutritional Value of Brassica Microgreens Grown under Red, Blue and Green LEDs Combinations. Physiol. Plant. 2020, 169, 625–638. [Google Scholar] [CrossRef]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral Composition and Content of 30 Varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef]
- Negri, M.; Bulgari, R.; Santoro, P.; Ferrante, A. Evaluation of Different Growing Substrates for Microgreens Production. In Acta Horticulturae; ISHS (ISHS|International Society for Horticultural Science): Leuven, Belgium, 2021; pp. 109–114. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Growth and Morphology Responses to Narrow-Band Blue Light and Its Co-Action with Low-Level UVB or Green Light: A Comparison with Red Light in Four Microgreen Species. Environ. Exp. Bot. 2020, 178, 104189. [Google Scholar] [CrossRef]
- Kong, Y.; Kamath, D.; Zheng, Y. Blue versus Red Light Can Promote Elongation Growth Independent of Photoperiod: A Study in Four Brassica Microgreens Species. HortScience 2019, 54, 1955–1961. [Google Scholar] [CrossRef]
- Cowden, R.J.; Markussen, B.; Ghaley, B.B.; Henriksen, C.B. The Effects of Light Spectrum and Intensity, Seeding Density, and Fertilization on Biomass, Morphology, and Resource Use Efficiency in Three Species of Brassicaceae Microgreens. Plants 2024, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Lalk, G.T.; Bi, G. Fertilization and Pre-Sowing Seed Soaking Affect Yield and Mineral Nutrients of Ten Microgreen Species. Horticulturae 2021, 7, 14. [Google Scholar] [CrossRef]
- Di Gioia, F.; Santamaria, P. MicroGREENS: Nuovi Alimenti Freschi e Funzionali per Esplorare Tutto Il Valore Della Biodiversità; CINECA IRIS: Casalecchio di Reno, Italy, 2015; ISBN 978-88-909289-3-2. [Google Scholar]
- Li, T.; Lalk, G.T.; Arthur, J.D.; Johnson, M.H.; Bi, G. Shoot Production and Mineral Nutrients of Five Microgreens as Affected by Hydroponic Substrate Type and Post-Emergent Fertilization. Horticulturae 2021, 7, 129. [Google Scholar] [CrossRef]
- Moraru, P.I.; Rusu, T.; Mintas, O.S. Trial Protocol for Evaluating Platforms for Growing Microgreens in Hydroponic Conditions. Foods 2022, 11, 1327. [Google Scholar] [CrossRef]
- Signore, A.; Renna, M.; Santamaria, P. Agrobiodiversity of Vegetable Crops: Aspect, Needs, and Future Perspectives. Annu. Plant Rev. Online 2019, 2, 1–24. [Google Scholar] [CrossRef]
- Martínez-Ispizua, E.; Calatayud, Á.; Marsal, J.I.; Cannata, C.; Basile, F.; Abdelkhalik, A.; Soler, S.; Valcárcel, J.V.; Martínez-Cuenca, M.R. The Nutritional Quality Potential of Microgreens, Baby Leaves, and Adult Lettuce: An Underexploited Nutraceutical Source. Foods 2022, 11, 423. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef]
- Ghoora, M.D.; Babu, D.R.; Srividya, N. Nutrient Composition, Oxalate Content and Nutritional Ranking of Ten Culinary Microgreens. J. Food Compos. Anal. 2020, 91, 103495. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Incrocci, L.; Pardossi, A.; Venturi, F.; Taglieri, I.; Ferroni, G.; Guidi, L. Comparison of Three Domestications and Wild-Harvested Plants for Nutraceutical Properties and Sensory Profiles in Five Wild Edible Herbs: Is Domestication Possible? Foods 2020, 9, 1065. [Google Scholar] [CrossRef] [PubMed]
- Anaclerio, M.; Renna, M.; Di Venere, D.; Sergio, L.; Santamaria, P. Smooth Golden Fleece and Prickly Golden Fleece as Potential New Vegetables for the Ready-to-Eat Production Chain. Agriculture 2021, 11, 74. [Google Scholar] [CrossRef]
- Baldi, A.; Bruschi, P.; Campeggi, S.; Egea, T.; Rivera, D.; Obón, C.; Lenzi, A. The Renaissance of Wild Food Plants: Insights from Tuscany (Italy). Foods 2022, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Galieni, A.; Falcinelli, B.; Stagnari, F.; Datti, A.; Benincasa, P. Sprouts and Microgreens: Trends, Opportunities, and Horizons for Novel Research. Agronomy 2020, 10, 1424. [Google Scholar] [CrossRef]
- International Seed Testing Association. International Rules for Seed Testing. Available online: https://www.seedtest.org/en/publications/international-rules-seed-testing-1168.html (accessed on 1 September 2022).
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil. Calif. Agric. Exp. Stn. Circ. 1950, 347, 1–32. Available online: https://ia800205.us.archive.org/9/items/watercultureme3450hoag/watercultureme3450hoag.pdf (accessed on 11 February 2024).
- Signore, A.; Serio, F.; Santamaria, P. A Targeted Management of the Nutrient Solution in a Soilless Tomato Crop According to Plant Needs. Front. Plant Sci. 2016, 7, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; van Ieperen, W.; Harbinson, J. Blue Light Dose-Responses of Leaf Photosynthesis, Morphology, and Chemical Composition of Cucumis Sativus Grown under Different Combinations of Red and Blue Light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef] [PubMed]
- Nolan, D.A. Effects of Seed Density and Other Factors on the Yield of Microgreens Grown Hydroponically on Burlap; Virginia Tech: Blacksburg, VA, USA, 2018; pp. 1–44. [Google Scholar]
- Johnny Seeds Johnny’s Microgreens Yield Data Trial: Determining Seed Density & Yield per Tray for 29 Varieties. Available online: https://www.johnnyseeds.com/growers-library/vegetables/microgreens/micro-greens-yield-data-trial-summary-discussion.html?q=microgreen (accessed on 13 February 2024).
- Ebert, A.W. Sprouts and Microgreens—Novel Food Sources for Healthy Diets. Plants 2022, 11, 571. [Google Scholar] [CrossRef] [PubMed]
- Khader, V.; Rama, S. Effect of Maturity on Macromineral Content of Selected Leafy Vegetables. Asia Pac. J. Clin. Nutr. 2003, 12, 45–49. [Google Scholar]
- Santos, J.; Oliva-Teles, M.T.; Delerue-Matos, C.; Oliveira, M.B.P.P. Multi-Elemental Analysis of Ready-to-Eat “Baby Leaf” Vegetables Using Microwave Digestion and High-Resolution Continuum Source Atomic Absorption Spectrometry. Food Chem. 2014, 151, 311–316. [Google Scholar] [CrossRef]
- Sánchez, M.-T.; Entrenas, J.-A.; Torres, I.; Vega, M.; Pérez-Marín, D. Monitoring Texture and Other Quality Parameters in Spinach Plants Using NIR Spectroscopy. Comput. Electron. Agric. 2018, 155, 446–452. [Google Scholar] [CrossRef]
- Valverde-Miranda, D.; Díaz-Pérez, M.; Gómez-Galán, M.; Callejón-Ferre, Á.-J. Total Soluble Solids and Dry Matter of Cucumber as Indicators of Shelf Life. Postharvest Biol. Technol. 2021, 180, 111603. [Google Scholar] [CrossRef]
- Kou, L.; Yang, T.; Liu, X.; Luo, Y. Effects of Pre- and Postharvest Calcium Treatments on Shelf Life and Postharvest Quality of Broccoli Microgreens. HortScience 2015, 50, 1801–1808. [Google Scholar] [CrossRef]
- Shilpashree, N.; Devi, S.N.; Manjunathagowda, D.C.; Muddappa, A.; Abdelmohsen, S.A.M.; Tamam, N.; Elansary, H.O.; El-Abedin, T.K.Z.; Abdelbacki, A.M.M.; Janhavi, V. Morphological Characterization, Variability and Diversity among Vegetable Soybean (Glycine max L.) Genotypes. Plants 2021, 10, 671. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.R.; Rhee, J.; Choi, C.S.; Jo, J.S.; Shin, Y.K.; Song, J.W.; Kim, S.-H.; Lee, J.G. Morphological and Biochemical Variation in Carrot Genetic Resources Grown under Open Field Conditions: The Selection of Functional Genotypes for a Breeding Program. Agronomy 2022, 12, 553. [Google Scholar] [CrossRef]
- Giuliani, A.; Cerretani, L.; Cichelli, A. Colors: Properties and Determination of Natural Pigments. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 273–283. [Google Scholar]
- Parry, C.; Blonquist, J.M.; Bugbee, B. In Situ Measurement of Leaf Chlorophyll Concentration: Analysis of the Optical/Absolute Relationship. Plant Cell Environ. 2014, 37, 2508–2520. [Google Scholar] [CrossRef]
Yield | Developmental Stage (2) | Coverage (3) | Uniformity (4) | Hypocotyl Length | Microgreens Height | True Leaf Length | Leaf Area | Dry Matter | Chlorophyll Content | |
---|---|---|---|---|---|---|---|---|---|---|
(kg·m−2) | (cm) | (cm) | (cm) | (cm2·plant−1) | (g·100 g−1 FW) | (μmol·m−2) | ||||
Species | ||||||||||
Kale | 2.2 ± 0.3 a | 2.9 ± 0.3 | 2.1 ± 0.3 | 2.9 ± 0.3 | 5.2 ± 1.1 a | 8.7 ± 2.8 a | 1.2 ± 0.0 | 2.63 ± 0.18 a | 5.2 ± 0.4 b | 239.6 ± 29.0 a |
Rapini | 1.8 ± 0.3 b | 3.0 ± 0.0 | 2.0 ± 0.0 | 3.0 ± 0.0 | 5.5 ± 0.5 a | 8.3 ± 7.5 a | 1.9 ± 0.0 | 2.03 ± 0.10 b | 5.7 ± 0.5 a | 188.8 ± 40.7 b |
Cress | 1.3 ± 0.2 c | 3.0 ± 0.0 | 2.0 ± 0.0 | 3.0 ± 0.0 | 4.3 ± 1.0 b | 6.6 ± 4.8 b | 2.2 ± 0.0 | 1.03 ± 0.31 c | 5.1 ± 0.2 b | 80.6 ± 29.4 c |
Density (seeds·cm−2) | ||||||||||
3.5 | 1.6 ± 0.3 b | 3.0 ± 0.0 | 2.0 ± 0.0 | 3.0 ± 0.0 | 4.9 ± 1.2 | 7.7 ± 1.1 | 1.6 ± 0.0 | 1.93 ± 0.70 | 5.4 ± 0.4 | 162.1 ± 75.7 |
4.0 | 1.8 ± 0.4 ab | 3.0 ± 0.3 | 2.0 ± 0.3 | 3.0 ± 0.3 | 5.1 ± 0.9 | 7.9 ± 1.3 | 2.2 ± 0.0 | 1.91 ± 0.74 | 5.3 ± 0.3 | 174.3 ± 61.2 |
4.5 | 1.9 ± 0.3 a | 2.9 ± 0.0 | 2.1 ± 0.0 | 2.9 ± 0.0 | 5.1 ± 1.2 | 7.9 ± 1.1 | 1.5 ± 0.0 | 1.86 ± 0.80 | 5.2 ± 0.3 | 172.6 ± 62.6 |
Significance (1) | ||||||||||
Species | *** | ns | ns | ns | *** | *** | ns | *** | *** | *** |
Density | * | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Species × Density | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Yield | Developmental Stage (2) | Coverage (3) | Uniformity (4) | Microgreens Height | True Leaf Length | Dry Matter | |
---|---|---|---|---|---|---|---|
(kg·m−2) | (cm) | (cm) | (g·100 g−1 FW) | ||||
Harvest (days after sowing) | |||||||
11 | 1.8 ± 0.4 | 2.3 ± 0.5 | 2.4 ± 0.5 | 1.5 ± 0.5 | 7.5 ± 0.8 | 0.4 ± 0.2 | 5.6 ± 0.3 |
14 | 2.8 ± 0.4 | 3.0 ± 0.0 | 2.0 ± 0.0 | 1.3 ± 0.5 | 10.0 ± 0.7 | 1.1 ± 0.2 | 5.4 ± 0.3 |
Landrace | |||||||
Cima grande | 2.5 ± 0.6 | 2.7 ± 0.5 | 2.2 ± 0.4 | 1.3 ± 0.5 | 8.9 ± 1.1 | 0.8 ± 0.4 | 5.5 ± 0.3 |
Fasanese | 2.1 ± 0.7 | 2.6 ± 0.5 | 2.2 ± 0.4 | 1.5 ± 0.5 | 8.5 ± 1.8 | 0.7 ± 0.4 | 5.4 ± 0.2 |
Density (seeds·cm−2) | |||||||
3 | 2.0 ± 0.7 b | 2.8 ± 0.4 a | 2.0 ± 0.0 b | 1.5 ± 0.5 | 8.6 ± 1.7 | 0.9 ± 0.4 a | 5.6 ± 0.3 |
4 | 2.2 ± 0.6 b | 2.7 ± 0.5 ab | 2.2 ± 0.4 b | 1.4 ± 0.5 | 8.8 ± 1.4 | 0.8 ± 0.4 a | 5.5 ± 0.3 |
5 | 2.6 ± 0.6 a | 2.5 ± 0.5 b | 2.5 ± 0.5 a | 1.3 ± 0.5 | 8.9 ± 1.5 | 0.6 ± 0.4 b | 5.4 ± 0.2 |
Significance (1) | |||||||
Harvest | ** | * | ns | ns | ** | ** | * |
Genotype | *** | ns | ns | ns | ns | ns | ns |
Density | *** | * | *** | ns | ns | ** | ns |
Harvest × Landrace | ns | ns | ns | ns | ** | ns | * |
Harvest × Density | ns | * | ns | ns | ns | ns | ns |
Landrace × Density | ns | ns | ns | ns | ns | ns | ns |
Harvest × Landrace × Density | ns | ns | ns | ns | ns | ns | ns |
Cl− | H2PO4− | SO42− | NO3− | |
---|---|---|---|---|
(g·100 g−1 DW) | (mg·kg−1 FW) | |||
Harvest (days after sowing) | ||||
11 | 2.67 ± 0.42 | 1.12 ± 0.11 | 3.10 ± 0.64 | 3200 ± 721 |
14 | 3.23 ± 0.32 | 1.79 ± 0.62 | 3.08 ± 0.31 | 3475 ± 416 |
Landrace | ||||
Cima Grande | 2.73 ± 0.45 | 1.68 ± 0.62 | 3.07 ± 0.67 | 3076 ± 567 |
Fasanese | 3.17 ± 0.38 | 1.23 ± 0.38 | 3.12 ± 0.25 | 3600 ± 515 |
Density (seeds·cm−2) | ||||
3 | 3.01 ± 0.47 | 1.30 ± 0.58 | 3.19 ± 0.75 | 3715 ± 570 a |
4 | 2.92 ± 0.46 | 1.46 ± 0.54 | 3.03 ± 0.34 | 3176 ± 589 b |
5 | 2.93 ± 0.51 | 1.61 ± 0.54 | 3.06 ± 0.31 | 3123 ± 476 b |
Significance (1) | ||||
Harvest | ** | * | ns | ns |
Landrace | *** | *** | ns | ** |
Density | ns | ns | ns | ** |
Harvest × Landrace | ns | *** | ns | ns |
Harvest × Density | ns | ns | ns | ns |
Landrace × Density | ns | ns | ns | ns |
Harvest × Landrace × Density | ns | ns | ns | ns |
Yield | Developmental Stage (2) | Coverage (3) | Uniformity (4) | True Leaf Length | |
---|---|---|---|---|---|
(kg·m−2) | (cm) | ||||
Landrace | |||||
Barese | 2.5 ± 0.4 | 1.3 ± 0.0 | 2.0 ± 0.5 | 1.4 ± 0.4 | 0.4 ± 0.3 |
Altamura | 1.8 ± 0.2 | 3.0 ± 0.5 | 1.4 ± 0.0 | 1.2 ± 0.5 | 1.3 ± 0.1 |
Density (seeds·cm−2) | |||||
3 | 1.9 ± 0.5 b | 2.2 ± 1.0 | 1.5 ± 0.5 | 1.7 ± 0.5 a | 0.8 ± 0.4 |
4 | 2.1 ± 0.4 ab | 2.2 ± 1.0 | 1.8 ± 0.4 | 1.3 ± 0.5 ab | 0.8 ± 0.6 |
5 | 2.4 ± 0.5 a | 2.2 ± 1.0 | 1.8 ± 0.4 | 1.0 ± 0.0 b | 0.9 ± 0.6 |
Significance (1) | |||||
Landrace | *** | *** | ** | ns | *** |
Density | * | ns | ns | * | ns |
Landrace × Density | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Signore, A.; Somma, A.; Leoni, B.; Santamaria, P. Optimising Sowing Density for Microgreens Production in Rapini, Kale and Cress. Horticulturae 2024, 10, 274. https://doi.org/10.3390/horticulturae10030274
Signore A, Somma A, Leoni B, Santamaria P. Optimising Sowing Density for Microgreens Production in Rapini, Kale and Cress. Horticulturae. 2024; 10(3):274. https://doi.org/10.3390/horticulturae10030274
Chicago/Turabian StyleSignore, Angelo, Annalisa Somma, Beniamino Leoni, and Pietro Santamaria. 2024. "Optimising Sowing Density for Microgreens Production in Rapini, Kale and Cress" Horticulturae 10, no. 3: 274. https://doi.org/10.3390/horticulturae10030274
APA StyleSignore, A., Somma, A., Leoni, B., & Santamaria, P. (2024). Optimising Sowing Density for Microgreens Production in Rapini, Kale and Cress. Horticulturae, 10(3), 274. https://doi.org/10.3390/horticulturae10030274