Effects of Ozone Treatment on Postharvest Mucor Rot of Codonopsis pilosula Caused by Actinomucor elegans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Spore Suspension
2.2.2. Ozone Treatment Methods
2.2.3. Assay of Disease Incidence of C. pilosula during Different Storage Periods
- DI: Disease index;
- P1: Diseased plants at each level;
- P2: Total number of plants;
- L1: Number of plants at that level;
- L2: Highest disease level.
- DR: Disease incidence;
- P3: Diseased plants investigated;
- P4: Total plants investigated.
2.2.4. Assay of Weight Loss of C. pilosula during Different Storage Periods
- WLR: Weight loss rate of ginseng;
- W1: Initial weight of ginseng;
- W2: Weight of ginseng at storage time node.
2.2.5. Analysis of the Main Active Ingredients of C. pilosula Inoculated with A. elegans during Different Storage Periods
2.2.6. Analysis of ROS Metabolism in the C. pilosula Inoculated with A. elegans during Different Storage Periods
Determination of Superoxide Anion and Hydrogen Peroxide Levels
Analysis of Enzymatic Activities Related to Reactive Oxygen Species Metabolism
2.2.7. Determination of CMP
2.2.8. Determination of MDA Content
- V: The volume of the extract solution;
- W: Fresh weight of C. pilosula tissue.
2.2.9. Data Collection and Analysis
3. Results
3.1. Effect of Ozone Treatment on the Morbidity and Disease Development in the Inoculated C. pilosula during Different Storage Periods
3.2. The Impact of Ozone Treatment on the Contents of the Main Active Ingredients in C. pilosula
3.3. The Impact of Ozone Treatment on the ROS Metabolism in C. pilosula
3.3.1. The Impact of Ozone Treatment on the Content of O2−. and H2O2 in C. pilosula
3.3.2. The Impact of Ozone Treatment on the ROS Metabolism-Related Enzyme Activity in C. pilosula
The Impact of Ozone Treatment on the Activities of NOX and SOD in C. pilosula
3.3.3. The Impact of Ozone Treatment on the Activities of CAT and POD in C. pilosula
3.4. The Impact of Ozone Treatment on the Cell Membrane Permeability and MDA Content of C. pilosula
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, Y.E.; Lee, J.S.; Kim, H.M.; Ahn, J.-H.; Jung, I.H.; Ryu, J.H.; Choi, J.-H.; Jang, D.S. Chemical Constituents of the Roots of Codonopsis lanceolata. Arch. Pharm. Res. 2018, 41, 1082–1091. [Google Scholar] [CrossRef]
- Gao, S.-M.; Liu, J.-S.; Wang, M.; Cao, T.-T.; Qi, Y.-D.; Zhang, B.-G.; Sun, X.-B.; Liu, H.-T.; Xiao, P.-G. Traditional Uses, Phytochemistry, Pharmacology and Toxicology of Codonopsis: A Review. J. Ethnopharmacol. 2018, 219, 50–70. [Google Scholar] [CrossRef]
- Park, H.-Y.; Shin, J.-H.; Boo, H.-O.; Gorinstein, S.; Ahn, Y.G. Discrimination of Platycodon Grandiflorum and Codonopsis Lanceolata Using Gas Chromatography-Mass Spectrometry-Based Metabolomics Approach. Talanta 2019, 192, 486–491. [Google Scholar] [CrossRef]
- Xi, J.; Yang, D.; Xue, H.; Liu, Z.; Bi, Y.; Zhang, Y.; Yang, X.; Shang, S. Isolation of the Main Pathogens Causing Postharvest Disease in Fresh Angelica Sinensis during Different Storage Stages and Impacts of Ozone Treatment on Disease Development and Mycotoxin Production. Toxins 2023, 15, 154. [Google Scholar] [CrossRef]
- Jia, W.; Bi, Q.; Jiang, S.; Tao, J.; Liu, L.; Yue, H.; Zhao, X. Hypoglycemic Activity of Codonopsis pilosula (Franch.) Nannf. in Vitro and in Vivo and Its Chemical Composition Identification by UPLC-Triple-TOF-MS/MS. Food Funct. 2022, 13, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-H.; Jang, D.-S.; Choi, J.-H. Lancemaside A Isolated from the Root of Codonopsis lanceolata Inhibits Ovarian Cancer Cell Invasion via the Reactive Oxygen Species (ROS)-Mediated P38 Pathway. Am. J. Chin. Med. 2020, 48, 1021–1034. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, A.; Lee, R.; Munfus-McCray, D.; Kwiatkowski, N.; Subramanian, A.; Neofytos, D.; Carroll, K.; Zhang, S.X. Actinomucor elegans as an Emerging Cause of Mucormycosis. J. Clin. Microbiol. 2012, 50, 1092–1095. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xing, M.; Chen, T.; Tian, S.; Li, B. Effects and Mechanisms of Plant Bioactive Compounds in Preventing Fungal Spoilage and Mycotoxin Contamination in Postharvest Fruits: A Review. Food Chem. 2023, 415, 135787. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liang, Y.; Constantine, U.; Yang, L.; Yuan, T.; Zhao, H.; Zhou, Q.; Zhang, Y.; Wang, R. First Report of Root Rot Caused by the Fusarium oxysporum Species Complex on Codonopsis pilosula in China. Plant Dis. 2021, 105, 3742. [Google Scholar] [CrossRef] [PubMed]
- Zapałowska, A.; Matłok, N.; Zardzewiały, M.; Piechowiak, T.; Balawejder, M. Effect of Ozone treatment on the Quality of Sea Buckthorn (Hippophae rhamnoides L.). Plants 2021, 10, 847. [Google Scholar] [CrossRef] [PubMed]
- Garca-Martn, J.-F.; Olmo, M.; Garca, J.-M. Effect of ozone treatment on postharvest disease and quality of different citrus varieties at laboratory and at industrial facility. Postharvest Biol. Technol. 2017, 137, 77–85. [Google Scholar] [CrossRef]
- Boonkorn, P.; Gemma, H.; Sugaya, S.; Setha, S.; Uthaibutra, J.; Whangchai, K. Impact of high-dose, short periods of ozone exposure on green mold and antioxidant enzyme activity of tangerine fruit. Postharvest Biol. Technol. 2012, 67, 25–28. [Google Scholar] [CrossRef]
- Liang, Y.-Z.; Ji, L.-L.; Chen, C.-K.; Dong, C.-H.; Wang, C.-R. Effects of ozone treatment on the storage quality of post-harvest tomato. Int. J. Food Eng. 2018, 14, 20180012. [Google Scholar] [CrossRef]
- Lv, B.; Yang, X.; Xue, H.; Nan, M.; Zhang, Y.; Liu, Z.; Bi, Y.; Shang, S. Isolation of Main Pathogens Causing Postharvest Disease in Fresh Codonopsis pilosula during Different Storage Stages and Ozone Control against Disease and Mycotoxin Accumulation. J. Fungi 2023, 9, 146. [Google Scholar] [CrossRef]
- Li, L.; Xue, H.; Bi, Y.; Zhang, R.; Kouasseu, C.J.; Liu, Q.; Nan, M.; Pu, L.; Prusky, D. Ozone Treatment Inhibits Dry Rot Development and Diacetoxyscirpenol Accumulation in Inoculated Potato Tuber by Influencing Growth of Fusarium sulphureum and Ergosterol Biosynthesis. Postharvest Biol. Technol. 2022, 185, 111796. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, Y.; Bi, Y.; Ge, Y.; Wang, Y.; Fan, C.; Li, D.; Deng, H. Postharvest BTH Treatment Induced Disease Resistance and Enhanced Reactive Oxygen Species Metabolism in Muskmelon (Cucumis melo L. ) Fruit. Eur. Food Res. Technol. 2012, 234, 963–971. [Google Scholar] [CrossRef]
- Fan, M.-C.; Li, W.-X.; Hu, X.-L. Effect of micro-vacuum storage on active oxygen metabolism, internal browning and related enzyme activities in Laiyang pear (Pyrus bretschneideri Reld). LWT—Food Sci. Technol. 2016, 72, 467–474. [Google Scholar] [CrossRef]
- Venisse, J.; Gullner, S.-G. Brisset M N. Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiol. 2001, 125, 2164–2172. [Google Scholar] [CrossRef] [PubMed]
- Lester, G.-E.; Bruton, B.-D. Relationship of netted muskmelon fruit water loss to postharvest storage life. J. Am. Soc. Hortic. Sci. 1986, 111, 727–731. [Google Scholar] [CrossRef]
- Savi, G.-D.; Scussel, V.-M. Effects of ozone gas exposure on toxigenic fungi species from Fusarium, Aspergillus, and Penicillium Genera. J. Int. Ozone Assoc. 2014, 36, 144–152. [Google Scholar] [CrossRef]
- Simla, S.; Boontang, B.; Harakotr, B. Anthocyanin content, total phenolic content, and antiradical capacity in different ear components of purple waxy corn at two maturation stages. Aust. J. Crop Sci. 2016, 10, 675–682. [Google Scholar] [CrossRef]
- Liu, J.; Chang, M.-C.; Meng, J.-L.; Liu, J.-Y.; Cheng, Y.-F.; Feng, C.-P. Effect of ozone treatment on the quality and enzyme activity of Lentinus edodes during cold storage. J. Food Process. Preserv. 2020, 44, e14557. [Google Scholar] [CrossRef]
- Tomasz, P.; Bartosz, S.; Maciej, B. Ozone treatment induces changes in antioxidative defense system in blueberry fruit during storage. Food Bioprocess Technol. 2020, 13, 1240–1245. [Google Scholar]
Time | A% | B% |
---|---|---|
0 | 10 | 90 |
5 | 25 | 75 |
8 | 45 | 55 |
15 | 75 | 25 |
22 | 85 | 15 |
25 | 90 | 10 |
28 | 10 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Chen, J.; Liu, Z.; Shang, S.; Xue, H. Effects of Ozone Treatment on Postharvest Mucor Rot of Codonopsis pilosula Caused by Actinomucor elegans. Horticulturae 2024, 10, 185. https://doi.org/10.3390/horticulturae10020185
Zhang D, Chen J, Liu Z, Shang S, Xue H. Effects of Ozone Treatment on Postharvest Mucor Rot of Codonopsis pilosula Caused by Actinomucor elegans. Horticulturae. 2024; 10(2):185. https://doi.org/10.3390/horticulturae10020185
Chicago/Turabian StyleZhang, Dan, Jiangyang Chen, Zhiguang Liu, Suqin Shang, and Huali Xue. 2024. "Effects of Ozone Treatment on Postharvest Mucor Rot of Codonopsis pilosula Caused by Actinomucor elegans" Horticulturae 10, no. 2: 185. https://doi.org/10.3390/horticulturae10020185
APA StyleZhang, D., Chen, J., Liu, Z., Shang, S., & Xue, H. (2024). Effects of Ozone Treatment on Postharvest Mucor Rot of Codonopsis pilosula Caused by Actinomucor elegans. Horticulturae, 10(2), 185. https://doi.org/10.3390/horticulturae10020185