Looking in the Scaffold 22 Hotspot for Differentially Regulated Genes Genomic Sequence Variation in Romanian Blueberry Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. DNA Extraction
2.3. Sequencing, Computational Data Processing, and Sequencing Analysis
2.4. Scaffold 22 Sequence Analysis
3. Results
3.1. Genome Sequencing Data Analysis
3.1.1. Sequencing Data Quality Control
3.1.2. Mapping with the Reference Genome
3.1.3. SNP Distribution and Mutation Frequency
3.1.4. Insertions/Deletions Distribution
3.1.5. Structural Variations Detection and Annotation
3.1.6. Copy Number Variations Detection and Annotation
3.2. Scaffold 22 Sequence Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bassil, L.J.R.; James, F.; Hancock, N.V. Blueberry. In Genetics, Genomics and Breeding of Berries; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-0-429-06248-3. [Google Scholar]
- Lobos, G.A.; Hancock, J.F. Breeding Blueberries for a Changing Global Environment: A Review. Front. Plant Sci. 2015, 6, 782. [Google Scholar] [CrossRef]
- Asănică, A.; Delian, E.; Tudor, V.; Teodorescu, R.I. Physiological Activity of Some Blueberry Varieties in Protected and Outside Conditions. AgroLife Sci. J. 2017, 6, 31–39. [Google Scholar]
- Mladin, P.; Mladin, G.; Ancu, I.; Chitu, V. Results of the Blueberry Breeding at the Research Institute for Fruit Growing Pitești. Bull. UASVM Hortic. 2008, 65, 300–303. [Google Scholar]
- Popescu, D.; Asănică, A.; Tudor, V. Start of the Blueberry Breeding Program at the University of Agronomic Sciences and Veterinary Medicine of Bucharest. Sci. Pap. Ser. B Hortic. 2021, LXV, 50–55. [Google Scholar]
- Asănică, A. Sensorial Evaluation of 26 Highbush Blueberry Varieties in Romania. Sci. Pap. Ser. B Hortic. 2018, 62, 181–186. [Google Scholar]
- Williams, C. A Blueberry a Day…. New Sci. 2016, 231, 26–31. [Google Scholar] [CrossRef]
- Krishna, P.; Pandey, G.; Thomas, R.; Parks, S. Improving Blueberry Fruit Nutritional Quality through Physiological and Genetic Interventions: A Review of Current Research and Future Directions. Antioxidants 2023, 12, 810. [Google Scholar] [CrossRef]
- Bouyahya, A.; Omari, N.E.; EL Hachlafi, N.; Jemly, M.E.; Hakkour, M.; Balahbib, A.; El Menyiy, N.; Bakrim, S.; Naceiri Mrabti, H.; Khouchlaa, A.; et al. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022, 27, 3286. [Google Scholar] [CrossRef]
- Wang, Y.; Gallegos, J.L.; Haskell-Ramsay, C.; Lodge, J.K. Effects of Chronic Consumption of Specific Fruit (Berries, Citrus and Cherries) on CVD Risk Factors: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Eur. J. Nutr. 2021, 60, 615–639. [Google Scholar] [CrossRef]
- Hameed, A.; Galli, M.; Adamska-Patruno, E.; Krętowski, A.; Ciborowski, M. Select Polyphenol-Rich Berry Consumption to Defer or Deter Diabetes and Diabetes-Related Complications. Nutrients 2020, 12, 2538. [Google Scholar] [CrossRef]
- Afrin, S.; Giampieri, F.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Varela-López, A.; Quiles, J.L.; Mezzetti, B.; Battino, M. Chemopreventive and Therapeutic Effects of Edible Berries: A Focus on Colon Cancer Prevention and Treatment. Molecules 2016, 21, 169. [Google Scholar] [CrossRef] [PubMed]
- Tamada, T. Current Trends of Blueberry Culture in Japan. Acta Hortic. 2009, 810, 109–116. [Google Scholar] [CrossRef]
- Patel, N. Recent Trends in Australasian Blueberry Production. Acta Hortic. 1997, 446, 53–58. [Google Scholar] [CrossRef]
- Pliszka, K. Overview on Vaccinium Production in Europe. Acta Hortic. 1997, 446, 49–52. [Google Scholar] [CrossRef]
- Asănică, A.; Bădescu, A.; Bădescu, C. Blueberries in Romania: Past, Present and Future Perspective. Acta Hortic. 2017, 1180, 293–298. [Google Scholar] [CrossRef]
- Varshney, R.K.; Nayak, S.N.; May, G.D.; Jackson, S.A. Next-Generation Sequencing Technologies and Their Implications for Crop Genetics and Breeding. Trends Biotechnol. 2009, 27, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Satya, P. Next Generation Sequencing Technologies for next Generation Plant Breeding. Front. Plant Sci. 2014, 5, 367. [Google Scholar] [CrossRef]
- Barabaschi, D.; Tondelli, A.; Desiderio, F.; Volante, A.; Vaccino, P.; Valè, G.; Cattivelli, L. Next Generation Breeding. Plant Sci. 2016, 242, 3–13. [Google Scholar] [CrossRef]
- Hu, H.; Scheben, A.; Edwards, D. Advances in Integrating Genomics and Bioinformatics in the Plant Breeding Pipeline. Agriculture 2018, 8, 75. [Google Scholar] [CrossRef]
- Kilian, B.; Graner, A. NGS Technologies for Analyzing Germplasm Diversity in Genebanks. Brief. Funct. Genom. 2012, 11, 38–50. [Google Scholar] [CrossRef]
- Kumawat, S.; Raturi, G.; Dhiman, P.; Sudhakarn, S.; Rajora, N.; Thakral, V.; Yadav, H.; Padalkar, G.; Sharma, Y.; Rachappanavar, V.; et al. Opportunity and Challenges for Whole-Genome Resequencing-Based Genotyping in Plants. In Genotyping by Sequencing for Crop Improvement; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 38–51. ISBN 978-1-119-74568-6. [Google Scholar]
- Xu, X.; Bai, G. Whole-Genome Resequencing: Changing the Paradigms of SNP Detection, Molecular Mapping and Gene Discovery. Mol. Breed. 2015, 35, 33. [Google Scholar] [CrossRef]
- Pasaniuc, B.; Rohland, N.; McLaren, P.J.; Garimella, K.; Zaitlen, N.; Li, H.; Gupta, N.; Neale, B.M.; Daly, M.J.; Sklar, P.; et al. Extremely Low-Coverage Sequencing and Imputation Increases Power for Genome-Wide Association Studies. Nat. Genet. 2012, 44, 631–635. [Google Scholar] [CrossRef]
- Fairley, S.; Lowy-Gallego, E.; Perry, E.; Flicek, P. The International Genome Sample Resource (IGSR) Collection of Open Human Genomic Variation Resources. Nucleic Acids Res. 2020, 48, D941–D947. [Google Scholar] [CrossRef]
- Kersey, P.J. Plant Genome Sequences: Past, Present, Future. Curr. Opin. Plant Biol. 2019, 48, 1–8. [Google Scholar] [CrossRef]
- Straub, S.C.; Fishbein, M.; Livshultz, T.; Foster, Z.; Parks, M.; Weitemier, K.; Cronn, R.C.; Liston, A. Building a Model: Developing Genomic Resources for Common Milkweed (Asclepias syriaca) with Low Coverage Genome Sequencing. BMC Genom. 2011, 12, 211. [Google Scholar] [CrossRef]
- Lee, H.-O.; Choi, J.-W.; Baek, J.-H.; Oh, J.-H.; Lee, S.-C.; Kim, C.-K. Assembly of the Mitochondrial Genome in the Campanulaceae Family Using Illumina Low-Coverage Sequencing. Genes 2018, 9, 383. [Google Scholar] [CrossRef]
- Keilwagen, J.; Lehnert, H.; Badaeva, E.D.; Özkan, H.; Sharma, S.; Civáň, P.; Kilian, B. Finding Needles in a Haystack: Identification of Inter-Specific Introgressions in Wheat Genebank Collections Using Low-Coverage Sequencing Data. Front. Plant Sci. 2023, 14, 1166854. [Google Scholar] [CrossRef]
- Pamponét, V.C.C.; Souza, M.M.; Silva, G.S.; Micheli, F.; de Melo, C.A.F.; de Oliveira, S.G.; Costa, E.A.; Corrêa, R.X. Low Coverage Sequencing for Repetitive DNA Analysis in Passiflora Edulis Sims: Citogenomic Characterization of Transposable Elements and Satellite DNA. BMC Genom. 2019, 20, 262. [Google Scholar] [CrossRef]
- McCombie, W.R.; McPherson, J.D.; Mardis, E.R. Next-Generation Sequencing Technologies. Cold Spring Harb Perspect. Med. 2019, 9, a036798. [Google Scholar] [CrossRef]
- Unamba, C.I.N.; Nag, A.; Sharma, R.K. Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants. Front. Plant Sci. 2015, 6, 1074. [Google Scholar] [CrossRef]
- Kim, K.D.; Kang, Y.; Kim, C. Application of Genomic Big Data in Plant Breeding: Past, Present, and Future. Plants 2020, 9, 1454. [Google Scholar] [CrossRef]
- Ștefan, N.; Glăman, G.; Braniște, N.; Stănică, F.; Duțu, I.; Coman, M. Pomologia României Vol. IX—Soiuri Noi de Măr, Păr, Gutui, Cireș, Vișin, Prun și Cais Create în România; CERES: Bucharest, Romania, 2018; ISBN 978-973-40-1125-4. [Google Scholar]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows–Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Chen, K.; Wallis, J.W.; McLellan, M.D.; Larson, D.E.; Kalicki, J.M.; Pohl, C.S.; McGrath, S.D.; Wendl, M.C.; Zhang, Q.; Locke, D.P.; et al. BreakDancer: An Algorithm for High-Resolution Mapping of Genomic Structural Variation. Nat. Methods 2009, 6, 677–681. [Google Scholar] [CrossRef]
- Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An Approach to Discover, Genotype, and Characterize Typical and Atypical CNVs from Family and Population Genome Sequencing. Genome Res. 2011, 21, 974–984. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Colle, M.; Leisner, C.P.; Wai, C.M.; Ou, S.; Bird, K.A.; Wang, J.; Wisecaver, J.H.; Yocca, A.E.; Alger, E.I.; Tang, H.; et al. Haplotype-Phased Genome and Evolution of Phytonutrient Pathways of Tetraploid Blueberry. GigaScience 2019, 8, giz012. [Google Scholar] [CrossRef]
- Kuznetsov, A.; Bollin, C.J. NCBI Genome Workbench: Desktop Software for Comparative Genomics, Visualization, and GenBank Data Submission. In Multiple Sequence Alignment: Methods and Protocols; Katoh, K., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2021; pp. 261–295. ISBN 978-1-07-161036-7. [Google Scholar]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef]
- Bian, Y.; Ballington, J.; Raja, A.; Brouwer, C.; Reid, R.; Burke, M.; Wang, X.; Rowland, L.J.; Bassil, N.; Brown, A. Patterns of Simple Sequence Repeats in Cultivated Blueberries (Vaccinium Section Cyanococcus spp.) and Their Use in Revealing Genetic Diversity and Population Structure. Mol. Breed. 2014, 34, 675–689. [Google Scholar] [CrossRef]
- Yocca, A.E.; Platts, A.; Alger, E.; Teresi, S.; Mengist, M.F.; Benevenuto, J.; Ferrão, L.F.V.; Jacobs, M.; Babinski, M.; Magallanes-Lundback, M.; et al. Blueberry and Cranberry Pangenomes as a Resource for Future Genetic Studies and Breeding Efforts. Hortic. Res. 2023, 10, uhad202. [Google Scholar] [CrossRef]
- Udriște, A.-A.; Iordachescu, M.; Ciceoi, R.; Bădulescu, L. Next-Generation Sequencing of Local Romanian Tomato Varieties and Bioinformatics Analysis of the Ve Locus. Int. J. Mol. Sci. 2022, 23, 9750. [Google Scholar] [CrossRef]
- Edwards, D.; Forster, J.W.; Chagné, D.; Batley, J. What Are SNPs? In Association Mapping in Plants; Oraguzie, N.C., Rikkerink, E.H.A., Gardiner, S.E., De Silva, H.N., Eds.; Springer: New York, NY, USA, 2007; pp. 41–52. ISBN 978-0-387-36011-9. [Google Scholar]
- Yuan, Y.; Bayer, P.E.; Batley, J.; Edwards, D. Current Status of Structural Variation Studies in Plants. Plant Biotechnol. J. 2021, 19, 2153–2163. [Google Scholar] [CrossRef]
- Sim, S.-C.; Durstewitz, G.; Plieske, J.; Wieseke, R.; Ganal, M.W.; Deynze, A.V.; Hamilton, J.P.; Buell, C.R.; Causse, M.; Wijeratne, S.; et al. Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato. PLoS ONE 2012, 7, e40563. [Google Scholar] [CrossRef]
- Aguilar, M.; Prieto, P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. Front. Plant Sci. 2021, 12, 672489. [Google Scholar] [CrossRef]
- Gupta, V.; Estrada, A.D.; Blakley, I.; Reid, R.; Patel, K.; Meyer, M.D.; Andersen, S.U.; Brown, A.F.; Lila, M.A.; Loraine, A.E. RNA-Seq Analysis and Annotation of a Draft Blueberry Genome Assembly Identifies Candidate Genes Involved in Fruit Ripening, Biosynthesis of Bioactive Compounds, and Stage-Specific Alternative Splicing. GigaScience 2015, 4, 5. [Google Scholar] [CrossRef]
- Wu, C.; Deng, C.; Hilario, E.; Albert, N.W.; Lafferty, D.; Grierson, E.R.P.; Plunkett, B.J.; Elborough, C.; Saei, A.; Günther, C.S.; et al. A Chromosome-Scale Assembly of the Bilberry Genome Identifies a Complex Locus Controlling Berry Anthocyanin Composition. Mol. Ecol. Resour. 2022, 22, 345–360. [Google Scholar] [CrossRef]
- Cappai, F.; Benevenuto, J.; Ferrão, L.F.V.; Munoz, P. Molecular and Genetic Bases of Fruit Firmness Variation in Blueberry—A Review. Agronomy 2018, 8, 174. [Google Scholar] [CrossRef]
- Ferrão, L.F.V.; Johnson, T.S.; Benevenuto, J.; Edger, P.P.; Colquhoun, T.A.; Munoz, P.R. Genome-Wide Association of Volatiles Reveals Candidate Loci for Blueberry Flavor. New Phytol. 2020, 226, 1725–1737. [Google Scholar] [CrossRef]
- Wein, M.; Lavid, N.; Lunkenbein, S.; Lewinsohn, E.; Schwab, W.; Kaldenhoff, R. Isolation, Cloning and Expression of a Multifunctional O-Methyltransferase Capable of Forming 2,5-Dimethyl-4-Methoxy-3(2H)-Furanone, One of the Key Aroma Compounds in Strawberry Fruits. Plant J. 2002, 31, 755–765. [Google Scholar] [CrossRef]
- Keegstra, K.; Raikhel, N. Plant Glycosyltransferases. Curr. Opin. Plant Biol. 2001, 4, 219–224. [Google Scholar] [CrossRef]
- Sun, J.; Sun, Y.; Ahmed, R.I.; Ren, A.; Xie, M. Research Progress on Plant RING-Finger Proteins. Genes 2019, 10, 973. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Cao, H.; Pan, L.; Niu, L.; Wei, B.; Cui, G.; Wang, L.; Yao, J.-L.; Zeng, W.; Wang, Z. Two Loss-of-Function Alleles of the Glutathione S-Transferase (GST) Gene Cause Anthocyanin Deficiency in Flower and Fruit Skin of Peach (Prunus persica). Plant J. 2021, 107, 1320–1331. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, W.; Zhu, Y.; Allan, A.C.; Lin-Wang, K.; Xu, C. PpGST1, an Anthocyanin-Related Glutathione S-Transferase Gene, Is Essential for Fruit Coloration in Peach. Plant Biotechnol. J. 2020, 18, 1284–1295. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.-Y.; Li, Z.-H.; Zhang, Y.-X.; Chen, L.; Xiang, D.-Y.; Zhang, Y.-F. Two Pear Glutathione S-Transferases Genes Are Regulated during Fruit Development and Involved in Response to Salicylic Acid, Auxin, and Glucose Signaling. PLoS ONE 2014, 9, e89926. [Google Scholar] [CrossRef]
- Wang, L.; Qian, M.; Wang, R.; Wang, L.; Zhang, S. Characterization of the Glutathione S-Transferase (GST) Gene Family in Pyrus Bretschneideri and Their Expression Pattern upon Superficial Scald Development. Plant Growth Regul. 2018, 86, 211–222. [Google Scholar] [CrossRef]
- Han, Y.; Fu, C.; Kuang, J.; Chen, J.; Lu, W. Two Banana Fruit Ripening-Related C2H2 Zinc Finger Proteins Are Transcriptional Repressors of Ethylene Biosynthetic Genes. Postharvest Biol. Technol. 2016, 116, 8–15. [Google Scholar] [CrossRef]
- Zhao, Y.-W.; Wang, C.-K.; Huang, X.-Y.; Hu, D.-G. Genome-Wide Analysis of the Glutathione S-Transferase (GST) Genes and Functional Identification of MdGSTU12 Reveals the Involvement in the Regulation of Anthocyanin Accumulation in Apple. Genes 2021, 12, 1733. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, L.; Zhang, J.; Zhang, Y.; Wang, Y.; Chen, Q.; Luo, Y.; Zhang, Y.; Li, M.; Wang, X.; et al. Identification of Anthocyanins-Related Glutathione S-Transferase (GST) Genes in the Genome of Cultivated Strawberry (Fragaria × Ananassa). Int. J. Mol. Sci. 2020, 21, 8708. [Google Scholar] [CrossRef]
- Kumar, S.; Banks, T.W.; Cloutier, S. SNP Discovery through Next-Generation Sequencing and Its Applications. Int. J. Plant Genom. 2012, 2012, 831460. [Google Scholar] [CrossRef]
- Weng, L.; Zhao, F.; Li, R.; Xu, C.; Chen, K.; Xiao, H. The Zinc Finger Transcription Factor SlZFP2 Negatively Regulates Abscisic Acid Biosynthesis and Fruit Ripening in Tomato. Plant Physiol. 2015, 167, 931–949. [Google Scholar] [CrossRef] [PubMed]
- Sicard, A.; Petit, J.; Mouras, A.; Chevalier, C.; Hernould, M. Meristem Activity during Flower and Ovule Development in Tomato Is Controlled by the Mini Zinc Finger Gene INHIBITOR OF MERISTEM ACTIVITY. Plant J. 2008, 55, 415–427. [Google Scholar] [CrossRef]
- Cao, Y.; Han, Y.; Meng, D.; Abdullah, M.; Li, D.; Jin, Q.; Lin, Y.; Cai, Y. Systematic Analysis and Comparison of the PHD-Finger Gene Family in Chinese Pear (Pyrus bretschneideri) and Its Role in Fruit Development. Funct. Integr. Genom. 2018, 18, 519–531. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, W.; He, H.; Nie, J.; Bie, B.; Zhao, J.; Ren, G.; Li, Y.; Zhang, D.; Pan, J.; et al. Tuberculate Fruit Gene Tu Encodes a C2H2 Zinc Finger Protein That Is Required for the Warty Fruit Phenotype in Cucumber (Cucumis sativus L.). Plant J. 2014, 78, 1034–1046. [Google Scholar] [CrossRef]
- Zhao, M.; Li, J.; Zhu, L.; Chang, P.; Li, L.; Zhang, L. Identification and Characterization of MYB-bHLH-WD40 Regulatory Complex Members Controlling Anthocyanidin Biosynthesis in Blueberry Fruits Development. Genes 2019, 10, 496. [Google Scholar] [CrossRef]
- Machemer, K.; Shaiman, O.; Salts, Y.; Shabtai, S.; Sobolev, I.; Belausov, E.; Grotewold, E.; Barg, R. Interplay of MYB Factors in Differential Cell Expansion, and Consequences for Tomato Fruit Development. Plant J. 2011, 68, 337–350. [Google Scholar] [CrossRef]
- Hassanin, A.A.; Eldomiaty, A.S.; Ujjan, J.A.; Al-Mushhin, A.A.M.; ALrashidi, A.A.; Saad, A.M.; Sakit ALHaithloul, H.A.; El-Saadony, M.T.; Awad, M.F.; Sitohy, M.Z. Assessment of the R2R3 MYB Gene Expression Profile during Tomato Fruit Development Using in Silico Analysis, Quantitative and Semi-Quantitative RT-PCR. Saudi J. Biol. Sci. 2022; in press. [Google Scholar] [CrossRef]
- Cao, Y.; Han, Y.; Li, D.; Lin, Y.; Cai, Y. MYB Transcription Factors in Chinese Pear (Pyrus bretschneideri Rehd.): Genome-Wide Identification, Classification, and Expression Profiling during Fruit Development. Front. Plant Sci. 2016, 7, 577. [Google Scholar] [CrossRef]
- Espley, R.V.; Hellens, R.P.; Putterill, J.; Stevenson, D.E.; Kutty-Amma, S.; Allan, A.C. Red Colouration in Apple Fruit Is Due to the Activity of the MYB Transcription Factor, MdMYB10. Plant J. 2007, 49, 414–427. [Google Scholar] [CrossRef]
- Vimolmangkang, S.; Han, Y.; Wei, G.; Korban, S.S. An Apple MYB Transcription Factor, MdMYB3, Is Involved in Regulation of Anthocyanin Biosynthesis and Flower Development. BMC Plant Biol. 2013, 13, 176. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Yang, Y.; Li, M.; Zhang, Y.; Liu, J.; Dong, J.; Li, J.; Butelli, E.; Xue, Z.; et al. The Control of Red Colour by a Family of MYB Transcription Factors in Octoploid Strawberry (Fragaria × ananassa) Fruits. Plant Biotechnol. J. 2020, 18, 1169–1184. [Google Scholar] [CrossRef]
- Ribone, P.A.; Capella, M.; Arce, A.L.; Chan, R.L. Chapter 22—What Do We Know about Homeodomain–Leucine Zipper I Transcription Factors? Functional and Biotechnological Considerations. In Plant Transcription Factors; Gonzalez, D.H., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 343–356. ISBN 978-0-12-800854-6. [Google Scholar]
- Sun, J.; Li, L.; Wang, P.; Zhang, S.; Wu, J. Genome-Wide Characterization, Evolution, and Expression Analysis of the Leucine-Rich Repeat Receptor-like Protein Kinase (LRR-RLK) Gene Family in Rosaceae Genomes. BMC Genom. 2017, 18, 763. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, L.; Qiu, D.; Cao, Z.; Wang, K.; Li, Z.; Wang, X.; Wang, J.; Ma, Q.; Cao, D.; et al. PSW1, an LRR Receptor Kinase, Regulates Pod Size in Peanut. Plant Biotechnol. J. 2023, 21, 2113–2124. [Google Scholar] [CrossRef]
- Subburaj, S.; Tu, L.; Lee, K.; Park, G.-S.; Lee, H.; Chun, J.-P.; Lim, Y.-P.; Park, M.-W.; McGregor, C.; Lee, G.-J. A Genome-Wide Analysis of the Pentatricopeptide Repeat (PPR) Gene Family and PPR-Derived Markers for Flesh Color in Watermelon (Citrullus lanatus). Genes 2020, 11, 1125. [Google Scholar] [CrossRef]
- Zhang, A.; Xiong, Y.; Liu, F.; Zhang, X. A Genome-Wide Analysis of the Pentatricopeptide Repeat Protein Gene Family in Two Kiwifruit Species with an Emphasis on the Role of RNA Editing in Pathogen Stress. Int. J. Mol. Sci. 2023, 24, 13700. [Google Scholar] [CrossRef]
- Barchenger, D.W.; Said, J.I.; Zhang, Y.; Song, M.; Ortega, F.A.; Ha, Y.; Kang, B.-C.; Bosland, P.W. Genome-Wide Identification of Chile Pepper Pentatricopeptide Repeat Domains Provides Insight into Fertility Restoration. J. Am. Soc. Hortic. Sci. 2018, 143, 418–429. [Google Scholar] [CrossRef]
- Jo, Y.D.; Ha, Y.; Lee, J.-H.; Park, M.; Bergsma, A.C.; Choi, H.-I.; Goritschnig, S.; Kloosterman, B.; van Dijk, P.J.; Choi, D.; et al. Fine Mapping of Restorer-of-Fertility in Pepper (Capsicum annuum L.) Identified a Candidate Gene Encoding a Pentatricopeptide Repeat (PPR)-Containing Protein. Theor. Appl. Genet. 2016, 129, 2003–2017. [Google Scholar] [CrossRef]
- Ren, R.C.; Lu, X.; Zhao, Y.J.; Wei, Y.M.; Wang, L.L.; Zhang, L.; Zhang, W.T.; Zhang, C.; Zhang, X.S.; Zhao, X.Y. Pentatricopeptide Repeat Protein DEK40 Is Required for Mitochondrial Function and Kernel Development in Maize. J. Exp. Bot. 2019, 70, 6163–6179. [Google Scholar] [CrossRef]
- Hadfield, K.A.; Bennett, A.B. Polygalacturonases: Many Genes in Search of a Function1. Plant Physiol. 1998, 117, 337–343. [Google Scholar] [CrossRef]
- Prasanna, V.; Prabha, T.N.; Tharanathan, R.N. Fruit Ripening Phenomena—An Overview. Crit. Rev. Food Sci. Nutr. 2007, 47, 1–19. [Google Scholar] [CrossRef]
- Visser, J.A.E.B. Jaap Polygalacturonases. In Handbook of Food Enzymology; CRC Press: Boca Raton, FL, USA, 2002; ISBN 978-0-429-22254-2. [Google Scholar]
- Lang, C.; Dörnenburg, H. Perspectives in the Biological Function and the Technological Application of Polygalacturonases. Appl. Microbiol. Biotechnol. 2000, 53, 366–375. [Google Scholar] [CrossRef]
- Fischer, R.L.; Bennett, A.B. Role of Cell Wall Hydrolases in Fruit Ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 675–703. [Google Scholar] [CrossRef]
Variety | Origin | Ripening Time | Berry Size | Average Yield/Plant (Kg) |
---|---|---|---|---|
‘Prod’ | ‘Patriot’—free pollination | Medium | Medium | 3–5 |
‘Vital’ | ‘Spartan’—free pollination | Early | Big | 2.5 |
‘Azur’ | ‘Berkeley’ x ‘Bluecrop’ | Medium-late | Big | 2.5–3.5 |
‘Simultan’ | ‘Spartan’—free pollination | Early | Medium | 2.2–3 |
‘Delicia’ | ‘Patriot’—free pollination | Medium-late | Big | 2.5–3 |
‘Compact’ | ‘Spartan’—free pollination | Late | Big | 3 |
‘Safir’ | ‘Pemberton’ x ‘Blueray’ | Early | Medium | 2.8–3 |
Varieties | Mapped Reads | Total Reads | Mapping Rate (%) | Average Depth (X) | Coverage at Least 1X (%) | Coverage at Least 4X (%) |
---|---|---|---|---|---|---|
‘Prod’ | 33534060 | 34340224 | 97.65 | 3.43 | 65.87 | 21.67 |
‘Vital’ | 40838655 | 41757520 | 97.80 | 3.98 | 70.19 | 28.61 |
‘Azur’ | 35158982 | 35972330 | 97.74 | 3.59 | 67.24 | 23.86 |
‘Simultan’ | 30941670 | 31785468 | 97.35 | 3.30 | 64.96 | 19.25 |
‘Delicia’ | 31421942 | 32382924 | 97.03 | 3.30 | 65.47 | 19.26 |
‘Compact’ | 36589979 | 37580850 | 97.36 | 3.73 | 66.47 | 24.31 |
‘Safir’ | 37771152 | 38599884 | 97.85 | 3.73 | 68.54 | 26.07 |
‘Bluecrop’ | 30639084 | 31259796 | 98.01 | 3.24 | 65.24 | 20.52 |
Upregulated Genes | Fold Increase |
---|---|
VaccDscaff22-processed-gene-0.20_Vaccinium_corymbosum_Draper_v1 | 17.6 |
VaccDscaff22-augustus-gene-4.24_Vaccinium_corymbosum_Draper_v1 | 15.1 |
VaccDscaff22-processed-gene-12.3_Vaccinium_corymbosum_Draper_v1 | 44.9 |
VaccDscaff22-processed-gene-33.40_Vaccinium_corymbosum_Draper_v1 | 147.1 |
VaccDscaff22-processed-gene-45.12_Vaccinium_corymbosum_Draper_v1 | 48.2 |
VaccDscaff22-augustus-gene-56.35_Vaccinium_corymbosum_Draper_v1 | 12.2 |
VaccDscaff22-processed-gene-82.4_Vaccinium_corymbosum_Draper_v1 | 34.1 |
VaccDscaff22-augustus-gene-89.30_Vaccinium_corymbosum_Draper_v1 | 61.5 |
VaccDscaff22-augustus-gene-89.31_Vaccinium_corymbosum_Draper_v1 | 21.9 |
VaccDscaff22-augustus-gene-93.19_Vaccinium_corymbosum_Draper_v1 | 27.1 |
VaccDscaff22-augustus-gene-104.25_Vaccinium_corymbosum_Draper_v1 | 23.6 |
Downregulated Genes | Fold Decrease |
---|---|
VaccDscaff22-processed-gene-2.5_Vaccinium_corymbosum_Draper_v1 | 11.3 |
VaccDscaff22-augustus-gene-3.22_Vaccinium_corymbosum_Draper_v1 | 141.4 |
VaccDscaff22-augustus-gene-5.19_Vaccinium_corymbosum_Draper_v1 | 27.7 |
VaccDscaff22-augustus-gene-5.25_Vaccinium_corymbosum_Draper_v1 | 156.6 |
VaccDscaff22-augustus-gene-6.34_Vaccinium_corymbosum_Draper_v1 | 117.1 |
VaccDscaff22-processed-gene-7.5_Vaccinium_corymbosum_Draper_v1 | 11.8 |
VaccDscaff22-processed-gene-8.5_Vaccinium_corymbosum_Draper_v1 | 14.3 |
VaccDscaff22-augustus-gene-15.19_Vaccinium_corymbosum_Draper_v1 | 10.0 |
VaccDscaff22-augustus-gene-15.22_Vaccinium_corymbosum_Draper_v1 | 14.4 |
VaccDscaff22-augustus-gene-16.30_Vaccinium_corymbosum_Draper_v1 | 19.8 |
VaccDscaff22-augustus-gene-16.39_Vaccinium_corymbosum_Draper_v1 | 698.7 |
VaccDscaff22-processed-gene-17.4_Vaccinium_corymbosum_Draper_v1 | 17.7 |
VaccDscaff22-augustus-gene-18.26_Vaccinium_corymbosum_Draper_v1 | 26.3 |
VaccDscaff22-augustus-gene-18.23_Vaccinium_corymbosum_Draper_v1 | 32.6 |
VaccDscaff22-processed-gene-23.13_Vaccinium_corymbosum_Draper_v1 | 68.3 |
VaccDscaff22-augustus-gene-23.30_Vaccinium_corymbosum_Draper_v1 | 313.3 |
VaccDscaff22-augustus-gene-24.28_Vaccinium_corymbosum_Draper_v1 | 14.8 |
VaccDscaff22-augustus-gene-30.27_Vaccinium_corymbosum_Draper_v1 | 53.0 |
VaccDscaff22-processed-gene-32.6_Vaccinium_corymbosum_Draper_v1 | 33.0 |
VaccDscaff22-augustus-gene-33.56_Vaccinium_corymbosum_Draper_v1 | 13.6 |
VaccDscaff22-augustus-gene-38.47_Vaccinium_corymbosum_Draper_v1 | 101.1 |
VaccDscaff22-augustus-gene-46.36_Vaccinium_corymbosum_Draper_v1 | 623.5 |
VaccDscaff22-processed-gene-49.1_Vaccinium_corymbosum_Draper_v1 | 32.2 |
VaccDscaff22-augustus-gene-50.31_Vaccinium_corymbosum_Draper_v1 | 50.9 |
VaccDscaff22-processed-gene-55.2_Vaccinium_corymbosum_Draper_v1 | 13.0 |
VaccDscaff22-augustus-gene-59.30_Vaccinium_corymbosum_Draper_v1 | 57.2 |
VaccDscaff22-processed-gene-59.6_Vaccinium_corymbosum_Draper_v1 | 65.7 |
VaccDscaff22-augustus-gene-60.28_Vaccinium_corymbosum_Draper_v1 | 54.5 |
VaccDscaff22-augustus-gene-61.25_Vaccinium_corymbosum_Draper_v1 | 19.2 |
VaccDscaff22-processed-gene-61.4_Vaccinium_corymbosum_Draper_v1 | 19.2 |
VaccDscaff22-processed-gene-63.2_Vaccinium_corymbosum_Draper_v1 | 22.3 |
VaccDscaff22-augustus-gene-67.34_Vaccinium_corymbosum_Draper_v1 | 16.5 |
VaccDscaff22-augustus-gene-71.34_Vaccinium_corymbosum_Draper_v1 | 43.8 |
VaccDscaff22-processed-gene-71.6_Vaccinium_corymbosum_Draper_v1 | 75.6 |
VaccDscaff22-augustus-gene-73.34_Vaccinium_corymbosum_Draper_v1 | 22.7 |
VaccDscaff22-augustus-gene-76.24_Vaccinium_corymbosum_Draper_v1 | 18.4 |
VaccDscaff22-augustus-gene-77.26_Vaccinium_corymbosum_Draper_v1 | 20.1 |
VaccDscaff22-augustus-gene-78.26_Vaccinium_corymbosum_Draper_v1 | 11.4 |
VaccDscaff22-processed-gene-80.10_Vaccinium_corymbosum_Draper_v1 | 13.6 |
VaccDscaff22-augustus-gene-80.25_Vaccinium_corymbosum_Draper_v1 | 13.7 |
VaccDscaff22-processed-gene-82.7_Vaccinium_corymbosum_Draper_v1 | 10.3 |
VaccDscaff22-processed-gene-83.0_Vaccinium_corymbosum_Draper_v1 | 82.5 |
VaccDscaff22-augustus-gene-95.33_Vaccinium_corymbosum_Draper_v1 | 16.7 |
VaccDscaff22-processed-gene-95.7_Vaccinium_corymbosum_Draper_v1 | 63.6 |
VaccDscaff22-augustus-gene-98.38_Vaccinium_corymbosum_Draper_v1 | 117.9 |
VaccDscaff22-augustus-gene-100.27_Vaccinium_corymbosum_Draper_v1 | 93.0 |
VaccDscaff22-augustus-gene-101.34_Vaccinium_corymbosum_Draper_v1 | 217.8 |
VaccDscaff22-processed-gene-102.23_Vaccinium_corymbosum_Draper_v1 | 41.6 |
VaccDscaff22-augustus-gene-102.26_Vaccinium_corymbosum_Draper_v1 | 28.6 |
VaccDscaff22-augustus-gene-103.24_Vaccinium_corymbosum_Draper_v1 | 12.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, C.A.; Bădulescu, L.; Asănică, A.; Iordachescu, M. Looking in the Scaffold 22 Hotspot for Differentially Regulated Genes Genomic Sequence Variation in Romanian Blueberry Cultivars. Horticulturae 2024, 10, 157. https://doi.org/10.3390/horticulturae10020157
Mihai CA, Bădulescu L, Asănică A, Iordachescu M. Looking in the Scaffold 22 Hotspot for Differentially Regulated Genes Genomic Sequence Variation in Romanian Blueberry Cultivars. Horticulturae. 2024; 10(2):157. https://doi.org/10.3390/horticulturae10020157
Chicago/Turabian StyleMihai, Cosmin Alexandru, Liliana Bădulescu, Adrian Asănică, and Mihaela Iordachescu. 2024. "Looking in the Scaffold 22 Hotspot for Differentially Regulated Genes Genomic Sequence Variation in Romanian Blueberry Cultivars" Horticulturae 10, no. 2: 157. https://doi.org/10.3390/horticulturae10020157
APA StyleMihai, C. A., Bădulescu, L., Asănică, A., & Iordachescu, M. (2024). Looking in the Scaffold 22 Hotspot for Differentially Regulated Genes Genomic Sequence Variation in Romanian Blueberry Cultivars. Horticulturae, 10(2), 157. https://doi.org/10.3390/horticulturae10020157