Chemical Analyses of Volatiles from Kumquat Species Grown in Greece—A Study of Antimicrobial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Sample Preparation
2.2. Essential Oil Extraction
2.3. Gas Chromatography-Mass Spectroscopy (GC-MS) Analysis
2.4. Antimicrobial Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Volatile Composition from Kumquat Leaves, Peel, and Flower Essential Oils
3.2. Antimicrobial Activity
3.3. Principal Component Analysis (PCA) Regression Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aladekoyi, G.; Omosulis, V.; Orungbemi, O. Evaluation of Antimicrobial Activity of Oil Extracted From Three Different Citrus Seeds (Citrus limon, Citrus aurantifolia and Citrus aurantium). Int. J. Sci. Res. Eng. Stud. 2016, 3, 16–20. [Google Scholar]
- Palma, A.; D’Aquino, S. Kumquat—Fortunella japonica. In Exotic Fruits; Rodrigues, S., de Oliveira Silva, E., de Brito, E.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 271–278. ISBN 978-0-12-803138-4. [Google Scholar]
- Li, X.; Meenu, M.; Xu, B. Recent Development in Bioactive Compounds and Health Benefits of Kumquat Fruits. Food Rev. Int. 2023, 39, 4312–4332. [Google Scholar] [CrossRef]
- Pawełczyk, A.; Żwawiak, J.; Zaprutko, L. Kumquat Fruits as an Important Source of Food Ingredients and Utility Compounds. Food Rev. Int. 2023, 39, 875–895. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Zeng, W.-C.; Xu, P.-Y.; Lan, Y.-J.; Zhu, R.-X.; Zhong, K.; Huang, Y.-N.; Gao, H. Chemical Composition and Antimicrobial Activity of the Essential Oil of Kumquat (Fortunella crassifolia Swingle) Peel. Int. J. Mol. Sci. 2012, 13, 3382–3393. [Google Scholar] [CrossRef]
- SEAOP Koum Kouat of Corfu. Available online: https://www.seaop.gr/en/spirits-and-distillates/liqueurs/kumquat-of-corfu/ (accessed on 14 January 2024).
- Liu, X.; Liu, B.; Jiang, D.; Zhu, S.; Shen, W.; Yu, X.; Xue, Y.; Liu, M.; Feng, J.; Zhao, X. The Accumulation and Composition of Essential Oil in Kumquat Peel. Sci. Hortic. 2019, 252, 121–129. [Google Scholar] [CrossRef]
- Matsubara, Y.; Kumamoto, H.; Iizuka, Y.; Murakami, T.; Okamoto, K.; Miyake, H.; Yokoi, K. Structure and Hypotensive Effect of Flavonoid Glycosides in Citrus Unshiu Peelings. Agric. Biol. Chem. 1985, 49, 909–914. [Google Scholar] [CrossRef]
- Al-Saman, M.A.; Abdella, A.; Mazrou, K.E.; Tayel, A.A.; Irmak, S. Antimicrobial and Antioxidant Activities of Different Extracts of the Peel of Kumquat (Citrus japonica Thunb). J. Food Meas. Charact. 2019, 13, 3221–3229. [Google Scholar] [CrossRef]
- Benkeblia, N.; Tennant, D.P.F.; Jawandha, S.K.; Gill, P.S. 4—Preharvest and Harvest Factors Influencing the Postharvest Quality of Tropical and Subtropical Fruits. In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Yahia, E.M., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 112–142e. ISBN 978-1-84569-733-4. [Google Scholar]
- Kondo, S.; Katayama, R.; Uchino, K. Antioxidant Activity in Meiwa Kumquat as Affected by Environmental and Growing Factors. Environ. Exp. Bot. 2005, 54, 60–68. [Google Scholar] [CrossRef]
- Lou, S.-N.; Lai, Y.-C.; Hsu, Y.-S.; Ho, C.-T. Phenolic Content, Antioxidant Activity and Effective Compounds of Kumquat Extracted by Different Solvents. Food Chem. 2016, 197, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Stringaro, A.; Colone, M.; Angiolella, L. Antioxidant, Antifungal, Antibiofilm, and Cytotoxic Activities of Mentha Spp. Essential Oils. Medicines 2018, 5, 112. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Mao, Z.; Liu, Y.; Chen, M.; Xu, Z.; Yan, X.; Xu, G.; Zhu, W.; Liu, H.; Ji, Y. Functional Substances and Therapeutic Potential of Kumquat Essential Oil. Trends Food Sci. Technol. 2023, 138, 272–283. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Zheng, B. The Extraction Process of Essential Oil from Fortunella Peel via Steam Distillation Combined with Microwave and Its Influence on the Attracted Activity of the Fruit Fly. J. Chin. Inst. Food Sci. Technol. 2014, 14, 37–44. [Google Scholar]
- Briggs, M.A.; Petersen, K.S.; Kris-Etherton, P.M. Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare 2017, 5, 29. [Google Scholar] [CrossRef]
- Nouri, A.; Shafaghatlonbar, A. Chemical Constituents and Antioxidant Activity of Essential Oil and Organic Extract from the Peel and Kernel Parts of Citrus japonica Thunb. (Kumquat) from Iran. Nat. Prod. Res. 2016, 30, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-S. Characteristic Odor Components of Kumquat (Fortunella japonica Swingle) Peel Oil. J. Agric. Food Chem. 2005, 53, 1642–1647. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.A.; El-Hawary, S.S.; Mohammed, M.; Farid, M.; Abdel-Wahed, N.A.M.; Ali, M.; El-Abd, E.A.W. Chemical Composition, Antiviral against Avian Influenza (H5N1) Virus and Antimicrobial Activities of the Essential Oils of the Leaves and Fruits of Fortunella margarita, Lour. Swingle, Growing in Egypt. J. Appl. Pharm. Sci. 2015, 5, 6–12. [Google Scholar] [CrossRef]
- Allagui, M.B.; Moumni, M.; Romanazzi, G. Antifungal Activity of Thirty Essential Oils to Control Pathogenic Fungi of Postharvest Decay. Antibiotics 2024, 13, 28. [Google Scholar] [CrossRef]
- Munive Nuñez, K.V.; Abreu, A.C.d.S.; Almeida, J.M.d.; Gonçalves, J.L.; Bonsaglia, É.C.R.; dos Santos, M.V.; Silva, N.C.C. Antimicrobial Activity of Selected Essential Oils against Staphylococcus aureus from Bovine Mastitis. Dairy 2024, 5, 5. [Google Scholar] [CrossRef]
- Fisher, K.; Phillips, C. Potential Antimicrobial Uses of Essential Oils in Food: Is Citrus the Answer? Trends Food Sci. Technol. 2008, 19, 156–164. [Google Scholar] [CrossRef]
- Paw, M.; Begum, T.; Gogoi, R.; Pandey, S.K.; Lal, M. Chemical Composition of Citrus Limon L. Burmf Peel Essential Oil from North East India. J. Essent. Oil Bear. Plants 2020, 23, 337–344. [Google Scholar] [CrossRef]
- Bozinou, E.; Athanasiadis, V.; Chatzimitakos, T.; Ganos, C.; Gortzi, O.; Diamantopoulou, P.; Papanikolaou, S.; Chinou, I.; Lalas, S.I. Essential Oil of Greek Citrus sinensis Cv New Hall—Citrus aurantium Pericarp: Effect upon Cellular Lipid Composition and Growth of Saccharomyces cerevisiae and Antimicrobial Activity against Bacteria, Fungi, and Human Pathogenic Microorganisms. Processes 2023, 11, 394. [Google Scholar] [CrossRef]
- Khalili, G.; Mazloomifar, A.; Larijani, K.; Tehrani, M.S.; Azar, P.A. Supercritical Fluid Extraction as a Technique to Obtain Essential Oil from Rosmarinus officinalis L. Orient. J. Chem. 2017, 33, 2537–2541. [Google Scholar] [CrossRef]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Carol Stream 2005, 16, 65–120. [Google Scholar]
- Fotiadou, E.; Panou, E.; Graikou, K.; Sakellarakis, F.-N.; Chinou, I. Volatiles of All Native Juniperus Species Growing in Greece—Antimicrobial Properties. Foods 2023, 12, 3506. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, Y.; Liu, C.; Chen, S.; Hu, S.; Xie, Z.; Deng, X.; Xu, J. Comprehensive Comparative Analysis of Volatile Compounds in Citrus Fruits of Different Species. Food Chem. 2017, 230, 316–326. [Google Scholar] [CrossRef]
- Vincenzo, S.; Poiana, M. Comparison of the Volatile Component of the Essential Oil of Kumquat (Fortunella Margarita Swingle) Extracted by Supercritical Carbon Dioxide, Hydrodistillation and Conventional Solvent Extraction. J. Essent. Oil Bear. Plants 2017, 20, 87–94. [Google Scholar] [CrossRef]
- Quijano, C.E.; Pino, J.A. Volatile Compounds of Round Kumquat (Fortunella japonica Swingle) Peel Oil From Colombia. J. Essent. Oil Res. 2009, 21, 483–485. [Google Scholar] [CrossRef]
- Goh, R.M.V.; Pua, A.; Liu, S.Q.; Lassabliere, B.; Leong, K.-C.; Sun, J.; Tan, L.P.; Yu, B. Characterisation of Volatile Compounds in Kumquat and Calamansi Peel Oil Extracts. J. Essent. Oil Bear. Plants 2020, 23, 953–969. [Google Scholar] [CrossRef]
- Moufida, S.; Marzouk, B. Biochemical Characterization of Blood Orange, Sweet Orange, Lemon, Bergamot and Bitter Orange. Phytochemistry 2003, 62, 1283–1289. [Google Scholar] [CrossRef]
- González-Mas, M.C.; Rambla, J.L.; López-Gresa, M.P.; Blázquez, M.A.; Granell, A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef]
- Bora, H.; Kamle, M.; Mahato, D.K.; Tiwari, P.; Kumar, P. Citrus Essential Oils (CEOs) and Their Applications in Food: An Overview. Plants 2020, 9, 357. [Google Scholar] [CrossRef]
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of Plant-Derived Flavor Compounds. Plant J. Cell Mol. Biol. 2008, 54, 712–732. [Google Scholar] [CrossRef] [PubMed]
- Satyal, P.; Setzer, W.; Limbu, K.; Paudel, P. Leaf Essential Oil Composition of Citrus japonica from Nepal. J. Essent. Oil Bear. Plants. 2012, 15, 357–359. [Google Scholar] [CrossRef]
- Oulebsir, C.; Mefti-Korteby, H.; Djazouli, Z.-E.; Zebib, B.; Merah, O. Essential Oil of Citrus aurantium L. Leaves: Composition, Antioxidant Activity, Elastase and Collagenase Inhibition. Agronomy 2022, 12, 1466. [Google Scholar] [CrossRef]
- Umano, K.; Hagi, Y.; Tamura, T.; Shoji, A.; Shibamoto, T. Identification of Volatile Compounds Isolated from Round Kumquat (Fortunella japonica Swingle). J. Agric. Food Chem. 1994, 42, 1888–1890. [Google Scholar] [CrossRef]
- Sarrou, E.; Chatzopoulou, P.; Dimassi-Theriou, K.; Therios, I. Volatile Constituents and Antioxidant Activity of Peel, Flowers and Leaf Oils of Citrus aurantium L. Growing in Greece. Molecules 2013, 18, 10639–10647. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Hamdi, N.; Ben Halima, N.; Abdelkafi, S. Characterization of Essential Oil from Citrus aurantium L. Flowers: Antimicrobial and Antioxidant Activities. J. Oleo Sci. 2013, 62, 763–772. [Google Scholar] [CrossRef]
- Ammar, A.H.; Bouajila, J.; Lebrihi, A.; Mathieu, F.; Romdhane, M.; Zagrouba, F. Chemical Composition and in Vitro Antimicrobial and Antioxidant Activities of Citrus aurantium L. Flowers Essential Oil (Neroli Oil). Pak. J. Biol. Sci. PJBS 2012, 15, 1034–1040. [Google Scholar] [CrossRef]
- Wu, K.; Jin, R.; Bao, X.; Yu, G.; Yi, F. Potential Roles of Essential Oils from the Flower, Fruit and Leaf of Citrus medica L. Var. Sarcodactylis in Preventing Spoilage of Chinese Steamed Bread. Food Biosci. 2021, 43, 101271. [Google Scholar] [CrossRef]
- Pérez Zamora, C.M.; Torres, C.A.; Nuñez, M.B. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America. Molecules 2018, 23, 544. [Google Scholar] [CrossRef]
- Moutaouafiq, S.; Farah, A.; Houssine, A.; Fikri Benbrahim, K.; Dalila, B. Comparison of the Chemical Composition and the Bioactivity of the Essential Oils of Three Medicinal and Aromatic Plants from Jacky Garden of Morocco. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 537–545. [Google Scholar]
- Lin, X.; Cao, S.; Sun, J.; Lu, D.; Zhong, B.; Chun, J. The Chemical Compositions, and Antibacterial and Antioxidant Activities of Four Types of Citrus Essential Oils. Molecules 2021, 26, 3412. [Google Scholar] [CrossRef]
- Değirmenci, H.; Erkurt, H. Relationship between Volatile Components, Antimicrobial and Antioxidant Properties of the Essential Oil, Hydrosol and Extracts of Citrus aurantium L. Flowers. J. Infect. Public Health 2020, 13, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J. Antifungal Activity of Lemon (Citrus lemon L.), Mandarin (Citrus reticulata L.), Grapefruit (Citrus paradisi L.) and Orange (Citrus sinensis L.) Essential Oils. Food Control. 2008, 19, 1130–1138. [Google Scholar] [CrossRef]
- Oke, F.; Aslim, B.; Ozturk, S.; Altundag, S. Essential Oil Composition, Antimicrobial and Antioxidant Activities of Satureja Cuneifolia Ten. Food Chem. 2009, 112, 874–879. [Google Scholar] [CrossRef]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Mathioudakis, M.M.; Hasperué, J.H.; Ziogas, V. Non-Chemical Treatments for Preventing the Postharvest Fungal Rotting of Citrus Caused by Penicillium digitatum (Green Mold) and Penicillium italicum (Blue Mold). Trends Food Sci. Technol. 2019, 86, 479–491. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus Cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.J.; Park, S.M.; Yu, H.; Seo, G.H.; Kim, H.W.; Kim, S.A.; Rhee, M.S. Recent Advances in the Application of Antibacterial Complexes Using Essential Oils. Molecules 2020, 25, 1752. [Google Scholar] [CrossRef]
Leaf | Peel | Flower | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. | Compounds | KIa | KIb | F. m | F. j | F. c | F. m | F. j | F. c | F. j | F. c |
1. | α-pinene | 934 | 939 | - | - | - | 0.63 | 0.49 | 1.55 | 0.44 | 0.20 |
2. | sabinene | 972 | 975 | - | 0.04 | - | 0.23 | 0.11 | 0.36 | - | - |
3. | β-pinene | 975 | 979 | - | - | - | - | 6.31 | - | - | |
4. | myrcene | 987 | 990 | - | 0.84 | - | 7.79 | 5.34 | - | 0.99 | 0.21 |
5. | δ-2-carene | 1000 | 1002 | - | 0.07 | - | - | - | - | - | - |
6. | α-phellandrene | 1002 | 1002 | - | - | 0.14 | - | - | - | - | |
7. | limonene | 1024 | 1029 | 1.27 | 3.62 | 1.75 | 84.85 | 88.92 | 76.62 | 63.67 | 27.75 |
8. | trans-β-ocimene | 1045 | 1050 | - | - | 0.12 | - | - | - | 0.87 | 0.45 |
9. | trans-linaool oxide (furanoid) | 1081 | 1086 | - | - | - | 0.17 | - | - | - | |
10. | linalool | 1095 | 1096 | - | 0.37 | 0.14 | 0.8 | 0.53 | - | - | 0.94 |
11. | trans-para-mentha-2,8-dien-1-ol | 1119 | 1122 | - | 0.15 | - | - | - | 0.53 | - | 0.36 |
12. | cis-para-mentha-2,8-dien-1-ol | 1133 | 1137 | - | 0.30 | - | - | 0.23 | 0.44 | - | - |
13. | terpinene-4-ol | 1174 | 1177 | - | - | - | - | 0.17 | 0.27 | - | - |
14. | α-terpineol | 1186 | 1188 | - | 0.21 | 0.27 | 0.10 | 0.36 | - | - | - |
15. | octanol acetate | 1210 | 1213 | - | - | - | - | 0.86 | 0.25 | - | - |
16. | trans-carveol | 1216 | 1216 | - | 0.50 | - | - | - | 1.49 | - | 0.28 |
17. | citronellol | 1223 | 1225 | - | - | - | - | - | - | - | 3.22 |
18. | cis-carveol | 1224 | 1229 | - | 0.08 | - | - | - | - | - | - |
19. | carvone | 1239 | 1243 | - | 0.28 | - | - | - | 0.11 | - | 0.82 |
20. | geraniol | 1246 | 1252 | - | - | - | - | - | - | - | 0.94 |
21. | geranial | 1263 | 1267 | - | - | - | - | - | - | - | 0.28 |
22. | δ-elemene | 1336 | 1338 | 3.61 | 3.42 | 6.03 | 0.19 | - | 0.69 | 1.47 | 0.68 |
23. | α-cubenene | 1344 | 1348 | - | - | 0.15 | - | - | - | - | - |
24. | citronellyl acetate | 1350 | 1352 | - | - | - | - | - | - | - | 0.27 |
25. | a-ylagene | 1371 | 1375 | - | 0.47 | 1.04 | - | - | - | - | - |
26. | α-copaene | 1373 | 1376 | - | 0.44 | - | - | - | - | - | - |
27. | geranyl acetate | 1378 | 1381 | - | - | - | 1.69 | 0.69 | 1.08 | - | - |
28. | β-bourbonene | 1386 | 1388 | - | - | 2.97 | - | - | - | - | - |
29. | β-elemene | 1387 | 1390 | 2.22 | 5.26 | 5.97 | - | - | 0.27 | 1.02 | 1.12 |
30. | trans-caryophyllene | 1415 | 1419 | 2.00 | 4.97 | 1.30 | - | - | - | - | 1.27 |
31. | β-gurjunene | 1429 | 1433 | - | - | - | - | - | - | 2.94 | 4.03 |
32. | γ-elemene | 1431 | 1436 | 0.57 | 0.92 | 2.84 | - | - | - | 0.36 | 0.25 |
33. | α-guaiene | 1434 | 1439 | - | 0.87 | 2.19 | - | - | - | - | - |
34. | α-humulene | 1450 | 1454 | 0.75 | 1.31 | 1.84 | - | - | - | 0.34 | 0.49 |
35. | germacrene-D | 1483 | 1485 | 16.40 | 12.03 | 9.04 | 2.08 | 0.42 | 2.20 | 4.79 | 4.06 |
36. | β-selinene | 1487 | 1490 | - | - | - | - | - | - | 0.71 | 0.63 |
37. | valencene | 1494 | 1496 | - | - | 0.34 | - | - | - | 2.65 | 8.69 |
38. | bicyclogermacrene | 1500 | 1500 | 3.78 | 1.35 | - | 0.46 | - | - | - | 0.82 |
39. | α-bulnesene | 1506 | 1509 | - | 0.27 | 1.29 | - | - | - | - | - |
40. | δ-cadinene | 1520 | 1523 | 0.53 | 0.91 | 0.62 | - | - | - | 0.71 | 0.66 |
41. | elemol | 1547 | 1549 | 13.17 | 8.65 | 9.59 | - | - | - | 1.76 | 5.33 |
42. | germacrene-B | 1559 | 1561 | 9.88 | - | - | 0.10 | - | 0.52 | 2.79 | 1.02 |
43. | trans-nerolidol | 1560 | 1563 | - | 2.23 | - | - | - | - | - | 0.26 |
44. | spathulenol | 1575 | 1578 | - | 3.14 | - | - | - | - | - | 4.1 |
45. | caryophyllene oxide | 1582 | 1583 | - | - | - | - | - | - | - | 4.41 |
46. | viridiflorol | 1590 | 1592 | 8.90 | 4.83 | 8.39 | 0.09 | - | 0.28 | - | - |
47. | γ-eudesmol | 1628 | 1632 | - | 9.75 | - | - | - | - | - | - |
48. | α-muurolol | 1641 | 1646 | - | - | 3.19 | - | - | - | - | - |
49. | cubenol | 1643 | 1646 | - | - | 7.27 | - | - | - | - | - |
50. | β-eudesmol | 1648 | 1650 | - | - | - | - | - | - | - | 6.60 |
51. | α-eudesmol | 1650 | 1653 | 13.01 | 4.00 | 4.19 | 0.14 | - | - | 1.03 | 3.39 |
52. | eudesm-7 (11)-en-4-ol | 1698 | 1700 | - | - | 0.51 | - | - | - | - | - |
53. | phytol | 1939 | 1943 | 0.59 | - | 1.76 | - | - | - | - | - |
Total | 76.68 | 71.28 | 72.8 | 99.29 | 98.97 | 92.97 | 83.53 | 85.83 |
Species | Sample | S. aureus | S. epidermidis | P. aeruginosa | K. pneumoniae | E. cloacae | E. coli | C. albicans | C. tropicalis | C. glabrata |
---|---|---|---|---|---|---|---|---|---|---|
Nagami (F. margarita) | Peel | 12.50 | 12.37 | 13.78 | 15.90 | 16.95 | 17.65 | 10.50 | 8.70 | 7.45 |
Leaf | >20 | >20 | >20 | >20 | >20 | >20 | - | - | - | |
Marumi (F. japonica) | Peel | 13.00 | 11.15 | 14.35 | 16.30 | 17.40 | 18.50 | 12.50 | 12.00 | 11.75 |
Leaf | >20 | >20 | >20 | >20 | >20 | >20 | - | - | - | |
Flower | 16.32 | 15.72 | 16.20 | 15.88 | 16.55 | 17.45 | - | - | - | |
Meiwa (F. crassifolia) | Peel | 12.34 | 12.20 | 16.78 | 15.45 | 18.30 | 17.25 | 10.02 | 9.75 | 9.00 |
Leaf | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | |
Flower | 3.50 | 3.84 | 7.45 | 6.23 | 7.48 | 7.10 | - | - | - | |
Netilmicin | 4 × 10−3 | 4 × 10−3 | 8.8 × 10−3 | 8 × 10−3 | 8 × 10−3 | 10 × 10−3 | ||||
Amoxicillin | 2 × 10−3 | 2 × 10−3 | 2.4 × 10−3 | 2.2 × 10−3 | 2.8 × 10−3 | 2 × 10−3 | ||||
Clavulanic acid | 0.5 × 10−3 | 0.5 × 10−3 | 1 × 10−3 | 1 × 10−3 | 1.6 × 10−3 | 1.2 × 10−3 | ||||
5-flucytocine itraconazole | 0.1 × 10−3 | 1 × 10−3 | 10 × 10−3 | |||||||
Ammphotericin B | 1 × 10−3 | 0.5 × 10−3 | 0.4 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziogas, V.; Ganos, C.; Graikou, K.; Cheilari, A.; Chinou, I. Chemical Analyses of Volatiles from Kumquat Species Grown in Greece—A Study of Antimicrobial Activity. Horticulturae 2024, 10, 131. https://doi.org/10.3390/horticulturae10020131
Ziogas V, Ganos C, Graikou K, Cheilari A, Chinou I. Chemical Analyses of Volatiles from Kumquat Species Grown in Greece—A Study of Antimicrobial Activity. Horticulturae. 2024; 10(2):131. https://doi.org/10.3390/horticulturae10020131
Chicago/Turabian StyleZiogas, Vasileios, Christos Ganos, Konstantia Graikou, Antigoni Cheilari, and Ioanna Chinou. 2024. "Chemical Analyses of Volatiles from Kumquat Species Grown in Greece—A Study of Antimicrobial Activity" Horticulturae 10, no. 2: 131. https://doi.org/10.3390/horticulturae10020131
APA StyleZiogas, V., Ganos, C., Graikou, K., Cheilari, A., & Chinou, I. (2024). Chemical Analyses of Volatiles from Kumquat Species Grown in Greece—A Study of Antimicrobial Activity. Horticulturae, 10(2), 131. https://doi.org/10.3390/horticulturae10020131