Comprehensive Analysis of Volatile Organic Compounds and Their Impact on Apple Quality Following Some Essential Oil Treatments Against Botrytis cinerea
Abstract
1. Introduction
2. Materials and Methods
2.1. Fruit Materials
2.2. Pathogen
2.3. Chemicals
2.4. Fruit Inoculation and Storage
2.5. Curative Measures
2.6. Sample Pretreatment
2.7. Preparation of Free- and Bound-Form Volatiles
2.8. SPME Conditions
2.9. GC/MS Analysis
2.10. Quantification and Odor Activity Values (OAVs) Calculation
2.11. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, M.A.; Olsen, K.M.; Sovero, V.; Kushad, M.M.; Korban, S.S. Fruit quality traits have played critical roles in domestication of the apple. J. Plant Genome 2014, 7. [Google Scholar] [CrossRef]
- Burford, T. Apples of North America: A Celebration of Exceptional Varieties; Timber Press: Portland, OR, USA, 2021. [Google Scholar]
- Shalini, R.; Gupta, D.K. Utilization of pomace from apple processing industries: A review. JFST 2010, 47, 365–371. [Google Scholar] [CrossRef]
- Calhoun, C.L. Old Southern Apples: A Comprehensive History and Description of Varieties for Collectors, Growers, and Fruit Enthusiasts; Chelsea Green Publishing: White River Junction, VT, USA, 2011. [Google Scholar]
- Naets, M.; Wang, Z.; Verboven, P.; Nicolaï, B.; Keulemans, W.; Geeraerd, A. Size does matter–susceptibility of apple for grey mould is affected by cell size. Plant Pathol. 2020, 69, 60–67. [Google Scholar] [CrossRef]
- Šernaitė, L.; Rasiukevičiūtė, N.; Valiuškaitė, A. Application of plant extracts to control postharvest gray mold and susceptibility of apple fruits to B. cinerea from different plant hosts. Foods 2020, 9, 1430. [Google Scholar] [CrossRef]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Aromatic plants as a source of bioactive compounds. Agriculture 2012, 2, 228–243. [Google Scholar] [CrossRef]
- Palfi, M.; Konjevoda, P.; Vrandečić, K. Antifungal activity of essential oils on mycelial growth of Fusarium oxysporum and Bortytis cinerea. Emir. J. Food Agric. 2019, 31, 544–554. [Google Scholar] [CrossRef]
- Fernandes, C.C.; Dias, A.L.; Santos, J.G.D.; da Silva, I.J.; Miranda, M.L. Antifungal and Allelopathic Effects of Essential Oil from Calyptranthes concinna DC. Dried Leaves and of Its Major Constituent Elemicin. Agronomy 2024, 14, 1527. [Google Scholar] [CrossRef]
- Medina, S.; Perestrelo, R.; Pereira, R.; Câmara, J.S. Evaluation of volatilomic fingerprint from apple fruits to ciders: A useful tool to find putative biomarkers for each apple variety. Foods 2020, 9, 1830. [Google Scholar] [CrossRef]
- Yan, D.; Shi, J.; Ren, X.; Tao, Y.; Ma, F.; Li, R.; Liu, C. Insights into the aroma profiles and characteristic aroma of ‘Honeycrisp’ apple (Malus × domestica). Food Chem 2020, 327, 127074. [Google Scholar] [CrossRef]
- Karakus, S.; Atıcı, O.; Turan, M.; Azizi, S.; Hajizadeh, H.S.; Kaya, O. Volatile organic compounds produced by some synthetic essential oils as biological fumigants against Botrytis cinerea on apples. Chem. Biol. Technol. Agric. 2023, 10, 136. [Google Scholar] [CrossRef]
- Shao, X.; Wang, H.; Xu, F.; Cheng, S. Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit. Postharvest Biol. Technol. 2013, 77, 94–101. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; El Ghaouth, A.; Wilson, C. Influence of food additives on the control of postharvest rots of apple and peach and efficacy of the yeast-based biocontrol product Aspire. Postharvest Biol. Technol. 2003, 27, 127–135. [Google Scholar] [CrossRef]
- Ubeda, C.; San-Juan, F.; Concejero, B.; Callejon, R.M.; Troncoso, A.M.; Morales, M.L.; Ferreira, V.; Hernandez-Orte, P. Glycosidically bound aroma compounds and impact odorants of four strawberry varieties. J. Agric. Food Chem. 2012, 60, 6095–6102. [Google Scholar] [CrossRef]
- Wen, Y.Q.; He, F.; Zhu, B.Q.; Lan, Y.B.; Pan, Q.H.; Li, C.Y.; Reeves, M.J.; Wang, J. Free and glycosidically bound aroma compounds in cherry (Prunus avium L.). Food Chem. 2014, 152, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Pan, Q.; Qu, W.; Duan, C. Comparison of volatile profiles of nine litchi (Litchi chinensis Sonn.) cultivars from Southern China. J. Agric. Food Chem. 2009, 57, 9676–9681. [Google Scholar] [CrossRef]
- Di Francesco, A.; Aprea, E.; Gasperi, F.; Parenti, A.; Placì, N.; Rigosi, F.; Baraldi, E. Apple pathogens: Organic essential oils as an alternative solution. Sci. Hortic. 2022, 300, 111075. [Google Scholar] [CrossRef]
- Nguyen, M.M.; Karboune, S. Combinatorial Interactions of Essential Oils Enriched with Individual Polyphenols, Polyphenol Mixes, and Plant Extracts: Multi-Antioxidant Systems. Antioxidants 2023, 12, 486. [Google Scholar] [CrossRef] [PubMed]
- Radice, M.; Durofil, A.; Buzzi, R.; Baldini, E.; Martínez, A.P.; Scalvenzi, L.; Manfredini, S. Alpha-Phellandrene and Alpha-Phellandrene-Rich Essential Oils: A Systematic Review of Biological Activities. Pharm. Food Appl. Life 2022, 12, 1602. [Google Scholar]
- Donsi, F.; Cuomo, A.; Marchese, E.; Ferrari, G. Infusion of essential oils for food stabilization: Unraveling the role of nanoemulsion-based delivery systems on mass transfer and antimicrobial activity. Innov. Food Sci. Emerg. Technol. 2014, 22, 212–220. [Google Scholar] [CrossRef]
- Mihajlov, L.; Ilieva, V.; Markova, N.; Zlatkovski, V. Organic Cultivation of Lemon Ballm (Melissa officinalis) in Macedonia. J. Agric. Sci. Technol. 2013, 3, 769–775. [Google Scholar]
- Lemos Junior, W.J.F.; Binati, R.; Felis, G.E.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Volatile organic compounds from Starmerella bacillaris to control gray mold on apples and modulate cider aroma profile. Food Microbiol. 2020, 89, 103446. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.K.; Tan, L.T.H.; Chan, K.G.; Lee, L.H.; Goh, B.H. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 2016, 21, 529. [Google Scholar] [CrossRef]
- Rehman, R.; Zubair, M.; Bano, A.; Hewitson, P.; Ignatova, S. Isolation of industrially valuable α-Cedrol from essential oil of Platycladusorientalis (Thuja orientalis) leaves using linear gradient counter current chromatography. Ind. Crops Prod. 2022, 176, 114297. [Google Scholar] [CrossRef]
- Pedrotti, C.; Marcon, Â.R.; Sérgio Echeverrigaray, L.; da Silva Ribeiro, R.T.; Schwambach, J. Essential oil as sustainable alternative for diseases management of grapes in postharvest and in vineyard and its influence on wine. J. Environ. Sci. Health B 2021, 56, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Arrarte, E.; Garmendia, G.; Rossini, C.; Wisniewski, M.; Vero, S. Volatile organic compounds produced by Antarctic strains of Candida sake play a role in the control of postharvest pathogens of apples. Biol. Control 2017, 109, 14–20. [Google Scholar] [CrossRef]
- Neria, F.; Cappellinbc, L.; Apreab, E.; Biasiolib, F.; Gasperib, F.; Spadonia, A.; Cameldia, I.; Folchia, A.; Baraldi, E. Interplay of apple volatile organic compounds with Neofabraea vagabunda and other post-harvest pathogens. Plant Pathol. 2019, 68, 1508–1524. [Google Scholar] [CrossRef]
- Ruiz-García, L.; Hellín, P.; Flores, P.; Fenoll, J. Prediction of Muscat Aroma in Table Grape by Analysis of Rose Oxide. Food Chem. 2014, 154, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Dixonerrol, J.; Hewet, E.W. Factors affecting apple aroma/flavour volatile concentration: A Review. N. Z. J. Crop Hortic. Sci. 2000, 28, 155–173. [Google Scholar]
- Perdones, Á.; Escriche, I.; Chiralt, A.; Vargas, M. Effect of chitosan–lemon essential oil coatings on volatile profile of strawberries during storage. Food Chem. 2016, 197, 979–986. [Google Scholar] [CrossRef]
- Zhu, G.; Yu, G.A. pineapple flavor imitation by the note method. Food Sci. Technol. Camp. 2019, 40, 924–928. [Google Scholar] [CrossRef]
- Vandendriessche, T.; Keulemans, J.; Geeraerd, A.; Nicolai, B.M.; Hertog, M.L.A.T.M. Evaluation of fast volatile analysis for detection of Botrytis cinerea infections in strawberry. Food Microbiol. 2012, 32, 406–414. [Google Scholar] [CrossRef]
- Alves, J.A.; Steffens, C.A.; da Silva, J.C.; Pansera-Espíndola, B.; do Amarante, C.V.; Moreira, M.A. Quality of ‘San Andreas’ strawberries and control of gray mold with essential melaleuca oil. J. Food Process. Preserv. 2021, 46, e16130. [Google Scholar] [CrossRef]
- Azodanlou, R.; Darbellay, C.; Luisier, J.L.; Villettaz, J.C.; Amado, R. Changes in flavour and texture during the ripening of strawberries. Eur. Food Res. Technol. 2004, 218, 167–172. [Google Scholar]
- Jetti, R.R.; Yang, E.; Kurnianta, A.; Finn, C.; Qian, M.C. Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptiveanalysis. J. Food Sci. 2007, 72, S487–S496. [Google Scholar] [CrossRef] [PubMed]
- Kalleli, F.; Abid, G.; Salem, I.B.; Boughalleb-M’Hamdi, N.; M’Hamdi, M. Essential Oil from Fennel Seeds (Foeniculum vulgare) Reduces Fusarium Wilt of Tomato (Solanum lycopersicon). Phytopathol. Mediterr. 2020, 59, 63–76. [Google Scholar]
- Maoz, I.; Kaplunov, T.; Raban, E.; Dynkin, I.; Degani, O.; Lewinsohn, E.; Lichter, A. Insights into the Chemosensory Basis of Flavor in Table Grapes. J. Sci. Food Agric. 2020, 100, 1405–1417. [Google Scholar] [CrossRef] [PubMed]
- Aprea, E.; Charles, M.C.; Endrizzi, I.; Corollaro, M.L.; Betta, E.; Zambanini, J.; Gasperi, F. Contribution of sugars and volatile components to perceived sweetness of apple. In Proceedings of the Innovations in Food Science & Technology Conference, Erding, Germany, 10–12 May 2017; IFST: London, UK, 2017; p. 41. [Google Scholar]
- Qin, L.; Wei, Q.P.; Kang, W.H.; Zhang, Q.; Sun, J.; Liu, S.Z. Comparison of volatile compounds in ‘Fuji’apples in the different regions in China. Food Sci. Technol. Res. 2017, 23, 79–89. [Google Scholar] [CrossRef]
- Campos-Arguedas, F.; Sarrailhé, G.; Nicolle, P.; Dorais, M.; Brereton, N.J.B.; Pitre, F.E.; Pedneault, K. Different Temperature and UV Patterns Modulate Berry Maturation and Volatile Compounds Accumulation in Vitis sp. Front. Plant Sci. 2022, 13, 862259. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Bangerth, F. The effect of harvest date on aroma compound production from ‘Golden Delicious’ apple fruit and relationship to respiration and ethylene production. Postharvest Biol. Technol. 1996, 8, 259–269. [Google Scholar] [CrossRef]
- Zhao, S.; Gao, H.; Luo, J.; Wang, H.; Dong, Q.; Wang, Y.; Ma, F. Genome-wide analysis of the light-harvesting chlorophyll a/b-binding gene family in apple (Malus domestica) and functional characterization of MdLhcb4. 3, which confers tolerance to drought and osmotic stress. Plant Physiol. Biochem. 2020, 154, 517–529. [Google Scholar] [CrossRef]
- Abd-Elkader, D.Y.; Salem, M.Z.M.; Komeil, D.A.; Al-Huqail, A.A.; Ali, H.M.; Salah, A.H.; Akrami, M.; Hassan, H.S. Post-harvest enhancing and Botrytis cinerea control of strawberry fruits using low cost and eco-friendly natural oils. Agronomy 2021, 11, 1246. [Google Scholar] [CrossRef]
- da Costa Gonçalves, D.; Ribeiro, W.R.; Gonçalves, D.C.; Menini, L.; Costa, H. Recent advances and future perspective of essential oils in control Colletotrichum spp.: A sustainable alternative in postharvest treatment of fruits. Food Res. Int. 2021, 150, 110758. [Google Scholar] [CrossRef]
- Shukla, A.C. Use of essential oil for post-harvest pest control. CABI Rev. 2021. [Google Scholar] [CrossRef]
- Sivakumar, D.; Bautista-Baños, S. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot. 2014, 64, 27–37. [Google Scholar] [CrossRef]
Compounds | CT | Fun | Fun+Thy | Fun+Cin | Fun+Eug | Fun+Cin+Eug | Fun+Thy+Eug | Fun+Thy+Cin | Fun+Thy+Cin+Eug | p-Value | |
---|---|---|---|---|---|---|---|---|---|---|---|
Terpenes | |||||||||||
α-Pinene | 14.5 ± 1.1 d | 16.4 ± 0.9 cd | 22.8 ± 1.2 bc | 25.4 ± 1.2 ab | 21.5 ± 4.2 bc | 22.0 ± 2.2 bc | 14.1 ± 0.6 d | 13.4 ± 2.5 d | 28.7 ± 1.3 a | 0.0002 * | |
β-Pinene | 41.7 ± 6.7 ab | 42.3 ± 5.9 ab | 24.1 ± 4.4 c | 26.8 ± 4.9 bc | 32.4 ± 0.7 abc | 19.3 ± 5.6 c | 33.6 ± 6.2 abc | 44.5 ± 1.7 a | 23.1 ± 4.2 c | 0.0131 * | |
Phellandrene | 62.3 ± 8.1 de | 71.3 ± 8.6 cde | 77.0 ± 3.2 cde | 88.0 ± 3.2 abc | 85.9 ± 5.5 bc | 96.8 ± 6.2 abc | 56.4 ± 7.6 e | 53.7 ± 3.4 e | 104.1 ± 0.7 a | <0.0001 * | |
β-Myrcene | 11.9 ± 0.4 d | 11.1 ± 0.4 d | 23.8 ± 0.5 b | 23.4 ± 0.5 b | 24.4 ± 0.8 b | 30.8 ± 1.0 a | 12.1 ± 0.3 c | 12.4 ± 0.4 c | 29.5 ± 0.6 a | <0.0001 * | |
D-Limonene | 21.7 ± 0.4 de | 23.1 ± 0.4 d | 27.7 ± 1.0 c | 31.1 ± 1.2 b | 26.4 ± 1.4 c | 29.5 ± 1.6 bc | 17.8 ± 0.7 e | 17.0 ± 0.9 e | 34.6 ± 1.3 a | <0.0001 * | |
γ-Terpinene | 65.2 ± 1.6 f | 72.3 ± 1.7 e | 88.5 ± 2.2 d | 98.5 ± 2.5 c | 107.1 ± 1.6 b | 119.1 ± 1.8 a | 57.9 ± 1.5 g | 70.1 ± 1.2 ef | 109.5 ± 2.7 b | <0.0001 * | |
P-Cymene | 41.5 ± 1.9 b | 46.3 ± 2.0 a | 22.3 ± 1.2 de | 25.0 ± 1.2 d | 22.2 ± 0.4 de | 19.1 ± 0.3 e | 31.6 ± 1.5 c | 31.4 ± 0.6 c | 21.5 ± 1.0 de | <0.0001 * | |
Terpinolene | 4.1 ± 0.3 f | 4.6 ± 0.2 e | 5.1 ± 0.3 d | 5.6 ± 0.3 cd | 5.9 ± 0.2 bc | 6.5 ± 0.2 a | 3.3 ± 0.2 f | 3.8 ± 0.2 ef | 6.2 ± 0.3 ab | <0.0001 * | |
Rose oxide II (cis) | 27.2 ± 3.0 c | 24.5 ± 1.9 c | 59.2 ± 6.7 b | 58.0 ± 6.6 b | 46.4 ± 1.4 b | 50.2 ± 2.9 b | 30.1 ± 3.4 c | 23.3 ± 0.6 c | 73.2 ± 8.3 a | <0.0001 * | |
Rose oxide I (trans) | 14.4 ± 0.7 gh | 16.5 ± 0.6 g | 21.4 ± 0.7 e | 23.8 ± 0.8 d | 31.3 ± 0.6 b | 36.1 ± 0.7 a | 12.6 ± 0.4 h | 18.4 ± 0.3 f | 27.4 ± 1.0 c | <0.0001 * | |
Nerol oxide | 1.9 ± 0.1 b | 2.0 ± 0.8 a | 0.9 ± 0.0 e | 1.0 ± 0.2 de | 1.1 ± 0.0 d | 0.9 ± 0.0 e | 1.3 ± 0.1 c | 1.5 ± 0.1 b | 0.9 ± 0.0 e | <0.0001 * | |
Linalool | 4.9 ± 0.5 f | 5.7 ± 0.8 e | 5.3 ± 0.2 d | 6.0 ± 0.2 c | 6.3 ± 0.2 bc | 6.9 ± 0.2 a | 3.6 ± 0.1 g | 4.3 ± 0.2 ef | 6.6 ± 0.2 ab | <0.0001 * | |
4-terpineol | 1.7 ± 0.4 de | 1.8 ± 0.1 e | 2.9 ± 0.1 c | 2.9 ± 0.1 c | 3.1 ± 0.1 c | 4.0 ± 0.1 a | 1.5 ± 0.2 de | 1.6 ± 0.1 d | 3.6 ± 0.2 b | <0.0001 * | |
Hotrienol | 18.2 ± 1.3 g | 18.8 ± 1.3 fg | 22.4 ± 1.5 de | 24.9 ± 1.7 cd | 30.9 ± 1.2 ab | 34.4 ± 1.2 a | 14.6 ± 1 g | 20.2 ± 0.7 ef | 27.7 ± 1.9 bc | <0.0001 * | |
Neral | 2.1 ± 0.7 fg | 2.1 ± 0.8 f | 2.3 ± 0.0 e | 2.6 ± 0.1 d | 4.1 ± 0.2 b | 4.7 ± 0.1 a | 1.4 ± 0.0 g | 2.4 ± 0.2 de | 3.0 ± 0.1 c | <0.0001 * | |
α-Terpineol | 2.9 ± 0.3 fg | 3.1 ± 0.2 f | 3.4 ± 0.1 e | 3.8 ± 0.1 d | 5.3 ± 0.2 b | 6.0 ± 0.2 a | 2.2 ± 0.1 g | 3.5 ± 0.1 e | 4.2 ± 0.1 c | <0.0001 * | |
Geranial | 3.4 ± 0.6 ef | 2.8 ± 0.1 de | 3.8 ± 0.3 cd | 4.3 ± 0.3 bc | 4.7 ± 0.2 ab | 5.1 ± 0.3 a | 2.6 ± 0.2 f | 3.2 ± 0.2 def | 4.6 ± 0.2 ab | <0.0001 * | |
Citronellol | 31.6 ± 2.2 c | 33.5 ± 2.4 c | 48.3 ± 4.1 b | 53.7 ± 4.5 ab | 54.7 ± 2.5 ab | 63.0 ± 2.9 a | 28.4 ± 2.4 c | 32.1 ± 1.5 c | 61.9 ± 5.2 a | <0.0001 * | |
Myrtenol | 104.1 ± 11.5 ef | 117.1 ± 13 def | 142.8 ± 17.3 cd | 150.8 ± 11.6 bc | 183.3 ± 8.4 ab | 203.8 ± 9.4 a | 87.2 ± 5.4 f | 124.8 ± 10.4 cde | 149.9 ± 1.6 c | <0.0001 * | |
Nerol | 141.1 ± 14.8 c | 158.1 ± 16.1 cb | 204.3 ± 22.6 ab | 231.3 ± 25.6 a | 206.3 ± 13.2 ab | 233.5 ± 14.7 a | 124.4 ± 13.8 c | 125.6 ± 7.9 c | 218.5 ± 4.5 a | 0.0002 * | |
Geraniol | 31.1 ± 4.1 de | 36.6 ± 5.5 cde | 45.2 ± 6.8 bcd | 56.9 ± 1.7 ab | 47.6 ± 5.3 bc | 52.9 ± 5.9 ab | 29.6 ± 4.4 e | 31.1 ± 3.5 de | 65.9 ± 2.5 a | 0.0003 * | |
E-Nerolidol | 165.1 ± 16.2 cd | 191.4 ± 18.6 bcd | 215 ± 22.3 abc | 243.4 ± 25.2 a | 227.8 ± 12.8 ab | 231.6 ± 8.5 ab | 145.7 ± 15.1 d | 164.4 ± 18.2 cd | 253.6 ± 2.5 a | 0.0019 * | |
Cedrol | 36.8 ± 1.2 de | 42.1 ± 1.8 d | 51.1 ± 1.9 c | 57.4 ± 2.1 b | 48.8 ± 2.6 c | 54.4 ± 2.9 bc | 32.9 ± 1.2 e | 31.4 ± 1.7 e | 64.0 ± 2.4 a | <0.0001 * | |
Geranic acid | 26.1 ± 1.5 d | 27.7 ± 1.5 d | 35.0 ± 1.7 c | 38.9 ± 1.8 bc | 53.1 ± 2.2 a | 58.7 ± 2.5 a | 22.9 ± 1.1 d | 37.4 ± 2.9 c | 43.3 ± 2.1 b | <0.0001 * |
Compounds | CT | Fun | Fun+Thy | Fun+Cin | Fun+Eug | Fun+Cin+Eug | Fun+Thy+Eug | Fun+Thy+Cin | Fun+Thy+Cin+Eug | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Esters | ||||||||||
Ethyl acetate | 25.1 ± 1.4 ef | 26.9 ± 1.3 de | 31.5 ± 1.5 cd | 35.7 ± 1.7 bc | 53.4 ± 2.8 a | 58.3 ± 3.0 a | 21.4 ± 1.2 f | 36.2 ± 1.9 bc | 39.0 ± 1.9 b | <0.0001 * |
Ethyl propionate | 32.1 ± 3.7 de | 31.2 ± 1.3 de | 152.9 ± 1.8 b | 46.8 ± 4.9 cd | 61.2 ± 9.5 c | 173.4 ± 5.0 a | 27.5 ± 2.9 e | 40.0 ± 6.2 de | 147.0 ± 11.5 b | <0.0001 * |
Ethyl isobutyrate | 37.6 ± 3.9 e | 45.2 ± 4.1 de | 49.9 ± 5.3 cde | 56.4 ± 6.2 bcd | 73.0 ± 7.2 ab | 79.7 ± 7.7 a | 33.8 ± 3.6 e | 49.5 ± 4.8 cde | 61.7 ± 6.5 bc | 0.0003 * |
Propyl acetate | 44.9 ± 1.3 f | 49.1 ± 1.3 de | 61.9 ± 1.9 c | 68.8 ± 2.1 b | 45.2 ± 1.2 ed | 52.5 ± 1.9 de | 40.5 ± 1.2 f | 30.1 ± 0.6 g | 76.5 ± 2.4 a | <0.0001 * |
Ethyl butyrate | 62.1 ± 7.1 d | 68.8 ± 7.9 d | 108.2 ± 3.4 c | 119.5 ± 3.6 abc | 111.4 ± 7.5 bc | 128.4 ± 8.6 abc | 55.9 ± 7.3 d | 65.5 ± 4.4 d | 136.6 ± 4.2 abc | <0.0001 * |
Ethyl 3-methylbutanoate | 32.8 ± 2.1 cde | 34.2 ± 2.9 cd | 26.3 ± 1.3 e | 48.3 ± 3.5 b | 57.1 ± 0.5 a | 37.1 ± 1.5 c | 28.4 ± 2.2 de | 33.7 ± 5.7 cde | 32.6 ± 1.6 cde | <0.0001 * |
Butyl acetate | 13.8 ± 1.6 d | 14.9 ± 1.5 cd | 58.4 ± 7.4 b | 21.3 ± 2.2 cd | 27.9 ± 4.3 c | 79.1 ± 2.3 a | 12.6 ± 1.3 d | 18.2 ± 2.8 cd | 72.2 ± 9.1 a | <0.0001 * |
Ethyl pentanoate | 41.8 ± 2.9 d | 46.1 ± 3.2 cd | 66.1 ± 4.8 b | 73.5 ± 5.3 ab | 60.4 ± 0.6 bc | 80.0 ± 1.3 a | 38.9 ± 2.8 d | 46.1 ± 7.9 d | 84.7 ± 6.2 a | <0.0001 * |
Ethyl hexanoate | 12.2 ± 1.2 de | 12.9 ± 1.3 cde | 16.5 ± 1.7 cde | 18.4 ± 1.9 bcd | 24.0 ± 3.7 ab | 26.7 ± 4.2 a | 10.8 ± 1.1 e | 15.7 ± 2.4 cde | 20.4 ± 2.2 abc | 0.0025 * |
Hexyl acetate | 41.8 ± 7.0 d | 43.9 ± 7.2 cd | 62.8 ± 11.3 bc | 69.9 ± 1.2 ab | 72.9 ± 8.2 ab | 86.2 ± 0.4 a | 36.9 ± 6.7 d | 45.0 ± 6.6 cd | 76.8 ± 1.1 ab | 0.0002 * |
(Z)-3-hexenyl acetate | 80.1 ± 2.9 de | 90.1 ± 1.6 d | 102.2 ± 3.1 c | 115.7 ± 3.6 b | 120.0 ± 7.2 b | 134.7 ± 4.4 a | 69.3 ± 2.1 e | 81.4 ± 4.9 d | 126.4 ± 3.9 ab | <0.0001 * |
Ethyl heptanoate | 185.3 ± 7.6 ef | 205.4 ± 9.7 de | 254.0 ± 12.0 c | 282.5 ± 13.4 b | 237.6 ± 2.8 c | 231.1 ± 4.6 cd | 166.1 ± 7.9 fg | 149.8 ± 1.9 g | 314.1 ± 14.9 a | <0.0001 * |
Ethyl octanoate | 440.1 ± 13.9 e | 511.1 ± 11.8 d | 566.7 ± 14.0 c | 641.5 ± 15.8 b | 628.6 ± 11.2 b | 686.6 ± 12.3 a | 373.1 ± 19.8 f | 417.7 ± 15.9 e | 715.7 ± 8.7 a | <0.0001 * |
Ethyl 3-hydroxybutyrate | 172.9 ± 7.6 b | 115.1 ± 3.1 c | 173.4 ± 7.8 b | 113.1 ± 2.9 c | 258.6 ± 7.4 a | 123.4 ± 3.9 c | 258.6 ± 7.4 a | 113.1 ± 2.9 c | 173.4 ± 7.8 b | <0.0001 * |
Compounds | CT | Fun | Fun+Thy | Fun+Cin | Fun+Eug | Fun+Cin+Eug | Fun+Thy+Eug | Fun+Thy+Cin | Fun+Thy+Cin+Eug | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
C6 Compounds | ||||||||||
Hexanal | 4.7 ± 0.8 c | 5.1 ± 0.3 bc | 6.1 ± 0.9 ab | 6.2 ± 0 a | 4.8 ± 0.4 bc | 6.2 ± 0.2 a | 4.8 ± 0.3 bc | 5.4 ± 0.8 abc | 5.8 ± 0.1 ab | 0.0418 |
(Z)-3-hexenal | 1.7 ± 0.1 | 1.6 ± 0.1 | 1.5 ± 0.2 | 1.7 ± 0.1 | 1.7 ± 0.3 | 1.9 ± 0.1 | 2.3 ± 0.0 | 2.0 ± 0.4 | 1.4 ± 0.1 | 0.1417 |
(E)-2-hexenal | 2.1 ± 0.1 | 2.3 ± 0.2 | 2 ± 0.1 | 2.2 ± 0.2 | 1.9 ± 0.1 | 2.1 ± 0.3 | 2.4 ± 0.3 | 2.1 ± 0.2 | 2.0 ± 0.2 | 0.6759 |
Hexanol | 3.4 ± 0.3 | 3.2 ± 0.1 | 2.8 ± 0.2 | 3 ± 0.2 | 3 ± 0.3 | 3.5 ± 0.3 | 3.2 ± 0.2 | 3.3 ± 0.4 | 2.7 ± 0.1 | 0.2981 |
(E)-3-hexenol | 1.8 ± 0.3 | 1.6 ± 0.2 | 1.3 ± 0.1 | 1.5 ± 0.2 | 1.5 ± 0.2 | 1.8 ± 0.2 | 1.9 ± 0.2 | 1.5 ± 0.1 | 1.4 ± 0.0 | 0.2435 |
(Z)-3-hexenol | 0.6 ± 0.2 | 0.5 ± 0.1 | 0.4 ± 0 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.6 ± 0.1 | 0.8 ± 0.1 | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.0994 |
(E)-2-hexenol | 1.6 ± 0.3 | 1.5 ± 0.2 | 1.4 ± 0.2 | 1.4 ± 0.2 | 1.4 ± 0.1 | 1.7 ± 0.0 | 1.5 ± 0.1 | 1.4 ± 0.1 | 1.5 ± 0.2 | 0.6185 |
Alcohols | ||||||||||
2-heptanol | 0.5 ± 0.0 | 0.8 ± 0.1 | 0.5 ± 0.1 | 0.4 ± 0.0 | 0.5 ± 0.1 | 0.4 ± 0.0 | 0.6 ± 0.1 | 0.4 ± 0.0 | 0.3 ± 0.0 | 0.0691 |
1-octen-3-ol | 0.5 ± 0.1 cd | 0.7 ± 0.8 d | 0.6 ± 0.2 cd | 0.6 ± 0.2 cd | 0.6 ± 0.0 cd | 0.6 ± 0.2 cd | 2.5 ± 0.0 a | 0.8 ± 0.0 b | 0.7 ± 0.0 c | <0.0001 * |
Heptanol | 6.1 ± 0.8 | 5.5 ± 0.2 | 5.5 ± 0.3 | 5.5 ± 0.4 | 4.9 ± 0.6 | 6.3 ± 0.6 | 5.8 ± 0.6 | 6.5 ± 0.9 | 6.1 ± 0.1 | 0.4128 |
2-ethyl hexanol | 1.4 ± 0.1 cde | 1.3 ± 0.1 cde | 1.2 ± 0.2 de | 1.5 ± 0.2 bcd | 1.1 ± 0.1 e | 1.7 ± 0.1 b | 2.3 ± 0.0 a | 1.5 ± 0.2 bc | 1.3 ± 0.1 cde | <0.0001 * |
Octanol | 1.5 ± 0.2 b | 1.4 ± 0.1 b | 1.1 ± 0.1 b | 1.3 ± 0.2 b | 1.3 ± 0.3 b | 1.5 ± 0.2 b | 2.2 ± 0.2 a | 1.4 ± 0.1 b | 1.2 ± 0.2 b | 0.0043 * |
Nonanol | 1.6 ± 0.1 | 1.3 ± 0.2 | 1.2 ± 0.1 | 1.4 ± 0.3 | 1.4 ± 0.3 | 1.4 ± 0.2 | 1.8 ± 0.1 | 1.5 ± 0.1 | 1.2 ± 0.0 | 0.2225 |
Benzyl alcohol | 3.6 ± 0.5 bdc | 3.2 ± 0.3 cde | 3.3 ± 0.2 cd | 3.0 ± 0.3 cde | 2.8 ± 0.4 de | 4.3 ± 0.3 a | 2.5 ± 0.1 e | 4.2 ± 0.2 ab | 3.7 ± 0.2 abc | 0.0016 * |
Phenylethyl alcohol | 2.5 ± 0.3 | 2.6 ± 0.5 | 2.1 ± 0.1 | 2.2 ± 0.1 | 1.9 ± 0.2 | 2.4 ± 0.1 | 2.0 ± 0.3 | 2.2 ± 0.2 | 2.2 ± 0.1 | 0.6595 |
Compounds | CT | Fun | Fun+Thy | Fun+Cin | Fun+Eug | Fun+Cin+Eug | Fun+Thy+Eug | Fun+Thy+Cin | Thy+Cin+Fun+Eug | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Acids | ||||||||||
Hexanoic acid | 0.1 ± 0.3 bc | 0.1 ± 0.4 bcd | 0.1 ± 0.2 bcd | 0.1 ± 0.0 d | 0.1 ± 0.2 cd | 0.1 ± 0.2 bcd | 0.1 ± 0.2 ab | 0.2 ± 0.0 a | 0.1 ± 0.0 ab | 0.0055 * |
2-hexenoic acid | 0.1 ± 0.1 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.3171 |
Octanoic acid | 0.7 ± 0.1 b | 0.6 ± 0.1 b | 0.7 ± 0.1 b | 0.8 ± 0.1 b | 0.6 ± 0.0 b | 0.9 ± 0.1 b | 3.7 ± 0.3 a | 0.9 ± 0.0 b | 0.8 ± 0.1 b | <0.0001 * |
Aldehydes | ||||||||||
2-methylbutanal | 0.4 ± 0.1 a | 0.2 ± 0.1 b | 0.1 ± 0.0 b | 0.1 ± 0.0 b | 0.1 ± 0.0 b | 0.1 ± 0.0 a | 0.1 ± 0.0 b | 0.1 ± 0.0 b | 0.1 ± 0.0 b | 0.0006 * |
3-methylbutanal | 6.4 ± 0.2 a | 5.7 ± 0.2 b | 1.3 ± 0.1 e | 0.8 ± 0.2 f | 0.9 ± 0.1 f | 1.8 ± 0.0 d | 2.6 ± 0.2 c | 2.6 ± 0.0 c | 2.3 ± 0.0 c | <0.0001 * |
Pentanal | 389.0 ± 13.2 g | 550.9 ± 12.1 g | 4304.3 ± 175.7 d | 6126.6 ± 84.7 b | 5142.8 ± 129.1 c | 5021.5 ± 184.1 c | 1970.2 ± 198.3 f | 3073.3 ± 162.6 e | 8196.6 ± 161 a | <0.0001 * |
Octanal | 7.4 ± 0.2 a | 7.1 ± 0.1 a | 3.1 ± 0.1 c | 2.5 ± 0.2 de | 2.7 ± 0.0 d | 3.3 ± 0.1 c | 2.4 ± 0.0 e | 3.6 ± 0.1 b | 1.9 ± 0.1 f | <0.0001 * |
Nonanal | 8.4 ± 0.1 a | 8.1 ± 0.2 b | 2.9 ± 0.2 ef | 2.5 ± 0.2 fg | 2.7 ± 0.2 ef | 4.2 ± 0.0 c | 3.5 ± 0.1 d | 4.4 ± 0.1 c | 2.3 ± 0.1 g | <0.0001 * |
(E)-2-octenal | 11.2 ± 0.2 a | 9.6 ± 0.2 b | 4.2 ± 0.1 c | 3.4 ± 0.1 d | 3.9 ± 0.1 c | 3.5 ± 0.0.0 d | 3.1 ± 0.2 e | 3.4 ± 0.0 d | 3.0 ± 0.1 e | <0.0001 * |
Benzaldehyde | 2.5 ± 0.2 a | 2.5 ± 0.2 b | 1.7 ± 0.1 c | 1.2 ± 0.1 d | 1.4 ± 0.1 d | 0.8 ± 0.0 e | 0.9 ± 0.0 e | 0.7 ± 0.0 e | 0.8 ± 0.1 e | <0.0001 * |
Phenylacetaldehyde | 25.8 ± 0.3 a | 25.1 ± 0.9 b | 9.9 ± 0.5 c | 7.0 ± 0.2 ef | 8.1 ± 0.3 de | 7.5 ± 0.4 de | 8.4 ± 0.5 d | 8.8 ± 0.3 cd | 6.0 ± 0.3 f | <0.0001 * |
C13-Norisoprenoids | ||||||||||
β-Damascenone | 38.2 ± 2.5 c | 41.1 ± 3.1 bc | 64.3 ± 11.4 a | 65.4 ± 4.9 a | 67.9 ± 3.6 a | 70.5 ± 8.5 a | 34.6 ± 2.6 c | 39.9 ± 2.2 bc | 55.7 ± 0.8 ab | 0.0003 * |
Geranyl acetone | 154.2 ± 12.5 e | 174.4 ± 11.7 de | 211.1 ± 16.2 cd | 234.8 ± 17.8 bc | 278.1 ± 17.7 ab | 309.3 ± 19.6 a | 138.1 ± 10.5 e | 181.9 ± 11.6 de | 261.0 ± 19.8 b | <0.0001 * |
β-Ionone | 44.0 ± 3.4 d | 52.6 ± 4.7 cd | 67.4 ± 5.2 bc | 74.9 ± 5.6 ab | 77.8 ± 4.2 ab | 86.5 ± 4.6 a | 44.1 ± 3.3 d | 50.9 ± 2.7 d | 83.3 ± 6.2 a | <0.0001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakus, S.; Hatterman-Valenti, H.; Sahin, M.; Kaya, O. Comprehensive Analysis of Volatile Organic Compounds and Their Impact on Apple Quality Following Some Essential Oil Treatments Against Botrytis cinerea. Horticulturae 2024, 10, 1359. https://doi.org/10.3390/horticulturae10121359
Karakus S, Hatterman-Valenti H, Sahin M, Kaya O. Comprehensive Analysis of Volatile Organic Compounds and Their Impact on Apple Quality Following Some Essential Oil Treatments Against Botrytis cinerea. Horticulturae. 2024; 10(12):1359. https://doi.org/10.3390/horticulturae10121359
Chicago/Turabian StyleKarakus, Sinem, Harlene Hatterman-Valenti, Muge Sahin, and Ozkan Kaya. 2024. "Comprehensive Analysis of Volatile Organic Compounds and Their Impact on Apple Quality Following Some Essential Oil Treatments Against Botrytis cinerea" Horticulturae 10, no. 12: 1359. https://doi.org/10.3390/horticulturae10121359
APA StyleKarakus, S., Hatterman-Valenti, H., Sahin, M., & Kaya, O. (2024). Comprehensive Analysis of Volatile Organic Compounds and Their Impact on Apple Quality Following Some Essential Oil Treatments Against Botrytis cinerea. Horticulturae, 10(12), 1359. https://doi.org/10.3390/horticulturae10121359