Farrar, M.B.; Martinez, M.; Jones, K.; Omidvar, N.; Wallace, H.M.; Chen, T.; Hosseini Bai, S.
The Potential for Hyperspectral Imaging and Machine Learning to Classify Internal Quality Defects in Macadamia Nuts. Horticulturae 2024, 10, 1129.
https://doi.org/10.3390/horticulturae10111129
AMA Style
Farrar MB, Martinez M, Jones K, Omidvar N, Wallace HM, Chen T, Hosseini Bai S.
The Potential for Hyperspectral Imaging and Machine Learning to Classify Internal Quality Defects in Macadamia Nuts. Horticulturae. 2024; 10(11):1129.
https://doi.org/10.3390/horticulturae10111129
Chicago/Turabian Style
Farrar, Michael B., Marcela Martinez, Kim Jones, Negar Omidvar, Helen M. Wallace, Thomas Chen, and Shahla Hosseini Bai.
2024. "The Potential for Hyperspectral Imaging and Machine Learning to Classify Internal Quality Defects in Macadamia Nuts" Horticulturae 10, no. 11: 1129.
https://doi.org/10.3390/horticulturae10111129
APA Style
Farrar, M. B., Martinez, M., Jones, K., Omidvar, N., Wallace, H. M., Chen, T., & Hosseini Bai, S.
(2024). The Potential for Hyperspectral Imaging and Machine Learning to Classify Internal Quality Defects in Macadamia Nuts. Horticulturae, 10(11), 1129.
https://doi.org/10.3390/horticulturae10111129