Biological Acclimatization of Micropropagated Al-Taif Rose (Rosa damascena f. trigintipetala (Dieck) R. Keller) Plants Using Arbuscular Mycorrhizal Fungi Rhizophagus fasciculatus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Plant Materials
2.2. Preparation of AMF Inoculum and Arbuscular Mycorrhizal Fungi (AMF) Treatment
2.3. Mycorrhizal Evaluations Following Host Plant Bio-Inoculation
2.4. Vegetative Growth Analysis of AMF-Treated and Control Plants
2.5. Analysis of the Gas Exchange Characteristics of Leaves
2.6. Estimation of Chlorophyll Fluorescence
2.7. Microscopic Observation of Stomata
2.8. Estimation of Proline Content
2.9. Experimental Design and Data Analysis
3. Results
3.1. Mycorrhizal Colonization
3.2. Growth Parameters
3.3. Stomatal Frequency, Stomatal Conductance, Leaf Gas Exchange, and Transpiration Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Rout, G.R.; Mohapatra, A.; Jain, S.M. Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnol. Adv. 2006, 24, 531–560. [Google Scholar] [CrossRef] [PubMed]
- Yassemin, S.; Beruto, M. A review on flower bulb micropropagation: Challenges and opportunities. Horticulturae 2024, 10, 284. [Google Scholar] [CrossRef]
- Murthy, H.N.; Jospeh, K.S.; Paek, K.Y.; Park, S.Y. Bioreactor systems for micropropagation of plants: Present scenario and future prospects. Front. Plant Sci. 2023, 14, 1159588. [Google Scholar] [CrossRef]
- Hwang, H.D.; Kwon, S.H.; Murthy, H.N.; Yan, S.W.; Pyo, S.S.; Park, S.Y. Temporary immersion bioreactor system as an efficient method for mass production of in vitro plants in horticulture and medicinal plants. Agronomy 2022, 12, 346. [Google Scholar] [CrossRef]
- Abdalla, N.; El-Ramady, H.; Seliem, M.K.; El-Mahrouk, M.E.; Taha, N.; Bayoumi, Y.; Shalaby, T.A.; Dobranszki, J. An academic and technical overview on plant micropropagation challenges. Horticulturae 2022, 8, 677. [Google Scholar] [CrossRef]
- Pospisilova, J.; Ticha, I.; Kadlecek, S.; Haisel, D.; Pizakova, S. Acclimatization of micropropagated plants in ex vitro conditions. Biol. Plant. 1999, 42, 481–497. [Google Scholar] [CrossRef]
- Smith, F.A.; Smith, F.E. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 2011, 62, 227–250. [Google Scholar] [CrossRef]
- Kapoor, R.; Sharma, D.; Bhatnagar, A.K. Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci. Hortic. 2008, 116, 227–239. [Google Scholar] [CrossRef]
- Wu, Q.S.; Zou, Y.N.; Wang, G.Y. Arbuscular mycorrhizal fungi and acclimatization of micropropagated citrus. Commun. Soil Sci. Plant Anal. 2011, 42, 1825–1832. [Google Scholar] [CrossRef]
- Gomez-Falcon, N.; Saenz-Carbonell, L.A.; Andrade-Torres, A.; Lara-Perez, L.A.; Narvez, M.; Oropeza, C. Arbuscular mycorrhizal fungi increases the survival and growth of micropropagated coconut (Cocos nucifera L.) plantlets. Vitr. Cell. Dev. Biol. Plant 2023, 59, 401–412. [Google Scholar] [CrossRef]
- Baltazar-Bernal, O.; Spinoso-Castillo, J.L.; Mancilla-Alvarez, E.; Bello-Bello, J.J. Arbuscular mycorrhizal fungi induce tolerance to salinity stress in taro plantlets (Colocasia esculenta L. Schott) during acclimatization. Plants 2022, 11, 1780. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.R.; de Melo, N.F.; Yano-Melo, A.M. Acclimatization of micropropagated plants Etlingera elatior (Jack) R.M. Sm. Inoculated with arbuscular mycorrhizal fungi. S. Afr. J. Bot. 2017, 113, 164–169. [Google Scholar] [CrossRef]
- Yadav, K.; Aggarwal, A.; Singh, N. Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth, enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Ind. Crop. Prod. 2013, 45, 88–93. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Habib, M.M.; Alaizari, A.A.; Malik, J.A.; Al-Ali, A.M.; Al-Qarawi, A.A.; Alwahibi, M.S. Promising application of automated liquid culture system and arbuscular mycorrhizal fungi for large-scale micropropagation of red dragon fruit. Plants 2023, 12, 1037. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.D.; Rech, T.D.; Primieri, S.; Pigozzi, B.G.; Werner, S.S.; Sturmer, S.L. Inoculation with isolated of arbuscular mycorrhizal fungi influences growth, nutrient use efficiency and gas exchange traits in micropropagated apple rootstock ‘Marubakaido’. Plant Cell Tissue Organ Cult. 2021, 145, 89–99. [Google Scholar] [CrossRef]
- Koffi, M.C.; Declerck, S. In vitro mycorrhization of banana (Musa acuminata) plantlets improves their growth during acclimatization. Vitr. Cell. Dev. Biol. Plant 2015, 51, 265–273. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Habib, M.M.; AlQarawi, A.A.; Alshahrani, T.S.; Alaizari, A.A.; Malik, J.A.; Alwahibi, M.S.; Murthy, H.N. Mycorrhization enhances vegetative growth, leaf gas exchange, and root development of micropropagated Philodendron bipinnatifidum Schott ex Endl. plantlets during acclimatization. Horticulturae 2023, 9, 276. [Google Scholar] [CrossRef]
- Geneva, M.; Hristozkova, M.; Kirova, E.; Sichanova, M.; Stanceva, I. Response to drought stress of in vitro and in vivo propagated Physalis peruviana L. plants inoculated with arbuscular mycorrhizal fungi. Agriculture 2023, 13, 472. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Al-Qarawi, A.A.; Alshahrani, T.; Bansal, Y.; Mujib, A.; Murthy, H.N.; Alebidi, A.I.; Almutairi, K.F.; Al-saif, A.M. Influence of arbuscular mycorrhizal fungi on the growth and development of micropropagated Rubus fruticosus ‘P45’ plants during acclimatization. HortScience 2023, 58, 871–876. [Google Scholar] [CrossRef]
- Mirjani, L.; Salimi, A.; Matinizadeh, M.; Razavi, K.; Shahbazi, M. The role of arbuscular mycorrhizal fungi on acclimatization of micropropagated plantlet Satureja khuzistanica Jam. by ameliorating the antioxidant activity and expression of PAL gene. Sci. Hortic. 2019, 253, 364–370. [Google Scholar] [CrossRef]
- Bahaffi, S.O. Volatile oil composition of Taif rose. J. Saudi Chem. Soc. 2005, 9, 401–406. [Google Scholar]
- Kürkçüoglu, M.; Abdel-Megeed, A.; Başer, K. The composition of Taif rose oil. J. Essent. Oil Res. 2013, 25, 364–367. [Google Scholar] [CrossRef]
- Wang, H. Beneficial medicinal effects and material applications of rose. Heliyon 2024, 10, e23530. [Google Scholar] [CrossRef]
- Bazaid, S.A. Protein and DNA fragments variation in relation to low temperature in four Rosa hybirida cultivars in Taif, Saudi Arabia. J. Egypt. Acad. Dev. 2004, 5, 77–90. [Google Scholar]
- Venkatesha, K.T.; Gupta, A.; Rai, A.N.; Jambhulkar, S.J.; Bisht, R.; Padalia, R.C. Recent developments, challenges, and opportunities in genetic improvement of essential oil-bearing rose (Rosa damascena): A review. Ind. Crop. Prod. 2022, 184, 114984. [Google Scholar] [CrossRef]
- Kumar, A.; Gautam, R.D.; Singh, S.; Chauhan, R.; Kumar, M.; Kumar, D.; Kumar, A.; Singh, S. Phenotypic floral traits and essential oil profiling revealed considerable variations in clonal selections of damask rose (Rosa damascena Mill.). Sci. Rep. 2023, 13, 8101. [Google Scholar] [CrossRef]
- Podwyszyńska, M.; Orlikowska, T.; Trojak-Goluch, A.; Wojtania, A. Application and improvement of in vitro culture systems for commercial production of ornamental, fruit, and industrial plants in Poland. Acta Soc. Bot. Pol. 2022, 91, 914. [Google Scholar] [CrossRef]
- Al-Ali, A.M.; Dewir, Y.H.; Al-Obeed, R.S. Influence of cytokinins, dark incubation and air-lift bioreactor culture on axillary shoot proliferation of Al-Taif Rose (Rosa damascena trigintipetala (Dieck) R. Keller). Horticulturae 2023, 9, 1109. [Google Scholar] [CrossRef]
- Al-Ali, A.M.; Dewir, Y.H.; Al-Obeed, R.S. Micropropagation of Al-Taif Rose: Effects of medium constituents and light on in vitro rooting and acclimatization. Agronomy 2024, 14, 1120. [Google Scholar] [CrossRef]
- Schüssler, A.; Walker, C. The Glomeromycota: A Species List with New Families and New Gener. In The Glomeromycota; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2010. [Google Scholar]
- Luxmi, S.; Singh, R.; Ahmed, S.; Gandhi, S.G.; Bhanwaria, R. Glomus fasciculatum an arbuscular mycorrhizal fungus alleviates the adverse effects of lead, arsenic, nickel, and improves growth parameters of Monarda citriodora Cerv. ex Lag (lemon beebalm). Rhizosphere 2023, 27, 100753. [Google Scholar] [CrossRef]
- Djighaly, P.I.; Diagne, N.; Ngom, M.; Ngom, D.; Hocher, V.; Fall, D.; Diouf, D.; Laplaze, L.; Svistoonoff, S.; Champion, A. Selection of arbuscular mycorrhizal fungal strains to improve Casuarina equisetifolia L. and Casuarina glauca Sieb. tolerance to salinity. Ann. For. Sci. 2018, 75, 72. [Google Scholar] [CrossRef]
- Solanki, M.K.; Kashyap, P.L.; Kumari, B.; Ansari, R.A.; Sumbul, A.; Rizvi, R.; Mahmood, I. Mycorrhizal fungi and its importance in plant health amelioration. In Microbiomes and Plant Health; Academic Press: Cambridge, MA, USA, 2021; pp. 205–223. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Gerdemann, J.; Nicolson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Walker, C. Spore Extraction by Centrifugation-Sugar Flotation; Biological Research and Imaging Laboratory: Hampshire, UK, 1997. [Google Scholar]
- Schenck, N.C.; Perez, Y. Manual for Identification of VA Mycorrhizal Fungi; Synergistic Publication: Gainesville, FL, USA, 1990. [Google Scholar]
- International Culture of Vesicular-Arbuscular Mycorrhizal Fungi (INAVAM). Available online: http://invam.caf.wvu.edu (accessed on 1 July 2023).
- Redecker, D.; Schüßler, A.; Stockinger, H.; Stürmer, S.L.; Morton, J.B.; Walker, C. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 2013, 23, 515–531. [Google Scholar] [CrossRef]
- Schüßler, A.; Schwarzott, D.; Walker, C. A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol. Res. 2001, 105, 1413–1421. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Tans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Cotton, R. Cytotaxonomy of the Genus Vulpia; The University of Manchester: Manchester, UK, 1974. [Google Scholar]
- Abraham, A.; Hourton-Cabassa, C.; Erdei, L.; Szabados, L. Methods for determination of proline in plants. Methods Mol. Biol. 2010, 639, 317–331. [Google Scholar] [CrossRef]
- Chandra, S.; Bandopadhyay, R.; Kumar, V.; Chandra, R. Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnol. Lett. 2010, 32, 1199–1205. [Google Scholar] [CrossRef]
- Hazarika, B.N. Acclimatizaiton of tissue-cultured plants. Curr. Sci. 2003, 85, 1704–1712. [Google Scholar]
- Preece, J.E.; Sutter, E.G. Acclimatization of micropropagated plants to the greenhouse and field. In Micropropagation; Debergh, P.C., Zimmerman, R.H., Eds.; Springer: Dordrecht, The Netherlands, 1991. [Google Scholar] [CrossRef]
- Koltai, H. Mycorrhiza in floriculture: Difficulties and opportunities. Symbiosis 2010, 52, 55–63. [Google Scholar] [CrossRef]
- Choi, J.; Summers, W.; Paszkowski, U. Mechanism underlaying establishment of arbuscular mycorrhizal symbioses. Annu. Rev. Phytopathol. 2018, 56, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.; Ahmaed, M.A. Arbuscular mycorrhiza symbiosis enhances water status and soil hydraulic conductance under drought. Front. Plant Sci. 2021, 12, 722954. [Google Scholar] [CrossRef]
- Sato, A.Y.; Nannetti, D.D.C.; Pinto, J.E.B.P.; Siqueira, J.O.; Blank, M.D.F.A. Application of arbuscular mycorrhiza to micropropagated Heliconia and Gerbera plants during acclimatization period. Hortic. Bras. 1999, 17, 25–28. [Google Scholar] [CrossRef]
- Wen, S.S.; Cheng, F.Y.; Zhong, Y.; Wang, X.; Li, L.Z.; Zhang, Y.X.; Qiu, J.M. Efficient protocols for the micropropagation of tree peony (Paeonia suffruticosa “Jin Pao Hong”, P. suffruticosa “Wu Long Peng Sheng”, and P. x lemoninei “High Noon”) and application of arbuscular mycorrhizal fungi to improve plantlet establishment. Sci. Hortic. 2016, 201, 10–17. [Google Scholar] [CrossRef]
- Puthur, J.T.; Prasad, K.V.S.K.; Sharmila, P.; Pardha Saradhi, P. Vesicular arbuscular mycorrhizal fungi improves establishment of micropropagated Leucaena leucocephala plantlets. Plant Cell Tissue Organ Cult. 1998, 53, 41–47. [Google Scholar] [CrossRef]
- Norman, J.R.; Atkinson, D.; Hooker, J.E. Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 1996, 185, 191–198. [Google Scholar] [CrossRef]
- Berta, G.; Fusconi, A.; Trotta, A. VA mycorrhizal infections and the morphology and function of root systems. Environ. Exp. Bot. 1993, 33, 159–173. [Google Scholar] [CrossRef]
- Estrada-Luna, A.; Davies, F.T., Jr. Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid, and growth of micropropgated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J. Plant Physiol. 2003, 160, 1073–1083. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Chakrabarty, D.; Ali, M.B.; Hahn, E.J.; Paek, K.Y. Effects of hydroponic solution EC, substrates, PPF and nutrient scheduling on growth and photosynthetic competence during acclimatization of micropropagated Spathiphyllum plantlets. Plant Growth Regul. 2005, 46, 241–251. [Google Scholar] [CrossRef]
- Sheng, M.; Tang, M.; Chan, H.; Yang, B.; Zhang, F.; Huang, Y. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 2008, 18, 287–296. [Google Scholar] [CrossRef]
- Zuccarini, P.; Okurowska, P. Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J. Plant Nutr. 2008, 31, 497–513. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Dowarah, B.; Gill, S.S.; Agarwala, N. Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. J. Plant Growth Regul. 2021, 42, 1429–1444. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, P.T.; Shanmugaiah, V.; Balasubramanian, N.; Gomathinayagam, S.; Sharma, M.P.; Muthuchelian, K. Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur. J. Soil Biol. 2010, 46, 151–156. [Google Scholar] [CrossRef]
- Abdel-Salam, E.; Alatar, A.; El-Sheikh, M.A. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J. Biol. Sci. 2018, 25, 1772–1780. [Google Scholar] [CrossRef]
Growth Parameters | Non-AMF | AMF-Treated |
---|---|---|
Plant height (cm) | 8.51 ± 0.356 | 23.53 ± 0.697 * |
Shoot fresh weight/plant (g) | 0.240 ± 0.016 | 0.938 ± 0.036 * |
Shoot dry weight/plant (g) | 0.089 ± 0.005 | 0.302 ± 0.009 * |
Number of leaves/plants | 6.4 ± 0.452 | 11.3 ± 0.731 * |
Leaf area/plant (cm2) | 12.24 ± 0.938 | 66.15 ± 3.014 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewir, Y.H.; Al-Ali, A.M.; Al-Obeed, R.S.; Habib, M.M.; Malik, J.A.; Alshahrani, T.S.; Al-Qarawi, A.A.; Murthy, H.N. Biological Acclimatization of Micropropagated Al-Taif Rose (Rosa damascena f. trigintipetala (Dieck) R. Keller) Plants Using Arbuscular Mycorrhizal Fungi Rhizophagus fasciculatus. Horticulturae 2024, 10, 1120. https://doi.org/10.3390/horticulturae10101120
Dewir YH, Al-Ali AM, Al-Obeed RS, Habib MM, Malik JA, Alshahrani TS, Al-Qarawi AA, Murthy HN. Biological Acclimatization of Micropropagated Al-Taif Rose (Rosa damascena f. trigintipetala (Dieck) R. Keller) Plants Using Arbuscular Mycorrhizal Fungi Rhizophagus fasciculatus. Horticulturae. 2024; 10(10):1120. https://doi.org/10.3390/horticulturae10101120
Chicago/Turabian StyleDewir, Yaser Hassan, Ali Mohsen Al-Ali, Rashid Sultan Al-Obeed, Muhammad M. Habib, Jahangir A. Malik, Thobayet S. Alshahrani, Abdulaziz A. Al-Qarawi, and Hosakatte Niranjana Murthy. 2024. "Biological Acclimatization of Micropropagated Al-Taif Rose (Rosa damascena f. trigintipetala (Dieck) R. Keller) Plants Using Arbuscular Mycorrhizal Fungi Rhizophagus fasciculatus" Horticulturae 10, no. 10: 1120. https://doi.org/10.3390/horticulturae10101120
APA StyleDewir, Y. H., Al-Ali, A. M., Al-Obeed, R. S., Habib, M. M., Malik, J. A., Alshahrani, T. S., Al-Qarawi, A. A., & Murthy, H. N. (2024). Biological Acclimatization of Micropropagated Al-Taif Rose (Rosa damascena f. trigintipetala (Dieck) R. Keller) Plants Using Arbuscular Mycorrhizal Fungi Rhizophagus fasciculatus. Horticulturae, 10(10), 1120. https://doi.org/10.3390/horticulturae10101120