Estimation of Cucumber Fruit Yield Cultivated Under Different Light Conditions in Greenhouses
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Cultivation Conditions
2.2. Crop Model Calibration and Validation
2.3. Model Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- RDA (Rural Development Administration). 2022 Agricultural Income Data Collection; RDA: Jeonju, Republic of Korea, 2023; pp. 20–47. ISSN 2983-3809. (In Korean) [Google Scholar]
- Lee, S.K.; Wee, T.S.; Choi, C.G.; Lee, H.J.; Koh, K.D.; Uhm, Y.C.; Jang, Y.A.; Sung, K.C.; Choi, K.S.; Kim, H.H.; et al. Cucumber-Agricultural Technology Guide 107; RDA (Rural Development Administration): Jeonju, Republic of Korea, 2021; pp. 43–52. ISBN 9788948071368. (In Korean) [Google Scholar]
- Shim, G.S.; Choi, D.B.; Lee, H.R.; Kim, S.C.; Lee, J.S.; Jung, K.H.; Han, K.H.; Hwang, J.H.; Kwon, J.K.; Lee, D.S.; et al. Smart Greenhouse Environmental Management Guidelines: 2017; RDA (Rural Development Administration): Jeonju, Republic of Korea, 2017; pp. 194–200. ISBN 9788948040821. (In Korean) [Google Scholar]
- Lee, H.M.; Jung, H.C.; Wie, J.E.; Moon, B.G. Climate over the Korean Peninsula: Heat Wave, Cold Wave, Drought, and Ocean Warming. J. Sci. Sci. Educ. 2018, 43, 13–22. (In Korean) [Google Scholar]
- Woo, S.H.; Yim, S.Y.; Kwon, M.H.; Kim, D.J. Decadal Change in Rainfall During the Changma Period in Early-2000s. Atmosphere 2017, 27, 345–358. (In Korean) [Google Scholar] [CrossRef]
- Yoon, S.; Kim, J.H.; Hwang, I.; Kim, D.; Shin, J.; Son, J.E. Effect of Stem Number on Growth, Fruit Quality, and Yield of Sweet Peppers Grown in Greenhouses under Supplemental Lighting with High Pressure Sodium Lamps in Winter. J. Bio-Environ. Control 2021, 30, 237–243. (In Korean) [Google Scholar] [CrossRef]
- Hong, I.; Ha, Y.; Kwack, Y. Changes in Light Transmittance of Greenhouse Covering Materials and Cucumber Growth as Affected by Particulate Matter. J. Bio-Environ. Control 2023, 32, 312–318. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.P.; Wang, J.Z.; Fu, W. Growth, Photosynthesis, and Nutrient Uptake at Different Light Intensities and Temperatures in Lettuce. HortScience 2019, 54, 1925–1933. [Google Scholar] [CrossRef]
- Dai, Y.; Shen, Z.; Liu, Y.; Wang, L.; Hannaway, D.; Lu, H. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ. Exp. Bot. 2009, 65, 177–182. [Google Scholar] [CrossRef]
- Dong, C.; Fu, Y.; Liu, G.; Liu, H. Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS. Adv. Space Res. 2014, 53, 1557–1566. [Google Scholar] [CrossRef]
- Paucek, I.; Pennisi, G.; Pistillo, A.; Appolloni, E.; Crepaldi, A.; Calegari, B.; Spinelli, F.; Cellini, A.; Gabarrell, X.; Orsini, F.; et al. Supplementary LED Interlighting Improves Yield and Precocity of Greenhouse Tomatoes in the Mediterranean. Agronomy 2020, 10, 1002. [Google Scholar] [CrossRef]
- Yu, J.; Yun, J.H.; Hwang, S.Y.; Park, E.W.; Hwang, J.H.; Choi, H.E.; Koo, J.K.; Hwang, H.S.; Hwang, S.J. Effect of Shading and Supplemental Lighting for Greenhouse Cultivation of Cucumber in Summer Season. J. Bio-Environ. Control 2023, 32, 226–233. (In Korean) [Google Scholar] [CrossRef]
- Kowalczyk, K.; Olewnicki, D.; Mirgos, M.; Gajc-Wolska, J. Comparison of Selected Costs in Greenhouse Cucumber Production with LED and HPS Supplemental Assimilation Lighting. Agronomy 2020, 10, 1342. [Google Scholar] [CrossRef]
- Chapagain, R.; Remenyi, T.R.; Harris, R.M.B.; Mohammed, C.L.; Huth, N.; Wallach, D.; Rezaei, E.E.; Ojeda, J. Decomposing crop model uncertainty: A systematic review. Field Crops Res. 2022, 279, 108448. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Seligman, N. Criteria for publishing papers on crop modeling. Field Crops Res. 2000, 68, 165–172. [Google Scholar] [CrossRef]
- Lim, J.T.; Lee, B.W.; Shin, J.C.; Lee, C.K.; Moon, K.H.; Lee, K.O. Theory and Practice of Crop Growth Modeling = Crop Growth Modeling; Kyungjinmunhwa: Seoul, Repubic of Korea, 2009; pp. 23–50. ISBN 9788959960606. (In Korean) [Google Scholar]
- Hammer, G.L.; Kropff, M.J.; Sinclair, T.R.; Porter, J.R. Future contributions of crop modelling—From heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. Eur. J. Agron. 2002, 18, 15–31. [Google Scholar] [CrossRef]
- Rauff, K.O.; Bello, R. A Review of Crop Growth Simulation Models as Tools for Agricultural Meteorology. Agric. Sci. 2015, 6, 1098–1105. [Google Scholar] [CrossRef]
- Kim, S.K.; Lee, S.K.; Lee, H.J.; Lee, J.K. Horticultural Crop Growth Models for Smart Farms: Utilizing Technical, Descriptive, and Structural Growth Models. J. Korean Soc. Agric. Eng. 2017, 59, 28–37. (In Korean) [Google Scholar]
- Mareclis, L.F.M.; Heuvelink, E.; Goudriaan, J. Modelling biomass production and yield of horticultural crops: A review. Sci. Hortic. 1998, 74, 83–111. [Google Scholar] [CrossRef]
- Mareclis, L.F.M. Fruit growth and biomass allocation to the fruits in cucumber. 2. Effect of irradiance. Sci. Hortic. 1993, 54, 123–130. [Google Scholar] [CrossRef]
- Maeda, K.; Ahn, D.H. Estimation of Dry Matter Production and Yield Prediction in Greenhouse Cucumber without Destructive Measurements. Agriculture 2021, 11, 1186. [Google Scholar] [CrossRef]
- Cho, Y.Y.; Oh, S.; Oh, M.M.; Son, J.E. Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Sci. Hortic. 2007, 111, 330–334. [Google Scholar] [CrossRef]
- Maeda, K.; Ahn, D.H. Analysis of Growth and Yield of Three Types Cucumbers (Cucumis sativus L.) Based on Yield Components. Horticulturae 2022, 8, 33. [Google Scholar] [CrossRef]
- Marcelis, L.F.M. A Simulation Model for Dry Matter Partioning in Cucumber. Ann. Bot. 1994, 74, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Marcelis, L.F.M.; Gijzen, H. Evaluation under commercial conditions of a model of prediction of the yield and quality of cucumber fruits. Sci. Hortic. 1998, 76, 171–181. [Google Scholar] [CrossRef]
- Ding, X.; Jiang, Y.; Hui, D.; He, L.; Huang, D.; Yu, J.; Zhou, Q. Model Simulation of Cucumber Yield and Microclimate Analysis in a Semi-closed Greenhouse in China. HortScience 2019, 54, 547–554. [Google Scholar] [CrossRef]
- Higashide, T.; Heuvelink, E. Physiological and Morphological Changes Over the Past 50 Years in Yield Components in Tomato. J. Am. Soc. Hortic. Sci. 2009, 134, 460–465. [Google Scholar] [CrossRef]
- Higashide, T.; Gotoh, I.; Suzuki, K.; Yasuba, K.; Tsukazawa, K.; Ahn, D.H.; Iwasaki, Y. Effects of Pinching and Lowering on Cucumber Yield and Yield Components. Hortic. Res. 2012, 11, 523–529. [Google Scholar] [CrossRef]
- Paola, A.D.; Valentini, R.; Santini, M. An overview of available crop growth and yield models for studies and assessments in agriculture. J. Sci. Food Agric. 2016, 96, 709–714. [Google Scholar] [CrossRef]
- Saito, T.; Kawasaki, Y.; Ahn, D.H.; Ohyama, A.; Higashide, T. Prediction and Improvement of Yield and Dry Matter Production Based on Modeling and Non-destructive Measurement in Year-round Greenhouse Tomatoes. Hortic. J. 2020, 89, 425–431. [Google Scholar] [CrossRef]
- Mulla, S.; Singh, S.K.; Singh, K.K.; Praveen, B. Climate Change and Agriculture: A Review of Crop Models. In Global Climate Change and Environmental Policy; Venkatramanan, V., Shah, S., Prasad, R., Eds.; Springer: Singapore, 2020; pp. 423–435. ISBN 9789811395703. [Google Scholar]
- Feng, X.; Tian, H.; Cong, J.; Zhao, C. A method review of the climate change impact on crop yield. Front. For. Glob. Chang. 2023, 6, 1198186. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, X.; Khanal, S.; Wilson, R.; Leng, G.; Toman, E.M.; Wang, X.; Li, Y.; Zhao, K. Climate change impacts on crop yields: A review of empirical findings, statistical crop models, and machine learning methods. Environ. Model. Softw. 2024, 179, 106119. [Google Scholar] [CrossRef]
- Kowalczyk, K.; Gajc-Wolska, J.; Mirgos, M.; Geszprych, A.; Kowalczyk, W.; Sieczko, L.; Niedzińska, M.; Gajewski, M. Mineral nutrients needs of cucumber and its yield in protected winter cultivation, with HPS and LED supplementary lighting. Sci. Hortic. 2020, 265, 109217. [Google Scholar] [CrossRef]
- Gajc-Wolska, J.; Kowalczyk, K.; Przybysz, A.; Mirgos, M.; Orliński, P. Photosynthetic Efficiency and Yield of Cucumber (Cucumis sativus L.) Grown under HPS and LED Lighting in Autumn–Winter Cultivation. Plants 2021, 10, 2042. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.B.; Lee, J.H.; Roh, Y.H.; Choi, I.L.; Kim, Y.; Kim, J.; Kang, H.M. Effect of Supplemental Inter-Lighting on Paprika Cultivated in an Unheated Greenhouse in Summer Using Various Light-Emitting Diodes. Plants 2023, 12, 1684. [Google Scholar] [CrossRef] [PubMed]
Treatments | Observation (%) | Simulation (%) |
---|---|---|
SH10% | −19.56 | −08.85 |
SH20% | −28.97 | −22.87 |
SH30% | −67.28 | −64.45 |
Treatments | Observation (%) | Simulation (%) |
---|---|---|
Control | 15.21 | 18.25 |
SH10% | 31.94 | 22.00 |
SH20% | 39.54 | 30.02 |
SH30% | 149.04 | 154.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, I.; Yu, J.; Hwang, S.J.; Kwack, Y. Estimation of Cucumber Fruit Yield Cultivated Under Different Light Conditions in Greenhouses. Horticulturae 2024, 10, 1117. https://doi.org/10.3390/horticulturae10101117
Hong I, Yu J, Hwang SJ, Kwack Y. Estimation of Cucumber Fruit Yield Cultivated Under Different Light Conditions in Greenhouses. Horticulturae. 2024; 10(10):1117. https://doi.org/10.3390/horticulturae10101117
Chicago/Turabian StyleHong, Inseo, Jin Yu, Seung Jae Hwang, and Yurina Kwack. 2024. "Estimation of Cucumber Fruit Yield Cultivated Under Different Light Conditions in Greenhouses" Horticulturae 10, no. 10: 1117. https://doi.org/10.3390/horticulturae10101117
APA StyleHong, I., Yu, J., Hwang, S. J., & Kwack, Y. (2024). Estimation of Cucumber Fruit Yield Cultivated Under Different Light Conditions in Greenhouses. Horticulturae, 10(10), 1117. https://doi.org/10.3390/horticulturae10101117