Irrigation Regime Optimization Plays a Critically Important Role in Plastic-Shed Vegetable Production to Mitigate Short-Term and Future N Leaching Pollution
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. N Leaching Measurement and Calculation
2.3. Statistical Analysis
3. Results
3.1. Tomato Yield and Water Percolation
3.2. N Leaching
3.3. Contributions of Reducing Fertilization and Switching Flood Irrigation to Drip Irrigation to N Leaching Mitigation
4. Discussion
4.1. Which More Effectively Mitigates N Leaching in Plastic-Shed Vegetable Production: Fertilization Reduction or Switching the Irrigation Regime?
4.2. Long-Term and High-Fertilization-Accumulated N in Soil Contributed Equally as Fertilizer N to N Leaching
4.3. Optimal Fertilization Timing to Reduce N Leaching in Plastic-Shed Vegetable Production
4.4. Implications for Nonpoint Source Pollution Control in Northern China
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, H.F.; Lin, S.; Wang, Y.F.; Lian, X.J.; Zhao, Y.M.; Li, Y.J.; Du, J.Y.; Wang, Z.X.; Wang, J.G.; Butterbach-Bahl, K. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system. Environ. Pollut. 2019, 245, 694–701. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. China Statistical Yearbook. 2022; pp. 12–18. Available online: http://www.stats.gov.cn/sj/ndsj/2022/indexch.htm (accessed on 12 March 2024). (In Chinese)
- Huaxia Industry Institute. Greenhouse Production Status Quo and Development in China in 2022. 19 April 2023. Available online: http://ngx.179c.com/p1943.html (accessed on 10 April 2024).
- Hu, J.; Gettel, G.; Fan, Z.B.; Lv, H.F.; Zhao, Y.M.; Yu, Y.L.; Wang, J.G.; Butterbach-Bahl, K.; Li, G.Y.; Lin, S. Drip fertigation promotes water and nitrogen use efficiency and yield stability through improved root growth for tomatoes in plastic greenhouse production. Agric. Ecosyst. Environ. 2021, 313, 107379. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Lv, H.F.; Qasim, W.; Wan, L.; Wang, Y.F.; Lian, X.J.; Liu, Y.N.; Hu, J.; Wang, Z.X.; Li, G.Y.; et al. Drip fertigation with straw incorporation significantly reduces N2O emission and N leaching while maintaining high vegetable yields in solar greenhouse production. Environ. Pollut. 2021, 273, 116521. [Google Scholar] [CrossRef] [PubMed]
- Qasim, W.; Xia, L.L.; Lin, S.; Wan, L.; Zhao, Y.M.; Butterbach-Bahl, K. Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis. Environ. Pollut. 2021, 272, 116372. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.; Zhang, W.; Xu, X.C.; Wang, L.G.; Bol, R.; Wang, K.Y.; Hu, Z.J.; Zhang, H.X.; Meng, F.Q. Exponential relationship between N2O emission and fertilizer nitrogen input and mechanisms for improving fertilizer nitrogen efficiency under intensive plastic-shed vegetable production in China: A systematic analysis. Agric. Ecosyst. Environ. 2021, 312, 107353. [Google Scholar] [CrossRef]
- Zikeli, S.; Deil, L.; Moeller, K. The challenge of imbalanced nutrient flows in organic farming systems: A study of organic greenhouses in Southern Germany. Agric. Ecosyst. Environ. 2017, 244, 1–13. [Google Scholar] [CrossRef]
- Li, J.A.; Liu, H.B.; Wang, H.Y.; Luo, J.F.; Zhang, X.J.; Liu, Z.H.; Zhang, Y.T.; Zhai, L.M.; Lei, Q.L.; Ren, T.Z.; et al. Managing irrigation and fertilization for the sustainable cultivation of greenhouse vegetables. Agric. Water Manag. 2018, 210, 354–363. [Google Scholar] [CrossRef]
- Yao, Z.S.; Yan, G.X.; Wang, R.; Zheng, X.H.; Liu, C.Y.; Butterbach-Bahl, K. Drip irrigation or reduced N-fertilizer rate can mitigate the high annual N2O + NO fluxes from Chinese intensive greenhouse vegetable systems. Atmos. Environ. 2019, 212, 183–193. [Google Scholar] [CrossRef]
- Granados, M.R.; Thompson, R.B.; Fernandez, M.D.; Martinez-Gaitan, C.; Gallardo, M. Prescriptive-corrective nitrogen and irrigation management of fertigated and drip-irrigated vegetable crops using modeling and monitoring approaches. Agric. Water Manag. 2013, 119, 121–134. [Google Scholar] [CrossRef]
- Xin, Y.; Tao, F.L. Developing climate-smart agricultural systems in the North China Plain. Agric. Ecosyst. Environ. 2020, 317, 1–15. [Google Scholar] [CrossRef]
- Song, X.Z.; Zhao, C.X.; Wang, X.L.; Li, J. Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China. C. R. Biol. 2009, 332, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Guo, L.P.; Zheng, L.; Zhang, Y.G.; Yang, R.Q.; Li, M.; Ma, F.; Zhang, X.Y.; Li, Y.C. Effects of nitrogen fertilizer and water management practices on nitrogen leaching from a typical open field used for vegetable planting in northern China. Agric. Water Manag. 2019, 213, 913–921. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, M.; Hou, M.; Chen, Y.M.; Sui, Y.Y.; Jiao, X.G. Regulation of nitrogen balance and yield on greenhouse eggplant under biochar addition in Mollisol. Plant Soil Environ. 2022, 68, 36–48. [Google Scholar] [CrossRef]
- Kou, X.Y.; Ding, J.J.; Li, Y.Z.; Li, Q.Z.; Mao, L.L.; Xu, C.Y.; Zheng, Q.; Zhuang, S. Tracing nitrate sources in the groundwater of an intensive agricultural region. Agric. Water Manag. 2021, 250, 106826. [Google Scholar] [CrossRef]
- Gao, Z.J.; He, K.Q.; Victor, K.; Liu, J.T.; Liu, R.N. Chemical characteristics of groundwater and nitrate health risk assessment in Dianbu area, Laixi, Shandong Province. Gr. Water 2022, 44, 1–4. (In Chinese) [Google Scholar]
- Jin, Y.W.; Lu, Y.C.; Xu, H.S.; Li, W.C.; Sun, Z.M. Inhibiting effects of nutrient managements on nitrate accumulation and leaching in vegetable soil: A meta-analysis. Trans. Chin. Soc. Agric. Eng. 2022, 38, 103–111. (In Chinese) [Google Scholar]
- Qasim, W.; Wan, L.; Lv, H.F.; Zhao, Y.M.; Hu, J.; Meng, F.Q.; Lin, S.; Butterbach-Bahl, K. Impact of anaerobic soil disinfestation on seasonal N2O emissions and N leaching in greenhouse vegetable production system depends on amount and quality of organic matter additions. Sci. Total Environ. 2022, 830, 154673. [Google Scholar] [CrossRef]
- Yang, H.; Du, T.S.; Qiu, R.J.; Chen, J.L.; Wang, F.; Li, Y.; Wang, C.X.; Gao, L.H.; Kang, S.Z. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agric. Water Manag. 2017, 179, 193–204. [Google Scholar] [CrossRef]
- Wang, X.Z.; Zou, C.Q.; Gao, X.P.; Guan, X.L.; Zhang, Y.Q.; Shi, X.J.; Chen, X.P. Nitrate leaching from open-field and greenhouse vegetable systems in China: A meta-analysis. Environ. Sci. Pollut. Res. 2018, 25, 31007–31016. [Google Scholar] [CrossRef]
- Fan, J.L.; Xiao, J.; Liu, D.Y.; Ye, G.P.; Luo, J.F.; Houlbrooke, D.; Laurenson, S.; Yan, J.; Chen, L.J.; Tian, J.P.; et al. Effect of application of dairy manure, effluent and inorganic fertilizer on nitrogen leaching in clayey fluvo-aquic soil: A lysimeter study. Sci. Total Environ. 2017, 592, 206–214. [Google Scholar] [CrossRef]
- Meng, F.Q.; Wang, K.; Xiao, G.M.; Wang, K.Y.; Hu, Z.J.; Zhang, H.X.; Xu, X.C.; Zhang, W.; Yang, X. Nitrogen leaching mitigation in fluvo-aquic soil in the North China Plain. Chin. J. Eco-Agric. 2021, 29, 141–153. (In Chinese) [Google Scholar]
- Tang, Q.; Cotton, A.; Wei, Z.J.; Xia, Y.Q.; Daniell, T.; Yan, X.Y. How does partial substitution of chemical fertiliser with organic forms increase sustainability of agricultural production? Sci. Total Environ. 2022, 803, 149933. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Fu, B.J.; Mao, R.Z. Effects of nitrogen fertilizer application rates on nitrate nitrogen distribution in saline soil in the Hai River Basin, China. J. Soils Sediments 2007, 7, 136–142. [Google Scholar] [CrossRef]
- Basso, B.; Ritchie, J.T. Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize-alfalfa rotation in Michigan. Agric. Ecosyst. Environ. 2005, 108, 329–341. [Google Scholar] [CrossRef]
- Teng, Y.M.; Han, H.; Hao, Z.Y.; Yang, H.F.; Li, J. Effect of vegetable cropping system on total nitrogen, phosphorus and COD in farmland leachate. Chin. J. Eco-Agric. 2017, 25, 759–768. (In Chinese) [Google Scholar]
- Zhao, Y.M.; Lin, S.; Wan, L.; Qasim, W.; Hu, J.; Xue, T.X.; Lv, H.F.; Butterbach-Bahl, K. Anaerobic soil disinfestation with incorporation of straw and manure significantly increases greenhouse gases emission and reduces nitrate leaching while increasing leaching of dissolved organic N. Sci. Total Environ. 2021, 785, 147307. [Google Scholar] [CrossRef]
- Asibi, A.E.; Yin, W.; Hu, F.L.; Fan, Z.L.; Gou, Z.W.; Yang, H.W.; Guo, Y.; Chai, Q. Optimized nitrogen rate, plant density, and irrigation level reduced ammonia emission and nitrate leaching on maize farmland in the oasis area of China. PeerJ 2022, 10, e12762. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.Q.; Gao, L.H.; Tian, Y.Q. Irrigation has more influence than fertilization on leaching water quality and the potential environmental risk in excessively fertilized vegetable soils. PLoS ONE 2018, 13, e0204570. [Google Scholar] [CrossRef]
- Sanchez-Martin, L.; Meijide, A.; Garcia-Torres, L.; Vallejo, A. Combination of drip irrigation and organic fertilizer for mitigating emissions of nitrogen oxides in semiarid climate. Agric. Ecosyst. Environ. 2010, 137, 99–107. [Google Scholar] [CrossRef]
- Wang, Z.H.; Chen, X.G.; Zheng, X.R.; Fan, W.B.; Li, W.H.; Zong, R. Discussion of the future development of field drip irrigation in China. Agric. Res. Arid Areas 2020, 38, 1–9. (In Chinese) [Google Scholar]
- Lv, H.F.; Zhou, W.W.; Dong, J.; He, S.P.; Chen, F.; Bi, M.H.; Wang, Q.Y.; Li, J.L.; Liang, B. Irrigation amount dominates soil mineral nitrogen leaching in plastic shed vegetable production systems. Agric. Ecosyst. Environ. 2021, 317, 107474. [Google Scholar] [CrossRef]
- Liang, B.; Tang, Y.H.; Wang, Q.Y.; Li, F.; Li, J.L. Drip irrigation and application of straw reducing nitrogen leaching loss in tomato greenhouse. Trans. Chin. Soc. Agric. Eng. 2019, 35, 78–85. (In Chinese) [Google Scholar]
- Bai, X.L.; Zhang, Z.B.; Cui, J.J.; Liu, Z.J.; Chen, Z.J.; Zhou, J.B. Strategies to mitigate nitrate leaching in vegetable production in China: A meta-analysis. Environ Sci. Pollut. 2020, 27, 18382–18391. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.; Xu, X.; Zhang, W.; Yang, X.; Liu, R.; Wang, L.; Wu, W.; Meng, F. Reduced fertilization mitigates N2O emission and drip irrigation has no impact on N2O and NO emissions in plastic-shed vegetable production in northern China. Sci. Total. Environ. 2022, 824, 153976. [Google Scholar] [CrossRef]
- Fan, Z.; Lin, S.; Zhang, X.; Jiang, Z.; Yang, K.; Jian, D.; Chen, Y.; Li, J.; Chen, Q.; Wang, J. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production. Agric. Water Manag. 2014, 144, 11–19. [Google Scholar] [CrossRef]
- Liang, H.; Lv, H.; Batchelor, W.D.; Lian, X.; Wang, Z.; Lin, S.; Hu, K. Simulating nitrate and DON leaching to optimize water and N management practices for greenhouse vegetable production systems. Agric. Water Manag. 2020, 241, 106377. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, J.H.; Chen, X.Q.; Zhang, X.J.; Zhang, W.L. Greenhouse tomato–cucumber yield and soil N leaching as affected by reducing N rate and adding manure: A case study in the Yellow River Irrigation Region China. Nutr. Cycl. Agroecosyst. 2012, 94, 221–235. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Pedescoll, A.; Knowles, P.R.; Davies, P.; Garcia, J.; Puigagut, J. A comparison of in situ constant and falling head permeameter tests to assess the distribution of clogging within horizontal subsurface flow constructed wetlands. Water Air Soil Pollut. 2012, 223, 2263–2275. [Google Scholar] [CrossRef]
- Soto, F.; Gallardo, M.; Thompson, R.B.; Peña-Fleitas, M.T.; Padilla, F.M. Consideration of total available N supply reduces N fertilizer requirement and potential for nitrate leaching loss in tomato production. Agric. Ecosyst. Environ. 2015, 200, 62–70. [Google Scholar] [CrossRef]
- Bai, X.L.; Gao, J.J.; Wang, S.C.; Cai, H.M.; Chen, Z.J.; Zhou, J.B. Excessive nutrient balance surpluses in newly built solar greenhouses over five years leads to high nutrient accumulations in soil. Agric. Ecosyst. Environ. 2020, 288, 106717. [Google Scholar] [CrossRef]
- Incrocci, L.; Massa, D.; Pardossi, A. New trends in the fertigation management of irrigated vegetable crops. Horticulturae 2017, 3, 37. [Google Scholar] [CrossRef]
- Chen, Y.M.; Zhang, J.Y.; Xu, X.; Qu, H.Y.; Hou, M.; Zhou, K.; Jiao, X.G.; Sui, Y.Y. Effects of different irrigation and fertilization practices on nitrogen leaching in facility vegetable production in northeastern China. Agric. Water Manag. 2018, 210, 165–170. [Google Scholar] [CrossRef]
- Zhu, J.H.; Li, X.L.; Christie, P.; Li, J.L. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems. Agric. Ecosyst. Environ. 2005, 111, 70–80. [Google Scholar] [CrossRef]
- Tei, F.; De Neve, S.; de Haan, J.; Kristensen, H.L. Nitrogen management of vegetable crops. Agric. Water Manag. 2020, 240, 106316. [Google Scholar] [CrossRef]
- Gong, F.; Sun, Y.J.; Wu, T.; Chen, F.; Liang, B.; Wu, J. Effects of reducing nitrogen application and adding straw on N2O emission and soil nitrogen leaching of tomato in greenhouse. Chemosphere 2022, 301, 134549. [Google Scholar] [CrossRef] [PubMed]
- Burt, T.P.; Howden, N.J.K.; Worrall, F.; Whelan, M.J. Importance of long-term monitoring for detecting environmental change: Lessons from a lowland river in south east England. Biogeosciences 2008, 5, 1529–1535. [Google Scholar] [CrossRef]
- Bruulsema, T.; Fixen, P.; Sulewski, G. 4R Plant Nutrition Manual: A Manual for Improving the Management of Plant Nutrition; International Plant Nutrition Institute (IPNI): Norcross, GA, USA, 2012. [Google Scholar]
- Musyoka, M.W.; Adamtey, N.; Bunemann, E.K.; Muriuki, A.W.; Karanja, E.N.; Mucheru-Muna, M.; Fiaboe, K.K.M.; Cadisch, G. Nitrogen release and synchrony in organic and conventional farming systems of the Central Highlands of Kenya. Nutr. Cycl. Agroecosyst. 2019, 113, 283–305. [Google Scholar] [CrossRef]
- Wang, S.B.; Feng, P.Y.; Batchelor, W.D.; Hu, K.L.; Li, J. Organic farming decreases nitrate leaching but increases dissolved organic nitrogen leaching in greenhouse vegetable production systems. Plant Soil 2022, 498, 111–124. [Google Scholar] [CrossRef]
- Wang, W.; Liang, B.; Kang, L.Y.; Zheng, Y.Y.; Li, J.L.; Chen, Q. Impact of nitrogen supply and straw application on dynamics soil nitrate leaching in greenhouse vegetable field. J. Soil Water Conserv. 2015, 29, 61–65. (In Chinese) [Google Scholar]
- Gallardo, M.; Elia, A.; Thompson, R.B. Decision support systems and models for aiding irrigation and nutrient management of vegetable crops. Agric. Water Manag. 2020, 240, 106209. [Google Scholar] [CrossRef]
- Gallardo, M.; Peña-Fleitas, M.T.; Padilla, F.M.; Cedeño, J.; Thompson, R.B. Prescriptive-corrective irrigation and macronutrient management in greenhouse soil-grown tomato using the vegsyst-DSS v2 decision support tool. Horticulturae 2023, 9, 1128. [Google Scholar] [CrossRef]
- Bahadur, A.; Singh, J. Optimization of Tensiometer-Based Drip Irrigation Scheduling and Its Effect on Growth, Yield and Water Use Efficiency in Tomato (Solanum lycopersicum). Agric. Res. 2021, 10, 675–681. [Google Scholar] [CrossRef]
- Gao, J.C.; Luo, J.F.; Lindsey, S.; Shi, Y.L.; Sun, Z.L.; Wei, Z.B.; Wang, L.L. Benefits and risks for the environment and crop production with application of nitrification inhibitors in China. J. Soil Sci. Plant Nutr. 2020, 21, 497–512. [Google Scholar] [CrossRef]
- Min, J.; Sun, H.J.; Kronzucker, H.J.; Wang, Y.; Shi, W.M. Comprehensive assessment of the effects of nitrification inhibitor application on reactive nitrogen loss in intensive vegetable production systems. Agric. Ecosyst. Environ. 2021, 307, 107227. [Google Scholar] [CrossRef]
- Mao, X.P.; Gu, J.L.; Wang, F.; Wang, K.; Liu, R.L.; Hong, Y.; Wang, Y.; Han, F.P. Yield, quality, and nitrogen leaching of open-field tomato in response to different nitrogen application measures in Northwestern China. Plants 2024, 13, 924. [Google Scholar] [CrossRef]
- Gallardo, M.; Thompson, R.B.; Valdez, L.C.; Fernández, M.D. Use of stem diameter variations to detect plant water stress in tomato. Irrig. Sci. 2006, 24, 241–255. [Google Scholar] [CrossRef]
- Thompson, R.B.; Padilla, F.M.; Pena-Fleitas, M.T.; Gallardo, M. Reducing nitrate leaching losses from vegetable production in Mediterranean greenhouses. Acta Hortic. 2020, 1268, 105–117. [Google Scholar] [CrossRef]
- Gallardo, M.; Thompson, R.B.; Rodríguez, J.S.; Rodríguez, F.; Fernández, M.D.; Sánchez, J.A.; Magán, J.J. Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate. Agric. Water Manag. 2009, 96, 1773–1784. [Google Scholar] [CrossRef]
2017–2018 Autumn–Winter Season | 2018 Winter–Spring Season | 2018–2019 Autumn–Winter Season | 2019 Winter–Spring Season | |
---|---|---|---|---|
(1st Season) | (2nd Season) | (3rd Season) | (4th Season) | |
Water percolation (mm) | ||||
CK | 117 ± 12.9 b | 82.4 ± 3.81 b | 90.1 ± 4.65 a | 108 ± 3.59 a |
CON | 130 ± 2.11 a | 90.4 ± 1.49 a | 92.9 ± 0.73 a | 120 ± 7.91 a |
OPT1 | 126 ± 0.46 ab | 85.3 ± 2.42 ab | 95.1 ± 5.35 a | 116 ± 4.48 a |
OPT2 | 58.8 ± 0.29 c | 56.0 ± 1.97 c | 50.0 ± 0.32 b | 60.1 ± 0.24 b |
OPT3 | 59.8 ± 1.76 c | 56.9 ± 1.28 c | 49.9 ± 1.20 b | 65.2 ± 0.76 b |
Water percolation ratio (%) | ||||
CK | 17.1 ± 1.89 a | 16.8 ± 0.78 ab | 19.1 ± 0.98 a | 15.7 ± 0.52 ab |
CON | 19.1 ± 0.31 a | 18.5 ± 0.30 a | 19.6 ± 0.15 a | 17.4 ± 1.15 a |
OPT1 | 18.4 ± 0.07 a | 17.4 ± 0.50 ab | 20.1 ± 1.13 a | 16.8 ± 0.65 a |
OPT2 | 13.1 ± 0.06 b | 15.8 ± 0.56 b | 16.2 ± 0.10 b | 13.9 ± 0.06 b |
OPT3 | 13.3 ± 0.39 b | 16.1 ± 0.36 b | 16.2 ± 0.39 b | 15.1 ± 0.18 b |
2017–2018 Autumn–Winter Season | 2018 Winter–Spring Season | 2018–2019 Autumn–Winter Season | 2019 Winter–Spring Season | Annual Average | |
---|---|---|---|---|---|
(1st Season) | (2nd Season) | (3rd Season) | (4th Season) | ||
TN leaching loss (kg N ha−1) | |||||
CK | 151 ± 17.3 d | 86.3 ± 3.98 c | 156 ± 7.74 c | 106 ± 5.12 b | 250 ± 12.0 c |
CON | 382 ± 4.41 a | 142 ± 3.09 a | 351 ± 3.23 a | 154 ± 11.2 a | 514 ± 4.64 a |
OPT1 | 356 ± 1.32 b | 120 ± 3.27 b | 313 ± 25.5 a | 137 ± 4.08 a | 463 ± 13.0 b |
OPT2 | 166 ± 1.25 c | 94.9 ± 3.98 c | 209 ± 3.29 b | 72.9 ± 3.68 c | 271 ± 6.10 c |
OPT3 | 170 ± 5.79 c | 84.8 ± 1.90 c | 178 ± 5.13 bc | 74.6 ± 0.52 c | 251 ± 6.67 c |
NN leaching loss (kg N ha−1) | |||||
CK | 93.7 ± 9.85 d | 67.9 ± 3.08 c | 122 ± 5.87 c | 83.8 ± 6.32 b | 183 ± 7.01 d |
CON | 297 ± 3.46 a | 114 ± 2.50 a | 253 ± 1.90 a | 128 ± 9.22 a | 396 ± 4.14 a |
OPT1 | 281 ± 0.05 b | 96.4 ± 2.78 b | 229 ± 19.0 a | 114 ± 3.09 a | 360 ± 9.37 b |
OPT2 | 129 ± 0.88 c | 74.9 ± 3.49 c | 153 ± 2.41 b | 61.5 ± 3.09 c | 210 ± 4.93 c |
OPT3 | 131 ± 3.64 c | 67.8 ± 1.53 c | 129 ± 3.60 bc | 62.6 ± 0.38 c | 195 ± 4.58 cd |
AN leaching loss (kg N ha−1) | |||||
CK | 5.35 ± 0.52 b | 3.93 ± 0.19 a | 5.28 ± 0.27 b | 3.97 ± 0.11 b | 9.26 ± 0.51 b |
CON | 7.63 ± 0.02 a | 4.27 ± 0.04 a | 6.39 ± 0.01 a | 4.92 ± 0.32 a | 11.6 ± 0.15 a |
OPT1 | 7.44 ± 0.74 a | 4.02 ± 0.18 a | 5.94 ± 0.32 a | 5.31 ± 0.36 a | 11.4 ± 0.44 a |
OPT2 | 3.01 ± 0.04 d | 2.72 ± 0.13 b | 3.08 ± 0.02 c | 2.25 ± 0.07 c | 5.53 ± 0.13 c |
OPT3 | 3.31 ± 0.09 c | 2.68 ± 0.08 b | 2.96 ± 0.11 c | 2.71 ± 0.12 c | 5.83 ± 0.20 c |
ON leaching loss (kg N ha−1) | |||||
CK | 52.3 ± 7.05 c | 14.4 ± 0.79 d | 29.3 ± 1.61 d | 18.6 ± 1.39 a | 57.3 ± 5.09 c |
CON | 77.5 ± 0.94 a | 23.9 ± 0.55 a | 91.0 ± 1.32 a | 20.3 ± 1.64 a | 106 ± 0.36 a |
OPT1 | 67.5 ± 0.53 b | 19.9 ± 0.31 b | 78.2 ± 6.23 b | 17.4 ± 0.63 a | 91.5 ± 3.22 b |
OPT2 | 33.1 ± 0.34 e | 17.3 ± 0.36 c | 52.2 ± 0.86 c | 9.1 ± 0.51 b | 55.8 ± 1.04 c |
OPT3 | 36.1 ± 2.06 d | 14.4 ± 0.29 d | 45.5 ± 1.42 c | 9.3 ± 0.02 b | 52.6 ± 1.89 c |
Apparent TN leaching factor (%) | |||||
CON | 31.9 ± 0.37 b | 33.8 ± 0.73 a | 29.2 ± 0.27 a | 36.6 ± 2.66 a | 31.7 ± 0.29 b |
OPT1 | 37.1 ± 0.14 a | 35.8 ± 0.97 a | 32.6 ± 2.66 a | 40.7 ± 1.21 a | 35.7 ± 1.01 a |
OPT2 | 17.2 ± 0.13 d | 28.3 ± 1.18 b | 21.7 ± 0.34 b | 21.7 ± 1.09 b | 20.9 ± 0.47 c |
OPT3 | 20.3 ± 0.69 c | 28.8 ± 0.64 b | 21.2 ± 0.61 b | 25.4 ± 0.18 b | 22.4 ± 0.59 c |
Fertilizer TN leaching factor (%) | |||||
CON | 19.2 ± 0.37 b | 13.2 ± 0.73 a | 16.2 ± 0.27 a | 11.3 ± 2.66 a | 16.3 ± 0.29 a |
OPT1 | 21.3 ± 0.14 a | 10.1 ± 0.97 b | 16.3 ± 2.66 a | 9.1 ± 1.21 a | 16.4 ± 1.01 a |
OPT2 | 1.47 ± 0.13 c | 2.58 ± 1.18 c | 5.46 ± 0.34 b | −9.9 ± 1.09 b | 1.62 ± 0.47 b |
OPT3 | 2.25 ± 0.69 c | −0.49 ± 0.64 d | 2.57 ± 0.61 b | −10.8 ± 0.18 b | 0.32 ± 0.59 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Cui, B.; Yang, X.; Yuan, N.; Wang, L.; Ni, B.; Meng, F. Irrigation Regime Optimization Plays a Critically Important Role in Plastic-Shed Vegetable Production to Mitigate Short-Term and Future N Leaching Pollution. Horticulturae 2024, 10, 1067. https://doi.org/10.3390/horticulturae10101067
Xu X, Cui B, Yang X, Yuan N, Wang L, Ni B, Meng F. Irrigation Regime Optimization Plays a Critically Important Role in Plastic-Shed Vegetable Production to Mitigate Short-Term and Future N Leaching Pollution. Horticulturae. 2024; 10(10):1067. https://doi.org/10.3390/horticulturae10101067
Chicago/Turabian StyleXu, Xiuchun, Bin Cui, Xuan Yang, Ning Yuan, Ligang Wang, Bang Ni, and Fanqiao Meng. 2024. "Irrigation Regime Optimization Plays a Critically Important Role in Plastic-Shed Vegetable Production to Mitigate Short-Term and Future N Leaching Pollution" Horticulturae 10, no. 10: 1067. https://doi.org/10.3390/horticulturae10101067
APA StyleXu, X., Cui, B., Yang, X., Yuan, N., Wang, L., Ni, B., & Meng, F. (2024). Irrigation Regime Optimization Plays a Critically Important Role in Plastic-Shed Vegetable Production to Mitigate Short-Term and Future N Leaching Pollution. Horticulturae, 10(10), 1067. https://doi.org/10.3390/horticulturae10101067