Increasing Tomato Productivity through Integrated Nutrient Sources and Inoculation with Arbuscular Mycorrhizal Fungi and Azospirillum spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description and Soil Characterization of the Experimental Area
2.2. Characterization of Vermicompost
2.3. Experimental Design and Treatments
2.4. Application of Nutrient Sources and Microbial Inoculants
2.5. Measurement of Agronomic Parameters
2.6. Assessment of Mycorrhizal Root Colonization and Number of Spores
2.7. Data Analysis
2.8. Economic Analysis
3. Results
3.1. Plant Growth and Yield
3.2. Plant Nutrition
3.3. Mycorrhizal Root Colonization and Spore Count
3.4. Correlation Analysis
3.5. Production Cost and Return
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savci, S. Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia 2012, 1, 287–292. [Google Scholar] [CrossRef]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical Fertilizers and Their Impact on Soil Health. In Microbiota and Biofertilizers; Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R., Eds.; Springer: Cham, Switzerland, 2021; Volume 2, pp. 1–20. [Google Scholar] [CrossRef]
- Hernandez, T.; Chocano, C.; Moreno, J.L.; Garcia, C. Towards a more sustainable fertilization: Combined use of compost and inorganic fertilization for tomato cultivation. Agric. Ecosyst. Environ. 2014, 196, 178–184. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci. Total Environ. 2015, 512, 415–427. [Google Scholar] [CrossRef]
- Balliu, A.; Sallaku, G.; Rewald, B. AMF inoculation enhances growth and improves the nutrient uptake of transplanted, salt-stressed tomato seedlings. Sustainability 2015, 7, 15967–15981. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef]
- Kim, S.J.; Eo, J.K.; Lee, E.H.; Park, H.; Eom, A.H. Effects of arbuscular mycorrhizal fungi and soil conditions on crop plant growth. Microbiology 2017, 45, 20–24. [Google Scholar] [CrossRef]
- Cassán, F.; Coniglio, A.; López, G.; Molina, R.; Nievas, S.; de Carlan, C.L.; Donadio, F.; Torres, D.; Rosas, S.; Pedrosa, F.O. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol. Fertil. Soils 2020, 56, 461–479. [Google Scholar] [CrossRef]
- Contreras-Liza, S.; Villadeza, C.Y.; Rodriguez-Grados, P.M.; Palomares, E.G.; Arbizu, C.I. Yield and Agronomic Performance of Sweet Corn in Response to Inoculation with Azospirillum sp. under Arid Land Conditions. Int. J. Plant Biol. 2024, 15, 683–691. [Google Scholar] [CrossRef]
- Pankievicz, V.C.S.; do Amaral, F.P.; Santos, K.F.D.N.; Agtuca, B.; Xu, Y.; Schueller, M.J. Robust biological nitrogen fixation in a model grass-bacterial association. Plant J. 2015, 81, 907–919. [Google Scholar] [CrossRef]
- Fibach-Paldi, S.; Burdman, S.; Okon, Y. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol. Lett. 2012, 326, 99–108. [Google Scholar] [CrossRef]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (2023)—With major processing by Our World in Data. “Tomato Yields—FAO” [Dataset]. Food and Agriculture Organization of the United Nations, “Production: Crops and Livestock Products” [Original Data]. Available online: https://ourworldindata.org/grapher/tomato-yields (accessed on 10 September 2024).
- Guo, L.; Yu, H.; Kharbach, M.; Wang, J. The Response of Nutrient Uptake, Photosynthesis and Yield of Tomato to Biochar Addition under Reduced Nitrogen Application. Agronomy 2021, 11, 1598. [Google Scholar] [CrossRef]
- Islam, M.A.; Islam, S.; Akter, A.; Rahman, M.H.; Nandwani, D. Effect of organic and inorganic fertilizers on soil properties and the growth, yield and quality of tomato in Mymensingh, Bangladesh. Agriculture 2017, 7, 18. [Google Scholar] [CrossRef]
- Mengistu, T.; Gebrekidan, H.; Kibret, K.; Woldetsadik, K.; Shimelis, B.; Yadav, H. The integrated use of excreta-based vermicompost and inorganic NP fertilizer on tomato (Solanum lycopersicum L.) fruit yield, quality and soil fertility. Int. J. Recycl. Org. Waste Agric. 2017, 6, 63–77. [Google Scholar] [CrossRef]
- Bona, E.; Todeschini, V.; Cantamessa, S.; Cesaro, P.; Copetta, A.; Lingua, G.; Gamalero, E.; Berta, G.; Massa, N. Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Sci. Hortic. 2018, 234, 160–165. [Google Scholar] [CrossRef]
- Ziane, H.; Hamza, N.; Meddad-Hamza, A. Arbuscular mycorrhizal fungi and fertilization rates optimize tomato (Solanum lycopersicum L.) growth and yield in a Mediteranean agroecosystem. J. Saudi Soc. Agric. Sci. 2021, 20, 454–458. [Google Scholar] [CrossRef]
- Aggangan, N.S.; Moon, H.K. The effects of soil sterilization, mycorrhizal inoculation and rates of phosphorus on growth and survival of Kalopanax septemlobus microplants during the acclimization period. Plant Biotechnol. Rep. 2013, 7, 71–82. [Google Scholar] [CrossRef]
- Cedeño, J.M.; Magán, J.-J.; Thompson, R.B.; Fernández, M.-D.; Gallardo, M. Comparison of Methods to Determine Nutrient Uptake of Tomato Grown in Free-Draining Perlite Substrate—Key Information for Optimal Fertigation Management. Horticulturae 2024, 10, 232. [Google Scholar] [CrossRef]
- Bureau of Agriculture and Fisheries Products Standards. Philippine National Standard: Fruit Vegetables—Tomato—Specification. 2006. Available online: http://spsissuances.da.gov.ph/attachments/article/1092/PNS-BAFS26-2006-Tomato.pdf (accessed on 10 September 2024).
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Ishii, T.; Kadoya, K. Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. J. Jpn. Soc. Hortic. Sci. 1994, 63, 529–535. [Google Scholar] [CrossRef]
- Brundrett, M.; Bougher, N.; Grove, T.; Malajczuk, N. Working with Mycorrhizas in Forestry and Agriculture; ACIAR Monograph 32; Australian Centre for International Agricultural Research: Canberra, Australia, 1996; p. 34. [Google Scholar] [CrossRef]
- Moreira, S.D.; Baretta, D.; Tsai, S.M.; Cardoso, E.J.B.N. Spore density and root colonization by arbuscular mycorrhizal fungi in preserved or disturbed Araucariaa angustifolia (Bert.) O. Ktze. Ecosystems. Sci. Agric. 2006, 63, 380–385. [Google Scholar] [CrossRef]
- Fertilizer and Pesticide Authority. Weekly Prices 2022. 2022. Available online: https://fpa.da.gov.ph/weekly-prices/ (accessed on 9 September 2024).
- National Wages and Productivity Commission. Wage Order No. IVA-19. 2022. Available online: https://nwpc.dole.gov.ph/wp-content/uploads/2018/06/Published-WO-No.-IVA-19.pdf (accessed on 9 September 2024).
- Philippine Statistics Authority. Fruit Vegetables: Farmgate Prices by Geolocation, Commodity, Year and Period. 2023. Available online: https://openstat.psa.gov.ph/PXWeb/pxweb/en/DB/DB__2M__FG/?tablelist=true (accessed on 9 September 2024).
- Leventis, G.; Tsiknia, M.; Feka, M.; Ladikou, E.V.; Chatzipavlidis, I.; Papadopoulou, K.; Ehaliotis, C. Arbuscular mycorrhizal fungi enhance growth of tomato under normal and drought conditions, via different water regulation mechanisms. Rhizosphere 2021, 19, 100394. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Tohamy, W.A.; Abou-Hussein, S.D.; Gruda, N.S. Deficit Irrigation and Arbuscular Mycorrhiza as a Water-Saving Strategy for Eggplant Production. Horticulturae 2020, 6, 45. [Google Scholar] [CrossRef]
- Franczuk, J.; Tartanus, M.; Rosa, R.; Zaniewicz-Bajkowska, A.; Dębski, H.; Andrejiová, A.; Dydiv, A. The Effect of Mycorrhiza Fungi and Various Mineral Fertilizer Levels on the Growth, Yield, and Nutritional Value of Sweet Pepper (Capsicum annuum L.). Agriculture 2023, 13, 857. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, H.; Zou, C.; Li, Y.; Chen, Y.; Wang, Z.; Jiang, Y.; Liu, A.; Zhao, P.; Wang, M.; et al. Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings. Front. Microbiol. 2017, 8, 2516. [Google Scholar] [CrossRef]
- Fellbaum, C.R.; Mensah, J.A.; Cloos, A.J.; Strahan, G.E.; Pfeffer, P.E.; Kiers, E.T.; Bucking, H. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol. 2014, 203, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.M.; da Silva, J.A.; Eburneo, J.A.M.; Leonel, M.; Garreto, F.G.d.S.; Nunes, J.G.d.S. Growth and Nitrogen Uptake by Potato and Cassava Crops Can Be Improved by Azospirillum brasilense Inoculation and Nitrogen Fertilization. Horticulturae 2023, 9, 301. [Google Scholar] [CrossRef]
- Pennsylvania State University, College of Agricultural Sciences. Interpretive Nutrient Levels for Plant Analysis—Tomato, Any. 2024. Available online: https://agsci.psu.edu/aasl/plant-analysis/plant-tissue-total-analysis/interpretive-nutrient-levels-for-plant-analysis/tomato-any (accessed on 16 September 2024).
- Das, U.; Rahman, M.M.; Roy, Z.R.; Rahman, M.M.; Kabir, A.H. Morpho-physiological retardations due to iron toxicity involve redox imbalance rather than photosynthetic damages in tomato. Plant Physiol. Biochem. 2020, 156, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Sahrawat, K.L. Iron Toxicity in Wetland Rice and the Role of Other Nutrients. J. Plant Nutr. 2005, 27, 1471–1504. [Google Scholar] [CrossRef]
- Qasim, M.; Ju, J.; Zhao, H.; Bhatti, S.M.; Saleem, G.; Memon, S.P.; Ali, S.; Younas, M.U.; Rajput, N.; Jamali, Z.H. Morphological and Physiological Response of Tomato to Sole and Combined Application of Vermicompost and Chemical Fertilizers. Agronomy 2023, 13, 1508. [Google Scholar] [CrossRef]
- Aslam, Z.; Ahmad, A.; Bellitürk, K.; Kanwal, H.; Asif, M.; Ullah, E. Integrated Use of Simple Compost, Vermicompost, Vermi-Tea and Chemical Fertilizers NP on the Morpho-Physiological, Yield and Yield Related Traits of Tomato (Solanum lycopersicum L.). J. Innov. Sci. 2023, 9, 1–12. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Wang, Q.; Chang, T.; Shaghaleh, H.; Hamoud, Y.A. Improvement of Photosynthesis by Biochar and Vermicompost to Enhance Tomato (Solanum lycopersicum L.) Yield under Greenhouse Conditions. Plants 2022, 11, 3214. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Sifuentes, A.; Fortis-Hernandez, M.; Preciado-Rangel, P.; Orozco-Vidal, J.A.; Yescas-Coronado, P.; Rueda-Puente, O. Azospirillum brasilense and Solarized Manure on the Production and Phytochemical Quality of Tomato Fruits (Solanum lycopersicum L.). Agronomy 2020, 10, 1956. [Google Scholar] [CrossRef]
- Aseri, G.K.; Jain, N.; Panwar, J.; Rao, A.V.; Meghwal, P.R. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci. Hortic. 2008, 117, 130–135. [Google Scholar] [CrossRef]
- Aggangan, N.S.; Cortes, A.D.; Reaño, C.E. Growth response of cacao (Theobroma cacao L.) plant as affected by bamboo biochar and arbuscular mycorrhizal fungi in sterilized and unsterilized soil. Biocatal. Agric. Biotechnol. 2019, 22, 101347. [Google Scholar] [CrossRef]
- Gamalero, E.; Berta, G.; Massa, N.; Glick, B.R.; Lingua, G. Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol. 2008, 37 (Suppl. 1), 55. [Google Scholar] [CrossRef]
- Sharma, M.; Delta, A.K.; Brar, N.S.; Yadav, A.; Dhanda, P.S.; Baslam, M.; Kaushik, P. Rhizophagus irregularis and Azotobacter chroococcum Uphold Eggplant Production and Quality under Low Fertilization. Int. J. Plant Biol. 2022, 13, 601–612. [Google Scholar] [CrossRef]
Properties | Value (Mean ± SD) |
---|---|
pH (H2O 1:1) | 5.17 ± 0.20 |
OM (%) | 4.28 ± 0.57 |
Total N (%) | 0.23 ± 0.02 |
Available P (mg kg−1) | 7.79 ± 1.90 |
Exchangeable K (cmol kg−1) | 2.06 ± 0.21 |
Exchangeable Ca (cmol kg−1) | 12.15 ± 0.94 |
Exchangeable Mg (cmol kg−1) | 3.57 ± 1.89 |
CEC (cmolc kg−1) | 37.29 ± 1.02 |
Cu (mg kg−1) | 6.26 ± 0.64 |
Zn (mg kg−1) | 1.61 ± 0.57 |
Fe (mg kg−1) | 102.30 ± 3.28 |
Mn (mg kg−1) | 54.32 ± 1.40 |
Properties | Value (Mean ± SD) |
---|---|
Total N (%) | 0.77 ± 0.06 |
Total P2O5 (%) | 3.45 ± 0.60 |
Total K2O (%) | 0.66 ± 0.15 |
Total CaO (%) | 3.42 ± 0.55 |
Total MgO (%) | 0.60 ± 0.07 |
Cu (g kg−1) | 0.50 ± 0.08 |
Zn (g kg−1) | 0.60 ± 0.06 |
Fe (g kg−1) | 34.94 ± 5.25 |
Mn (g kg−1) | 0.83 ± 0.14 |
C:N | 15:1 ± 3.50 |
OM (%) | 26.28 ± 3.99 |
MC (%) | 35.00 ± 1.35 |
Treatment | Rate of Chemical Fertilizer | Rate of Vermicompost (t ha−1) | AMF Inoculation | Azospirillum Inoculation | |
---|---|---|---|---|---|
N (kg ha−1) | P2O5 (kg ha−1) | ||||
RRC | 80 | 90 | - | no | no |
INM 1 | 40 | 45 | 4 | no | no |
INM 2 | 40 | 45 | 4 | yes | no |
INM 3 | 40 | 45 | 4 | yes | yes |
Treatment | Number of Marketable Fruits Plant−1 | Fruit Weight (g fruit−1) | Total Fruit Yield (t ha−1) | % Marketable Fruits |
---|---|---|---|---|
RRC | 34 | 37.11 | 36.04 c | 92.62 |
INM 1 | 34 | 38.33 | 38.92 b | 90.13 |
INM 2 | 35 | 40.42 | 40.87 a | 93.98 |
INM 3 | 37 | 40.29 | 40.96 a | 96.79 |
p-value | 0.1337 ns | 0.5272 ns | 0.0017 ** | 0.3715 ns |
CV (%) | 4.21 | 7.84 | 2.31 | 5.06 |
Treatment | Nutrient Uptake (g plant−1) | ||||
---|---|---|---|---|---|
N | P | K | Ca | Mg | |
RRC | 3.30 ab | 0.19 b | 3.64 b | 1.59 b | 0.43 b |
INM 1 | 2.91 b | 0.18 b | 4.23 ab | 1.65 b | 0.49 ab |
INM 2 | 3.01 b | 0.24 a | 4.59 a | 2.00 a | 0.55 a |
INM 3 | 3.53 a | 0.23 a | 4.64 a | 2.01 a | 0.57 a |
p-value | 0.0394 * | 0.0190 * | 0.0329 * | 0.0018 ** | 0.0424 * |
CV (%) | 8.66 | 9.49 | 10.05 | 4.67 | 8.88 |
Treatment | Nutrient Uptake (mg plant−1) | |||
---|---|---|---|---|
Cu | Zn | Fe | Mn | |
RRC | 1.06 b | 4.36 | 33.85 | 13.65 |
INM 1 | 1.53 a | 4.07 | 33.36 | 14.84 |
INM 2 | 1.76 a | 4.65 | 41.37 | 14.86 |
INM 3 | 1.71 a | 4.98 | 45.01 | 15.84 |
p-value | 0.0179 * | 0.4446 ns | 0.6418 ns | 0.8029 ns |
CV (%) | 13.09 | 17.46 | 33.59 | 20.98 |
Fruit Yield | N Uptake | P Uptake | K Uptake | Ca Uptake | Mg Uptake | Cu Uptake | Zn Uptake | Fe Uptake | Mn Uptake | AMF Root Colonization | |
---|---|---|---|---|---|---|---|---|---|---|---|
Fruit Yield | - | 0.23 | 0.45 | 0.45 | 0.64 * | 0.21 | 0.66 * | 0.21 | 0.24 | 0.65 * | 0.10 |
N uptake | - | 0.08 | 0.32 | 0.30 | −0.01 | 0.09 | 0.33 | −0.06 | 0.45 | 0.15 | |
P uptake | - | 0.50 | 0.75 ** | 0.54 | 0.43 | 0.33 | 0.21 | 0.14 | 0.62 * | ||
K uptake | - | 0.72 ** | 0.75 ** | 0.71 ** | 0.40 | 0.03 | 0.12 | 0.66 * | |||
Ca uptake | - | 0.51 | 0.63 * | 0.19 | 0.55 | 0.39 | 0.69 * | ||||
Mg uptake | - | 0.64 * | 0.41 | −0.04 | −0.09 | 0.77 ** | |||||
Cu uptake | - | −0.03 | 0.09 | 0.24 | 0.58 * | ||||||
Zn uptake | - | −0.37 | 0.31 | 0.21 | |||||||
Fe uptake | - | 0.08 | 0.33 | ||||||||
Mn uptake | - | 0.29 | |||||||||
AMF root colonization | - |
Treatment | Material Cost | Labor Cost | Contingency Cost (15%) | Total Production Cost | Gross Income | Net Income | % Increase over Current Recommendation |
---|---|---|---|---|---|---|---|
RRC | 84,240.00 | 89,824.00 | 26,109.60 | 200,173.60 | 781,092.00 | 580,918.40 | - |
INM 1 | 97,488.00 | 89,824.00 | 28,096.80 | 215,408.80 | 820,872.00 | 605,463.20 | 4.23 |
INM 2 | 110,788.00 | 91,829.00 | 30,392.55 | 233,009.55 | 898,794.00 | 665,784.45 | 14.61 |
INM 3 | 137,588.00 | 93,834.00 | 34,713.30 | 266,135.30 | 927,576.00 | 661,440.70 | 13.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernados, L.C.; Espineli, J.P.; Anarna, J.A.; Aggangan, N.S. Increasing Tomato Productivity through Integrated Nutrient Sources and Inoculation with Arbuscular Mycorrhizal Fungi and Azospirillum spp. Horticulturae 2024, 10, 1056. https://doi.org/10.3390/horticulturae10101056
Bernados LC, Espineli JP, Anarna JA, Aggangan NS. Increasing Tomato Productivity through Integrated Nutrient Sources and Inoculation with Arbuscular Mycorrhizal Fungi and Azospirillum spp. Horticulturae. 2024; 10(10):1056. https://doi.org/10.3390/horticulturae10101056
Chicago/Turabian StyleBernados, Lowell C., Joven P. Espineli, Julieta A. Anarna, and Nelly S. Aggangan. 2024. "Increasing Tomato Productivity through Integrated Nutrient Sources and Inoculation with Arbuscular Mycorrhizal Fungi and Azospirillum spp." Horticulturae 10, no. 10: 1056. https://doi.org/10.3390/horticulturae10101056
APA StyleBernados, L. C., Espineli, J. P., Anarna, J. A., & Aggangan, N. S. (2024). Increasing Tomato Productivity through Integrated Nutrient Sources and Inoculation with Arbuscular Mycorrhizal Fungi and Azospirillum spp. Horticulturae, 10(10), 1056. https://doi.org/10.3390/horticulturae10101056