A New Approach for Element Characterization of Grapevine Tissue with Laser-Induced Breakdown Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site
2.2. Characterization of the Grapes
2.3. LIBS Instrumentation
2.4. Element Identification
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rogiers, S.Y.; Greer, D.H.; Hatfield, J.M.; Orchard, B.A.; Keller, M. Mineral sinks within ripening grape berries (Vitis vinifera L.). Vitis—J. Grapevine Res. 2006, 45, 115. [Google Scholar]
- Tewari, R.K.; Yadav, N.; Gupta, R.; Kumar, P. Oxidative Stress Under Macronutrient Deficiency in Plants. J. Soil Sci. Plant Nutr. 2021, 21, 832–859. [Google Scholar] [CrossRef]
- Özcan, M.M.; Al Juhaimi, F.; Gülcü, M.; Uslu, N.; Geçgel, Ü. Determination of Bioactive Compounds and Mineral Contents of Seedless Parts and Seeds of Grapes. S. Afr. J. Enol. Vitic. 2017, 38, 212–220. [Google Scholar] [CrossRef]
- Bertoldi, D.; Larcher, R.; Bertamini, M.; Otto, S.; Concheri, G.; Nicolini, G. Accumulation and distribution pattern of macro- and microelements and trace elements in Vitis vinifera L. cv. Chardonnay berries. J. Agric. Food Chem. 2011, 59, 7224–7236. [Google Scholar] [CrossRef] [PubMed]
- Verdenal, T.; Dienes-Nagy, Á.; Spangenberg, J.E.; Zufferey, V.; Spring, J.-L.; Viret, O.; Marin-Carbonne, J.; Van Leeuwen, C. Understanding and managing nitrogen nutrition in grapevine: A review. OENO One 2021, 55, 1–43. [Google Scholar] [CrossRef]
- Guo, W.; Nazim, H.; Liang, Z.; Yang, D. Magnesium deficiency in plants: An urgent problem. Crop J. 2016, 4, 83–91. [Google Scholar] [CrossRef]
- Buesa, I.; Pérez, D.; Castel, J.; Intrigliolo, D.S.; Castel, J.R. Effect of Deficit Irrigation on Vine Performance and Grape Composition Ofvitis Viniferal. Cv. Muscat of Alexandria. Aust. J. Grape Wine Res. 2017, 23, 251–259. [Google Scholar] [CrossRef]
- Candar, S.; Açıkbaş, B.; Ekiz, M.; Zobar, D.; Korkutal, I.; Bahar, E. Influence of Water Scarcity on Macronutrients Contents in Young Leaves of Wine Grape Cultivars. Ciência Técnica Vitivinícola 2021, 36, 104–115. [Google Scholar] [CrossRef]
- Bora, F.D.; Bunea, C.I.; Chira, R.; Bunea, A. Assessment of the Quality of Polluted Areas in Northwest Romania Based on the Content of Elements in Different Organs of Grapevine (Vitis vinifera L.). Molecules 2020, 25, 750. [Google Scholar] [CrossRef]
- Singh, V.K. Review: Application of LIBS to Elemental Analysis and Mapping of Plant Samples. At. Spectrosc. 2021, 42, 99–113. [Google Scholar] [CrossRef]
- Potortiota, A.G.; Lo Turco, V.; Saitta, M.; Bua, G.D.; Tropea, A.; Dugo, G.; Di Bella, G. Chemometric analysis of minerals and trace elements in Sicilian wines from two different grape cultivars. Nat. Prod. Res. 2017, 31, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Senesi, G.S.; Cabral, J.; Menegatti, C.R.; Marangoni, B.; Nicolodelli, G. Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: An overview of developments in the last decade (2010–2019). Part II. Crop plants and their food derivatives. TrAC Trends Anal. Chem. 2019, 118, 453–469. [Google Scholar] [CrossRef]
- Silva, F.M.; Queirós, C.; Pinho, T.; Boaventura, J.; Santos, F.; Barroso, T.G.; Pereira, M.R.; Cunha, M.; Martins, R.C. Reagent-less spectroscopy towards NPK sensing for hydroponics nutrient solutions. Sens. Actuators B Chem. 2023, 395, 134442. [Google Scholar] [CrossRef]
- Andrade, D.F.; Pereira-Filho, E.R. Direct Determination of Contaminants and Major and Minor Nutrients in Solid Fertilizers Using Laser-Induced Breakdown Spectroscopy (LIBS). J. Agric. Food Chem. 2016, 64, 7890–7898. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.A.A.C.; Fiorio, P.R.; Rizzo, R.; Rossetto, R.; Vitti, A.C.; Dias, F.L.F.; Oliveira, K.A.d.; Bárbara Neto, M. Detection of nutritional stress in sugarcane by VIS-NIR-SWIR reflectance spectroscopy. Ciência Rural 2023, 53, e20220543. [Google Scholar] [CrossRef]
- Monteiro-Silva, F.; Jorge, P.A.; Martins, R.C. Optical Sensing of Nitrogen, Phosphorus and Potassium: A Spectrophotometrical Approach Toward Smart Nutrient Deployment. Chemosensors 2019, 7, 51. [Google Scholar] [CrossRef]
- Andrews, H.B.; Martin, M.Z.; Wymore, A.M.; Kalluri, U.C. Rapid in situ nutrient element distribution in plants and soils using laser-induced breakdown spectroscopy (LIBS). Plant Soil 2023, 1–10. [Google Scholar] [CrossRef]
- Tosin, R.; Monteiro-Silva, F.; Martins, R.; Cunha, M. Precision maturation assessment of grape tissues: Hyperspectral bi-directional reconstruction using tomography-like based on multi-block hierarchical principal component analysis. Biosyst. Eng. 2023, 236, 147–159. [Google Scholar] [CrossRef]
- Rakovský, J.; Čermák, P.; Musset, O.; Veis, P. A review of the development of portable laser induced breakdown spectroscopy and its applications. Spectrochim. Acta Part B At. Spectrosc. 2014, 101, 269–287. [Google Scholar] [CrossRef]
- Arantes de Carvalho, G.G.; Bueno Guerra, M.B.; Adame, A.; Nomura, C.S.; Oliveira, P.V.; Pereira de Carvalho, H.W.; Santos, D.; Nunes, L.C.; Krug, F.J. Recent advances in LIBS and XRF for the analysis of plants. J. Anal. At. Spectrom. 2018, 33, 919–944. [Google Scholar] [CrossRef]
- Tosin, R.; Monteiro-Silva, F.; Martins, R.; Cunha, M. LIBS-Based Analysis of Elemental Composition in Skin, Pulp, and Seeds of White and Red Grape Cultivars. Eng. Proc. 2023, 48, 43. [Google Scholar]
- Miras-Avalos, J.M.; Intrigliolo, D.S. Grape Composition under Abiotic Constrains: Water Stress and Salinity. Front. Plant Sci. 2017, 8, 851. [Google Scholar] [CrossRef]
- Moros, J.; Laserna, J. Laser-Induced Breakdown Spectroscopy (LIBS) of Organic Compounds: A Review. Appl. Spectrosc. 2019, 73, 963–1011. [Google Scholar] [CrossRef]
- Ribeiro, R.; Capela, D.; Ferreira, M.; Martins, R.; Jorge, P.; Guimarães, D.; Lima, A. X-ray Fluorescence and Laser-Induced Breakdown Spectroscopy Analysis of Li-Rich Minerals in Veins from Argemela Tin Mine, Central Portugal. Minerals 2021, 11, 1169. [Google Scholar] [CrossRef]
- Martins, R.C.; Jorge, P.; Silva, E.; De Almeida, J.; Martins, A. A Method and Apparatus for Characterisation of Constituents in a Physical Sample from Electromagnetic Spectral Information. U.S. US20210270744A1, 31 July 2018. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020026165 (accessed on 26 December 2023).
- Gallarati, S.; van Gerwen, P.; Laplaza, R.; Vela, S.; Fabrizio, A.; Corminboeuf, C. OSCAR: An extensive repository of chemically and functionally diverse organocatalysts. Chem. Sci. 2022, 13, 13782–13794. Available online: https://pubs.rsc.org/en/content/articlelanding/2022/SC/D2SC04251G (accessed on 20 May 2023). [CrossRef]
- NIST. NIST Atomic Spectra Database Lines Form. Available online: https://www.physics.nist.gov/PhysRefData/ASD/lines_form.html (accessed on 20 May 2020).
- Kurt, A.; Torun, H.; Colak, N.; Seiler, G.; Hayirlioglu-Ayaz, S.; Ayaz, F.A. Nutrient profiles of the hybrid grape cultivar ‘Isabel’ during berry maturation and ripening. J. Sci. Food Agric. 2017, 97, 2468–2479. [Google Scholar] [CrossRef]
- Hocking, B.J. The Role of Calcium in the Cell Wall of Grape Berries. Ph.D. Thesis, The University of Adelaide, Adelaide, Australia, 2015. [Google Scholar]
- Yuan, F.; Schreiner, R.P.; Osborne, J.; Qian, M.C. Effects of Soil NPK Supply on Pinot noir Wine Phenolics and Aroma Composition. Am. J. Enol. Vitic. 2018, 69, 371–385. [Google Scholar] [CrossRef]
- Martins, V.; Unlubayir, M.; Teixeira, A.; Lanoue, A.; Geros, H. Exogenous Calcium Delays Grape Berry Maturation in the White cv. Loureiro While Increasing Fruit Firmness and Flavonol Content. Front. Plant Sci. 2021, 12, 742887. [Google Scholar] [CrossRef]
- Ozcan, M.M.; Juhaimi, F.A.; Gulcu, M.; Uslu, N.; Gecgel, U.; Ghafoor, K.; Dursun, N. Effect of harvest time on physico-chemical properties and bioactive compounds of pulp and seeds of grape varieties. J. Food Sci. Technol. 2017, 54, 2230–2240. [Google Scholar] [CrossRef]
- Lynch, J.P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytol. 2019, 223, 548–564. [Google Scholar] [CrossRef]
- Deluc, L.G.; Grimplet, J.; Wheatley, M.D.; Tillett, R.L.; Quilici, D.R.; Osborne, C.; Schooley, D.A.; Schlauch, K.A.; Cushman, J.C.; Cramer, G.R. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genom. 2007, 8, 429. [Google Scholar] [CrossRef]
- Walker, R.P.; Chen, Z.-H.; Técsi, L.I.; Famiani, F.; Lea, P.J.; Leegood, R.C. Phosphoenolpyruvate carboxykinase plays a role in interactions of carbon and nitrogen metabolism during grape seed development. Planta 1999, 210, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.C.; Santos, F.; Cunha, M.; Monteiro-Silva, F.; Tosin, R.; Magalhães, S.; Reis Pereira, M. Method and Device for Non-Invasive Tomographic Characterisation of a Sample Comprising a Plurality of Differentiated Tissues. Patent WO/2023/126532, 6 July 2023. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2023126532&_cid=P12-LK2EKH-19952-1 (accessed on 26 December 2023).
- Mitić, S.S.; Obradović, M.V.; Mitić, M.N.; Kostić, D.A.; Pavlović, A.N.; Tošić, S.B.; Stojković, M.D. Elemental Composition of Various Sour Cherry and Table Grape Cultivars Using Inductively Coupled Plasma Atomic Emission Spectrometry Method (ICP-OES). Food Anal. Methods 2011, 5, 279–286. [Google Scholar] [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012, 66, 347–419. [Google Scholar] [CrossRef]
- Peng, J.; Liu, F.; Zhou, F.; Song, K.; Zhang, C.; Ye, L.; He, Y. Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review. TrAC Trends Anal. Chem. 2016, 85, 260–272. [Google Scholar] [CrossRef]
- Ferreira, M.F.S.; Capela, D.; Silva, N.A.; Gonçalves, F.; Lima, A.; Guimarães, D.; Jorge, P.A.S. Comprehensive comparison of linear and non-linear methodologies for lithium quantification in geological samples using LIBS. Spectrochim. Acta Part B At. Spectrosc. 2022, 195, 106504. [Google Scholar] [CrossRef]
- Jull, H.; Künnemeyer, R.; Schaare, P. Nutrient quantification in fresh and dried mixtures of ryegrass and clover leaves using laser-induced breakdown spectroscopy. Precis. Agric. 2018, 19, 823–839. [Google Scholar] [CrossRef]
- Nunes, L.C.; Batista Braga, J.W.; Trevizan, L.C.; Florêncio de Souza, P.; Arantes de Carvalho, G.G.; Júnior, D.S.; Poppi, R.J.; Krug, F.J. Optimization and validation of a LIBS method for the determination of macro and micronutrients in sugar cane leaves. J. Anal. At. Spectrom. 2010, 25, 1453–1460. [Google Scholar] [CrossRef]
Date | Days after Veraison (DAV) | Samples (n) | |
---|---|---|---|
Loureiro | Vinhão | ||
S1: 30 September 2020 | 47 | 20 | 16 |
S2: 12 October 2020 | 59 | 9 | 8 |
S3: 14 October 2020 | 61 | 10 | 5 |
Loureiro | S1 (n = 20) | S2 (n = 9) | S3 (n = 10) | p-Value | |
---|---|---|---|---|---|
Element | |||||
Ca | Skin | 3258.04 b ± 901.34 | 3713.58 ab ± 938.70 | 4189.18 a ± 844.82 | 0.03 |
Pulp | 635.30 b ± 120.46 * | 588.21 b ± 94.34 * | 2003.24 a ± 490.12 * | <0.001 | |
Seed | 354.30 b ± 76.48 * | 299.02 b ± 23.71 * | 521.00 a ± 128.50 | <0.001 | |
Mg | Skin | 6699.93 b ± 2180.83 | 7061.50 b ± 2172.96 | 10,581.13 a ± 1819.63 * | <0.001 |
Pulp | 2786.03 b ± 933.15 * | 2630.43 b ± 627.41 * | 5052.57 a ± 701.98 | <0.001 | |
Seed | 1035.31 ab ± 297.23 * | 976.59 b ± 151.11 * | 1223.95 a ± 287.39 | 0.11 | |
N | Skin | 16,368.47 a ± 2994.20 | 17,277.07 a ± 1290.88 | 18,034.47 a ± 2490.27 | 0.247 |
Pulp | 11,790.15 b ± 2080.38 | 12,896.65 b ± 1892.37 * | 14,984.23 a ± 1672.66 * | 0.001 | |
Seed | 7560.83 a ± 1690.68 | 6251.21 b ± 1448.79 | 8009.86 a ± 919.62 * | 0.04 | |
Water | |||||
Skin | 77.01 b ± 0.94 | 73.45 c ± 1.03 | 79.06 a ± 1.74 * | <0.001 | |
Pulp | 83.41 a ± 2.86 * | 79.11 b ± 3.65 | 81.25 ab ± 2.03 * | 0.002 | |
Seed | 56.28 a ± 4.04 * | 53.13 a ± 3.54 | 54.41 a ± 2.80 * | 2.53 | |
Vinhão | S1 (n = 16) | S2 (n = 8) | S3 (n = 5) | p-Value | |
Element | |||||
Ca | Skin | 3481.31 a ± 1143.97 | 3415.04 a ± 942.08 | 3715.16 a ± 750.24 | 0.873 |
Pulp | 1069.07 a ± 321.37 * | 703.63 b ± 65.40 * | 1298.10 a ± 340.52 * | 0.002 | |
Seed | 403.60 a ± 51.57 * | 380.63 a ± 91.76 * | 402.44 a ± 34.14 | 0.691 | |
Mg | Skin | 7211.87 a ± 2161.640 | 6926.83 a ± 2940.079 | 8197.33 a ± 2226.33 * | 0.639 |
Pulp | 4781.77 a ± 961.56 * | 4107.27 a ± 556.89 * | 4433.30 a ± 414.37 | 0.165 | |
Seed | 1256.39 ab ± 224.45 * | 1191.98 b ± 213.88 * | 1464.43 a ± 107.59 | 0.08 | |
N | Skin | 17,384.43 a ± 1967.02 | 16,611.39 a ± 1582.07 | 17,820.58 a ± 1495.51 | 0.461 |
Pulp | 14,196.74 ab ± 1965.16 * | 14,769.43 a ± 1488.09 * | 12,529.07 b ± 1476.33 * | 0.1 | |
Seed | 7305.67 a ± 831.55 | 6276.87 b ± 695.47 | 6375.35 b ± 1241.16 * | 0.02 | |
Water | |||||
Skin | 76.27 a ± 1.72 | 73.34 b ± 2.62 | 71.48 b ± 5.18 * | 0.004 | |
Pulp | 81.19 a ± 2.47 * | 80.99 a ± 4.87 | 71.86 b ± 8.57 * | 0.002 | |
Seed | 48.27 b ± 3.45 * | 52.70 a ± 2.42 | 51.09 ab ± 2.41 * | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosin, R.; Monteiro-Silva, F.; Martins, R.; Cunha, M. A New Approach for Element Characterization of Grapevine Tissue with Laser-Induced Breakdown Spectroscopy. Horticulturae 2024, 10, 82. https://doi.org/10.3390/horticulturae10010082
Tosin R, Monteiro-Silva F, Martins R, Cunha M. A New Approach for Element Characterization of Grapevine Tissue with Laser-Induced Breakdown Spectroscopy. Horticulturae. 2024; 10(1):82. https://doi.org/10.3390/horticulturae10010082
Chicago/Turabian StyleTosin, Renan, Filipe Monteiro-Silva, Rui Martins, and Mario Cunha. 2024. "A New Approach for Element Characterization of Grapevine Tissue with Laser-Induced Breakdown Spectroscopy" Horticulturae 10, no. 1: 82. https://doi.org/10.3390/horticulturae10010082
APA StyleTosin, R., Monteiro-Silva, F., Martins, R., & Cunha, M. (2024). A New Approach for Element Characterization of Grapevine Tissue with Laser-Induced Breakdown Spectroscopy. Horticulturae, 10(1), 82. https://doi.org/10.3390/horticulturae10010082