In Vitro Regeneration, Micropropagation and Germplasm Conservation of Horticultural Plants
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Teixeira da Silva, J.A.; Gulyás, A.; Magyar-Tábori, K.; Wang, M.-R.; Wang, Q.-C.; Dobránszki, J. In vitro tissue culture of apple and other Malus species: Recent advances and applications. Planta 2019, 249, 975–1006. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, A.; Naqvi, S.A.H.; Ayesha, S.I.; Khalid, F.; Ellahi, M.; Iqbal, S.; Hassan, M.Z.; Abbas, A.; Adamski, R.; Markowska, D.; et al. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Front. Plant Sci. 2022, 13, 1009395. [Google Scholar] [CrossRef] [PubMed]
- Pathirana, R.; Carimi, F. Studies on Improving the Efficiency of Somatic Embryogenesis in Grapevine (Vitis vinifera L.) and Optimising Ethyl Methanesulfonate Treatment for Mutation Induction. Plants 2023, 12, 4126. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, S.; Wu, T.; Wu, K.; Li, Y.; Zhang, X.; Teixeira da Silva, J.; Zeng, S.; Ma, G. Shoot organogenesis and somatic embryogenesis from leaf and petiole explants of endangered Euryodendron excelsum. Sci. Rep. 2022, 12, 20506. [Google Scholar] [CrossRef] [PubMed]
- Romadanova, N.V.; Mishustina, S.A.; Matakova, G.N.; Kushnarenko, S.V.; Rakhimbaev, I.R.; Reed, B.M. In vitro collection methods for Malus shoot cultures used for developing a cryogenic bank in Kazakhstan. Acta Hortic. 2016, 1113, 271–277. [Google Scholar] [CrossRef]
- Panis, B.; Nagel, M.; Van den Houwe, I. Challenges and prospects for the conservation of crop genetic resources in field genebanks, in in vitro collections and/or in liquid nitrogen. Plants 2020, 9, 1634. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, F. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell. Dev. Biol.-Plant 2011, 47, 5–16. [Google Scholar] [CrossRef]
- Kulak, V.; Longboat, S.; Brunet, N.D.; Shukla, M.; Saxena, P. In Vitro Technology in Plant Conservation: Relevance to Biocultural Diversity. Plants 2022, 11, 503. [Google Scholar] [CrossRef]
- Pence, V.C. Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell. Dev. Biol.-Plant 2011, 47, 176–187. [Google Scholar] [CrossRef]
- Volk, G.M.; Carver, D.P.; Irish, B.M.; Marek, L.; Frances, A.; Greene, S.; Khoury, C.K.; Bamberg, J.; del Rio, A.; Warburton, M.L.; et al. Safeguarding plant genetic resources in the United States during global climate change. Crop Sci. 2023, 63, 2274–2296. [Google Scholar] [CrossRef]
- Basiri, Y.; Etemadi, N.; Alizadeh, M.; Alizargar, J. In Vitro Culture of Eremurus spectabilis (Liliaceae), a Rare Ornamental and Medicinal Plant, through Root Explants. Horticulturae 2022, 8, 202. [Google Scholar] [CrossRef]
- Tang, Q.; Guo, X.; Zhang, Y.; Li, Q.; Chen, G.; Sun, H.; Wang, W.; Shen, X. An Optimized Protocol for Indirect Organogenesis from Root Explants of Agapanthus praecox subsp. orientalis ‘Big Blue’. Horticulturae 2022, 8, 715. [Google Scholar] [CrossRef]
- Wu, H.; Ao, Q.; Li, H.; Long, F. Rapid and Efficient Regeneration of Rhododendron decorum from Flower Buds. Horticulturae 2023, 9, 264. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chang, J.-C. Development of an Improved Micropropagation Protocol for Red-Fleshed Pitaya ‘Da Hong’ with and without Activated Charcoal and Plant Growth Regulator Combinations. Horticulturae 2022, 8, 104. [Google Scholar] [CrossRef]
- Etienne, H.; Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 2002, 69, 215–231. [Google Scholar] [CrossRef]
- Ozyigit, I.I.; Dogan, I.; Hocaoglu-Ozyigit, A.; Yalcin, B.; Erdogan, A.; Yalcin, I.E.; Cabi, E.; Kaya, Y. Production of secondary metabolites using tissue culture-based biotechnological applications. Front. Plant Sci. 2023, 14, 1132555. [Google Scholar] [CrossRef]
- Vidal, N.; Sánchez, C. Use of bioreactor systems in the propagation of forest trees. Eng. Life Sci. 2019, 19, 896–915. [Google Scholar] [CrossRef]
- Gago, D.; Sánchez, C.; Aldrey, A.; Christie, C.B.; Bernal, M.Á.; Vidal, N. Micropropagation of Plum (Prunus domestica L.) in Bioreactors Using Photomixotrophic and Photoautotrophic Conditions. Horticulturae 2022, 8, 286. [Google Scholar] [CrossRef]
- Pérez-Caselles, C.; Alburquerque, N.; Faize, L.; Bogdanchikova, N.; García-Ramos, J.C.; Rodríguez-Hernández, A.G.; Pestryakov, A.; Burgos, L. How to Get More Silver? Culture Media Adjustment Targeting Surge of Silver Nanoparticle Penetration in Apricot Tissue during in Vitro Micropropagation. Horticulturae 2022, 8, 855. [Google Scholar] [CrossRef]
- Wang, M.-R.; Cui, Z.-H.; Li, J.-W.; Hao, X.-Y.; Zhao, L.; Wang, Q.-C. In vitro thermotherapy-based methods for plant virus eradication. Plant Methods 2018, 14, 87. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Marković, Z.; Bi, W.; Volk, G.M.; Matsumoto, T.; Wang, Q.-C. Grapevine shoot tip cryopreservation and cryotherapy: Secure storage of disease-free plants. Plants 2021, 10, 2190. [Google Scholar] [CrossRef]
- Wang, M.-R.; Bi, W.-L.; Bettoni, J.C.; Zhang, D.; Volk, G.M.; Wang, Q.-C. Shoot tip cryotherapy for plant pathogen eradication. Plant Pathol. 2022, 71, 1241–1254. [Google Scholar] [CrossRef]
- Kumar, P.L.; Cuervo, M.; Kreuze, J.F.; Muller, G.; Kulkarni, G.; Kumari, S.G.; Massart, S.; Mezzalama, M.; Alakonya, A.; Muchugi, A.; et al. Phytosanitary Interventions for Safe Global Germplasm Exchange and the Prevention of Transboundary Pest Spread: The Role of CGIAR Germplasm Health Units. Plants 2021, 10, 328. [Google Scholar] [CrossRef]
- Reed, B.M.; Engelmann, F.; Dulloo, M.E.; Engels, J.M.M. Technical Guidelines for the Management of Field and In Vitro Germplasm Collections; IPGRI handbooks for genebanks no. 7; International Plant Genetic Resources Institute: Rome, Italy, 2004; 106p. [Google Scholar]
- Li, J.; He, M.; Xu, X.; Huang, T.; Tian, H.; Zhang, W. In Vitro Techniques for Shipping of Micropropagated Plant Materials. Horticulturae 2022, 8, 609. [Google Scholar] [CrossRef]
- Byrne, P.F.; Volk, G.M.; Gardner, C.; Gore, M.A.; Simon, P.W.; Smith, S. Sustaining the Future of Plant Breeding: The Critical Role of the USDA-ARS National Plant Germplasm System. Crop Sci. 2018, 58, 451–468. [Google Scholar] [CrossRef]
- Swarup, S.; Cargill, E.J.; Crosby, K.; Flagel, L.; Kniskern, J.; Glenn, K.C. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci. 2020, 61, 839–852. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Bonnart, R.; Volk, G.M. Challenges in implementing plant shoot tip cryopreservation technologies. Plant Cell Tissue Organ Cult. 2021, 144, 21–34. [Google Scholar] [CrossRef]
- Panis, B. Sixty years of plant cryopreservation: From freezing hardy mulberry twigs to establishing reference crop collections for future generations. Acta Hortic. 2019, 1234, 1–8. [Google Scholar] [CrossRef]
- Matsumoto, T. Cryopreservation of plant genetic resources: Conventional and new methods. Rev. Agric. Sci. 2017, 5, 13–20. [Google Scholar] [CrossRef]
- Zhang, A.-L.; Wang, M.-R.; Li, Z.; Panis, B.; Bettoni, J.C.; Vollmer, R.; Xu, L.; Wang, Q.-C. Overcoming Challenges for Shoot Tip Cryopreservation of Root and Tuber Crops. Agronomy 2023, 13, 219. [Google Scholar] [CrossRef]
- Wang, M.-R.; Chen, L.; Teixeira da Silva, J.A.; Volk, G.M.; Wang, Q.-C. Cryobiotechnology of apples (Malus spp.): Recent and future prospects. Plant Cell Rep. 2018, 37, 689–709. [Google Scholar] [CrossRef]
- Panis, B.; Piette, B.; Swennen, R. Droplet vitrification of apical meristems: A cryopreservation protocol applicable to all Musaceae. Plant Sci. 2005, 166, 45–55. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Kretzschmar, A.A.; Bonnart, R.; Shepherd, A.; Volk, G.M. Cryopreservation of 12 Vitis species using apical shoot tips derived from plants grown in vitro. HortScience 2019, 54, 976–981. [Google Scholar] [CrossRef]
- Vollmer, R.; Villagaray, R.; Castro, M.; Cárdenas, J.; Pineda, S.; Espirilla, J.; Anglin, N.; Ellis, D.; Azevedo, V. The world’s largest potato cryobank at the International Potato Center (CIP)—Status quo, protocol improvement through large-scale experiments and long-term viability monitoring. Front. Plant Sci. 2022, 13, 1059817. [Google Scholar] [CrossRef] [PubMed]
- Volk, G.M.; Bonnart, R.; Shepherd, A.; Yin, Z.; Lee, R.; Polek, M.; Krueger, R. Citrus cryopreservation: Viability of diverse taxa and histological observations. Plant Cell Tissue Organ Cult. 2017, 128, 327–334. [Google Scholar] [CrossRef]
- Ðordević, M.; Vujović, T.; Cerović, R.; Glišić, I.; Milošević, N.; Marić, S.; Radičević, S.; Fotirić Akšić, M.; Meland, M. In Vitro and In Vivo Performance of Plum (Prunus domestica L.) Pollen from the Anthers Stored at Distinct Temperatures for Different Periods. Horticulturae 2022, 8, 616. [Google Scholar] [CrossRef]
- Ozkaya, D.E.; Souza, F.V.D.; Kaya, E. Evaluation of Critical Points for Effective Cryopreservation of Four Different Citrus spp. Germplasm. Horticulturae 2022, 8, 995. [Google Scholar] [CrossRef]
- Villalobos-Olivera, A.; Lorenzo-Feijoo, J.C.; QuintanaBernabé, N.; Leiva-Mora, M.; Bettoni, J.C.; Martínez-Montero, M.E. Morpho-Anatomical and Physiological Assessments of Cryo-Derived Pineapple Plants (Ananas comosus var. comosus) after Acclimatization. Horticulturae 2023, 9, 841. [Google Scholar] [CrossRef]
- Chilukamarri, L.; Ashrafzadeh, S.; Leung, D.W.M. In-vitro grafting—Current applications and future prospects. Sci. Hortic. 2021, 280, 109899. [Google Scholar] [CrossRef]
- Wang, M.-R.; Bi, W.-L.; Ren, L.; Zhang, A.-L.; Ma, X.-Y.; Zhang, D.; Volk, G.M.; Wang, Q.-C. Micrografting: An Old Dog Plays New Tricks in Obligate Plant Pathogens. Plant Dis. 2022, 106, 2545–2557. [Google Scholar] [CrossRef]
- Faustino, A.; Pires, R.C.; Caeiro, S.; Rosa, A.; Marreiros, A.; Canhoto, J.; Correia, S.; Marum, L. Micrografting in almond (Prunus dulcis) Portuguese cultivars for production of disease-free plants. Acta Hortic. 2023, 1359, 165–172. [Google Scholar] [CrossRef]
- Wang, M.-R.; Bettoni, J.C.; Zhang, A.-L.; Lu, X.; Zhang, D.; Wang, Q.-C. In Vitro Micrografting of Horticultural Plants: Method Development and the Use for Micropropagation. Horticulturae 2022, 8, 576. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bettoni, J.C.; Wang, M.-R.; Wang, Q.-C. In Vitro Regeneration, Micropropagation and Germplasm Conservation of Horticultural Plants. Horticulturae 2024, 10, 45. https://doi.org/10.3390/horticulturae10010045
Bettoni JC, Wang M-R, Wang Q-C. In Vitro Regeneration, Micropropagation and Germplasm Conservation of Horticultural Plants. Horticulturae. 2024; 10(1):45. https://doi.org/10.3390/horticulturae10010045
Chicago/Turabian StyleBettoni, Jean Carlos, Min-Rui Wang, and Qiao-Chun Wang. 2024. "In Vitro Regeneration, Micropropagation and Germplasm Conservation of Horticultural Plants" Horticulturae 10, no. 1: 45. https://doi.org/10.3390/horticulturae10010045
APA StyleBettoni, J. C., Wang, M. -R., & Wang, Q. -C. (2024). In Vitro Regeneration, Micropropagation and Germplasm Conservation of Horticultural Plants. Horticulturae, 10(1), 45. https://doi.org/10.3390/horticulturae10010045