Establishment of an In Vitro Micropropagation Protocol for Hibiscus moscheutos L. ‘Berry Awesome’
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sterilization and In Vitro Culture Establishment
2.2. Culture Proliferation
2.3. Rooting
2.4. Acclimatization
2.5. Statistics
3. Results
3.1. Aseptic and Surviving Cultures
3.2. Culture Establishment
3.3. Culture Proliferation in Solid Media and in Bioreactors
3.3.1. Culture Proliferation in Solid Media
3.3.2. Culture proliferation in Bioreactors
3.4. Rooting and Acclimatization
3.4.1. On a Solid Medium
3.4.2. On Bioreactors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lupien, S.; Dugan, F.; Ward, K.; O’Donnell, K. Wilt, crown, and root rot of common rose mallow (Hibiscus moscheutos) caused by a novel Fusarium sp. Plant Dis. 2017, 101, 354–358. [Google Scholar] [CrossRef] [PubMed]
- West, T.P.; Preece, J.E. Effects of thidiazuron and nutrient salt formulations on micropropagation of hardy hibiscus (Hibiscus moscheutos L.). In Proceedings of the XXVI International Horticultural Congress: Nursery Crops; Development, Evaluation, Production and Use, Toronto, ON, Canada, 11–17 August 2002. [Google Scholar] [CrossRef]
- West, T.P.; Preece, J.E. Use of acephate, benomyl and alginate encapsulation for eliminating culture mites and fungal contamination from in vitro cultures of hardy hibiscus (Hibiscus moscheutos L.). Vitr. Cell. Dev. Biol. –Plant 2006, 42, 301–304. [Google Scholar] [CrossRef]
- West, T.P.; Preece, J.E. Bulk alginate encapsulation of Hibiscus moscheutos nodal segments. Plant Cell Tiss. Organ Cult. 2009, 97, 345–351. [Google Scholar] [CrossRef]
- Christensen, B.; Sriskandarajah, S.; Serek, M.; Müller, R. In vitro culture of Hibiscus rosa-sinensis L.: Influence of iron, calcium and BAP on establishment and multiplication. Plant Cell Tiss. Organ Cult. 2008, 93, 151–161. [Google Scholar] [CrossRef]
- Greenwell, Z.; Ruter, J. Effect of glutamine and arginine on growth of Hibiscus moscheutos “in vitro”. Ornam. Hort. 2018, 24, 393–399. [Google Scholar] [CrossRef]
- Barghchi, M.; Alderson, P. The control of shoot tip necrosis in Pistacia vera L. in vitro. Plant Growth Regul. 1996, 20, 31–35. [Google Scholar] [CrossRef]
- Van der Salm, T.P.; Van der Toorn, C.J.; Hänisch ten Cate, C.H.; Dubois, L.A.; De Vries, D.P.; Dons, H.J. Importance of the iron chelate formula for micropropagation of Rosa hybrida L.‘Moneyway’. Plant Cell Tiss. Organ Cult. 1994, 37, 73–77. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Faisal, M.; Alatar, A.; Abdel-Salam, E.M.; Qahtan, A.A. Effects of 4-CPPU on in vitro multiplication and sustainable generation of Hibiscus rosa-sinensis L.‘White Butterfly’. Saudi J. Biol. S. 2020, 27, 412–416. [Google Scholar] [CrossRef]
- Li, Z.; Ruter, J. Development and Evaluation of diploid and polyploid Hibiscus moscheutos. HortScience 2017, 52, 676–681. [Google Scholar] [CrossRef]
- Sakhanokho, H.F.; Islam-Faridi, N.; Babiker, E.M.; Smith, B.J. Micropropagation of Hibiscus moscheutos L.‘Luna White’: Effect of growth regulators and explants on nuclear DNA content and ploidy stability of regenerants. Vitr. Cell. Dev. Biol. –Plant 2022, 58, 61–69. [Google Scholar] [CrossRef]
- Lobodina, E.; Suprun, I.; Al-Nakib, E.; Avakimyan, A.; Tyschenko, E. Micropropagation of hardy Hibiscus (Hibiscus moscheutos L.). In Proceedings of the Bioengineering in the Organization of Processes Concerning Breeding and Reproduction of Perennial Crops, Krasnodar, Russia, 6–8 October 2020. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Xiao, Y.; Kozai, T. Photoautotrophic micropropagation. In Plant Factory, 2nd ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 333–346. [Google Scholar] [CrossRef]
- Georgiev, M. Design of bioreactors for plant cell and organ cultures. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology; Paek, K., Murthy, H., Zhong, J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 3–15. [Google Scholar] [CrossRef]
- Vidal, N.; Sánchez, C. Use of bioreactor systems in the propagation of forest trees. Eng. Life Sc. 2019, 19, 896–915. [Google Scholar] [CrossRef] [PubMed]
- Krol, A.; Kokotkiewicz, A.; Szopa, A.; Ekiert, H.M.; Luczkiewicz, M. Bioreactor-grown shoot cultures for the secondary metabolite production. In Plant Cell and Tissue Differentiation and Secondary Metabolites: Fundamentals and Applications; Ramawat, K.G., Ekiert, H.M., Goyal, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 187–247. [Google Scholar] [CrossRef]
- Kukharchik, N. Propagation of Fruit Plants in In Vitro Culture; Belarus Sciense: Minsk, Belarus, 2016; pp. 23–48. [Google Scholar]
- Kuppusamy, S.; Ramanathan, S.; Sengodagounder, S.; Senniappan, C.; Shanmuganathan, R.; Brindhadevi, K.; Kaliannan, T. Optimizing the sterilization methods for initiation of the five different clones of the Eucalyptus hybrid species. Biocatal. Agricult. Biotech. 2019, 22, 101361. [Google Scholar] [CrossRef]
- Wendling, I.; Trueman, S.J.; Xavier, A. Maturation and related aspects in clonal forestry—Part II: Reinvigoration, rejuvenation and juvenility maintenance. New For. 2014, 45, 473–486. [Google Scholar] [CrossRef]
- Bhojwani, S.; Dantu, P. Plant Tissue Culture: An Introductory Text; Springer: New Delhi, India; pp. 10–125. [CrossRef]
- Chen, L.R.; Hsiung, T.C.; Lin, K.H.; Huang, T.B.; Huang, M.Y.; Wakana, A. Supplementary effect of hydrogen peroxide as a pre–disinfectant for sterilizing rhizome bud explants of Zantedeschia aethiopica L. with chlorine dioxide. J. Fac. Agr. Kyushu Univ. 2017, 62, 81–86. [Google Scholar] [CrossRef]
- Köse, M.; Doğan, M.; Gökhan, S. Surface sterilization of Staurogyne repens (Nees) Kuntze with hydrogen peroxide. Bull. Biotech. 2020, 1, 39–42. [Google Scholar]
- Ansar, S.; Iqbal, M. Effect of dietary antioxidant on mercuric chloride induced lung toxicity and oxidative stress. Toxin Rev. 2015, 34, 168–172. [Google Scholar] [CrossRef]
- Fargašová, A. Plant stress activated by chlorine from disinfectants prepared on the base of sodium hypochlorite. Nova Biotech. Chim. 2017, 16, 76–85. [Google Scholar] [CrossRef]
- Driver, J.A.; Kuniyuki, A.H. In vitro propagation of Paradox walnut rootstock. HortScience 1984, 19, 507–509. [Google Scholar] [CrossRef]
- Jahan, A.A.; Anis, M.; Aref, I.M. Preconditioning of axillary buds in thidiazuron-supplemented liquid media improves in vitro shoot multiplication in Nyctanthes arbor-tristis L. Appl. Biochem. Biotech. 2011, 163, 851–859. [Google Scholar] [CrossRef]
- Grąbkowska, R.; Sitarek, P.; Wysokińska, H. Influence of thidiazuron (TDZ) pretreatment of shoot tips on shoot multiplication and ex vitro acclimatization of Harpagophytum procumbens. Acta Physiol. Plant. 2014, 36, 1661–1672. [Google Scholar] [CrossRef]
- Antonić, D.; Trajković, M.; Cingel, A.; Subotić, A.; Jevremović, S. Plant regenerationfrom in vitro-derived leaf and petiole explants of Viola cornuta L. ‘Lutea Splendens’. Propag. Ornam. Plants 2017, 17, 95–102. [Google Scholar]
- Fira, A.; Clapa, D.; Cristea, V.; Plopa, C. In vitro propagation of Lonicera kamtschatica. Agr. Sc. Pract. J. 2014, 89, 90–99. [Google Scholar]
- Debnath, S. A scale-up system for lowbush blueberry micropropagation using a bioreactor. HortScience 2009, 44, 1962–1966. [Google Scholar] [CrossRef]
- Gao, R.; Wu, S.Q.; Piao, X.C.; Park, S.Y.; Lian, M.L. Micropropagation of Cymbidium sinense using continuous and temporary airlift bioreactor systems. Acta Physiol. Plant. 2014, 36, 117–124. [Google Scholar] [CrossRef]
- Chakrabarty, D.; Dewir, Y.; Hahn, E.; Datta, S.; Paek, K. The dynamics of nutrient utilization and growth of apple root stock ‘M9 EMLA’in temporary versus continuous immersion bioreactors. Plant Growth Regul. 2007, 51, 11–19. [Google Scholar] [CrossRef]
- Etienne, H.; Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tiss. Organ Cult. 2002, 69, 215–231. [Google Scholar] [CrossRef]
Treatment | Sterilant Used | Treatment Duration | Culture Asepsis (%) | Explant Survival (%) |
---|---|---|---|---|
E96H38W5 | Solution of ethyl alcohol (96%), hydrogen peroxide (38%), and water in a ratio of 1:1:2 | 5 min | 63.4 ± 1.25 b | 62.6 ± 1.21 a |
E96H38W10 | The same as above | 10 min | 68.0 ± 1.14 a | 50.0 ± 0.63 b |
E70S10 | Ethyl alcohol (70%) Mercuric chloride (1.0%) | 30 s 10 min | 44.4 ± 2.29 c | 44.4 ± 1.63 c |
E70S15 | Ethyl alcohol (70%) Mercuric chloride (1.0%) | 30 s 15 min | 21.4 ± 0.98 e | 21.2 ± 0.98 e |
E70SH5 | Ethyl alcohol (70%) Sodium hypochlorite (1.0%) | 30 s 5 min | 33.4 ± 0.68 cd | 32.6 ± 0.51 cd |
E70SH10 | Ethyl alcohol (70%) Sodium hypochlorite (1.0%) | 30 s 10 min | 37.8 ± 0.37 cd | 37.0 ± 0.32 cd |
Growth Regulators | Concentration (mg L−1) | Culture Establishment (%) | Days to Bud Sprouting | Shoot Number | Shoot Length (cm) | Leaf Number/Shoot |
---|---|---|---|---|---|---|
Free | 0 | 48.9 ± 0.41 e | 13.8 ± 0.49 a | 1.2 ± 0.20 b | 1.7 ± 0.12 c | 1.5 ± 0.08 c |
BAP | 0.1 | 67.2 ± 0.74 bc | 11.2 ± 0.20 b | 1.2 ± 0.20 b | 2.1 ± 0.13 b | 1.6 ± 0.09 c |
BAP | 0.25 | 52.5 ± 1.04 d | 13.2 ± 0.20 a | 1.4 ± 0.24 ab | 1.9 ± 0.12 b | 2.5 ± 0.14 b |
BAP | 0.5 | 52.5 ± 1.35 d | 13.2 ± 0.20 a | 1.5 ± 0.24 a | 1.7 ± 0.07 c | 2.8 ± 0.06 ab |
CPPU | 0.05 | 69.9 ± 0.42 bc | 10.6 ± 0.40 b | 1.6 ± 0.24 a | 2.1 ± 0.04 b | 3.1 ± 0.1 ab |
CPPU | 0.1 | 73.3 ± 1.05 a | 11 ± 0.32 b | 1.6 ± 0.24 a | 2.4 ± 0.12 a | 3.3 ± 0.13 a |
CPPU | 0.2 | 73.1 ± 1.24 a | 11.3 ± 0.20 b | 1.6 ± 0.24 a | 2.3 ± 0.07 a | 3.5 ± 0.10 a |
Growth Regulators | Concentration (mgL−1) | Culture Proliferation (%) | Proliferated Shoot Number | Shoot Length (cm) | Leaves/Proliferated Shoot | Callus Induction (%) |
---|---|---|---|---|---|---|
free | 0 | 44.0 ± 4.30 d | 1.9 ± 0.19 e | 2.4 ± 0.14 d | 2.6 ± 0.24 e | 0 |
BAP | 0.1 | 49.0 ± 3.33 c | 1.8 ± 0.12 e | 3.2 ± 0.08 b | 3.0 ± 0.32 d | 3.0 ± 0.37 b |
BAP | 0.25 | 80.0 ± 3.53 bc | 3.8 ± 0.37 d | 3.0 ± 0.08 b | 3.6 ± 0.24 c | 3.0 ± 0.37 b |
BAP | 0.5 | 82.0 ± 1.22 b | 4.4 ± 0.51 c | 2.8 ± 3.32 c | 3.8 ± 0.37 c | 5.0 ± 0.72 b |
CPPU | 0.05 | 84.0 ± 1.87 b | 4.8 ± 0.37 c | 3.2 ± 0.11 ab | 5.2 ± 0.37 a | 0 |
CPPU | 0.1 | 95.0 ± 3.32 a | 5.8 ± 0.37 b | 3.6 ± 0.14 a | 4.8 ± 0.37 b | 15.0 ± 0.40 a |
CPPU | 0.2 | 95.2 ± 2.32 a | 6.2 ± 0.12 a | 3.4 ± 0.08 a | 5.2 ± 0.37 a | 15.2 ± 1.20 a |
Growth Regulators | Concentration (mg L−1) | Culture Proliferation(%) | Proliferated Shoot Number | Shoot Length (cm) | Leaves/Proliferated Shoot | Callus Induction (%) |
---|---|---|---|---|---|---|
Free | 0 | 56.0 ± 4.3 e | 3.1 ± 0.27 d | 3.7 ± 0.11 e | 3.5 ± 0.62 e | 0 |
BAP | 0.1 | 71.0 ± 3.33 d | 6.0 ± 0.13 c | 4.1 ± 0.10 c | 4.1 ± 0.32 d | 0 |
BAP | 0.25 | 85.1 ± 3.53 c | 7.8 ± 1.23 b | 4.2 ± 0.23 c | 4.6 ± 0.66 c | 5.0 ± 0.15 c |
BAP | 0.5 | 86.0 ± 1.22 c | 8.3 ± 0.32 b | 4.8 ± 1.80 bc | 4.9 ± 0.77 c | 5.0 ± 0.70 c |
CPPU | 0.05 | 95.2 ± 1.87 b | 9.2 ± 0.12 b | 5.3 ± 0.20 b | 5.8 ± 0.32 b | 0 |
CPPU | 0.1 | 98.5 ± 3.32 a | 9.5 ± 0.47 b | 5.6 ± 0.31 a | 5.8 ± 0.11 b | 7.1 ± 0.30 b |
CPPU | 0.2 | 98.1 ± 2.32 a | 10.1 ± 0.3 a | 5.8 ± 0.11 a | 6.3 ± 0.43 a | 9.4 ± 2.10 a |
Growth Regulators | Concentration (mg L−1) | Root Initiation (day) | Rooting (%) | Primary Roots/Shoot | Root Length (mm) | Callus Induction (%) | Plantlet Survival during Acclimatization (%) |
---|---|---|---|---|---|---|---|
free | 0 | 22.4 ± 1.20 e | 87.0 ± 2.00 d | 2.0 ± 0.31 d | 31.2 ± 1.24 b | 1.0 ± 1.1 e | 86.2 ± 0.46 b |
NAA | 0.1 | 15.6 ± 0.40 b | 98.0 ± 1.30 a | 3.8 ± 0.37 b | 43.4 ± 3.14 a | 10.4 ± 1.58 c | 78.3 ± 1.23 d |
NAA | 0.5 | 16.0 ± 0.63 a | 91.0 ± 2.45 c | 3.2 ± 0.37 c | 32.0 ± 2.55 b | 23.0 ± 2.55 b | 83.1 ± 0.82 c |
NAA | 1.0 | 15.2 ± 0.37 c | 96.0 ± 1.87 b | 2.2 ± 0.58 d | 17.6 ± 1.12 d | 29.0 ± 1.10 a | 84.7 ± 0.90 c |
IBA | 0.1 | 15.2 ± 0.37 c | 99.0 ± 1.00 a | 4.2 ± 0.37 a | 44.0 ± 3.67 a | 4.5 ± 0.63 d | 88.7 ± 0.37 a |
IBA | 0.5 | 14.8 ± 0.37 cd | 98.0 ± 1.22 a | 3.6 ± 0.51 b | 41.8 ± 1.93 ab | 8.8 ± 1.24 cd | 89.1 ± 1.26 a |
IBA | 1.0 | 14.6 ± 0.40 cd | 98.0 ± 1.22 a | 3.0 ± 0.44 c | 24.0 ± 1.05 c | 11.8 ± 0.92 c | 90.3 ± 1.12 a |
Growth Regulators | Concentration (mg L−1) | Root Initiation (Day) | Rooting (%) | Primary Roots/Shoot | Root Length (mm) | Callus Induction (%) | Plantlet Survival during Acclimatization (%) |
---|---|---|---|---|---|---|---|
free | - | 13.3 ± 1.90 a | 90.0 ± 1.80 c | 2.5 ± 2.333 d | 36.1 ± 0.92 e | 0 | 90.4 ± 1.65 e |
NAA | 0.1 | 12.1 ± 1.50 b | 98.0 ± 2.10 c | 3.7 ± 0.21 bc | 45.1 ± 2.14 c | 0 | 97.3 ± 1.49 b |
NAA | 0.5 | 12.5 ± 2.43 bc | 98.0 ± 0.49 a | 3.2 ± 0.29 c | 43.1 ± 2.76 d | 15.0 ± 1.85 b | 98.1 ± 0.89 a |
NAA | 1.0 | 12.7 ± 1.77 c | 99.0 ± 2.79 d | 3.1 ± 0.10 c | 42.9 ± 2.39 d | 20.0 ± 1.15 a | 95.6 ± 1.7 c |
IBA | 0.1 | 12.3 ± 0.72 b | 99.0 ± 1.30 b | 4.8 ± 0.49 a | 49.0 ± 2.83 a | 0 | 98.7 ± 0.27 a |
IBA | 0.5 | 11.3 ± 0.20 d | 99.0 ± 0.59 a | 4.2 ± 0.66 b | 47.1 ± 1.44 b | 0 | 98.7 ± 0.48 a |
IBA | 1.0 | 11.3 ± 0.10 d | 99.0 ± 2.93 d | 4.4 ± 0.29 b | 45.2 ± 0.69 c | 10.1 ± 0.71 c | 97.8 ± 2.12 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sereda, M.; Petrenko, V.; Kapralova, O.; Chokheli, V.; Varduni, T.; Dmitriev, P.; Minkina, T.; Sushkova, S.; Barbashev, A.; Dudnikova, T.; et al. Establishment of an In Vitro Micropropagation Protocol for Hibiscus moscheutos L. ‘Berry Awesome’. Horticulturae 2024, 10, 21. https://doi.org/10.3390/horticulturae10010021
Sereda M, Petrenko V, Kapralova O, Chokheli V, Varduni T, Dmitriev P, Minkina T, Sushkova S, Barbashev A, Dudnikova T, et al. Establishment of an In Vitro Micropropagation Protocol for Hibiscus moscheutos L. ‘Berry Awesome’. Horticulturae. 2024; 10(1):21. https://doi.org/10.3390/horticulturae10010021
Chicago/Turabian StyleSereda, Mikhail, Victoria Petrenko, Olga Kapralova, Vasily Chokheli, Tatyana Varduni, Pavel Dmitriev, Tatiana Minkina, Svetlana Sushkova, Andrey Barbashev, Tamara Dudnikova, and et al. 2024. "Establishment of an In Vitro Micropropagation Protocol for Hibiscus moscheutos L. ‘Berry Awesome’" Horticulturae 10, no. 1: 21. https://doi.org/10.3390/horticulturae10010021
APA StyleSereda, M., Petrenko, V., Kapralova, O., Chokheli, V., Varduni, T., Dmitriev, P., Minkina, T., Sushkova, S., Barbashev, A., Dudnikova, T., Singh, R. K., Seth, C. S., & Rajput, V. D. (2024). Establishment of an In Vitro Micropropagation Protocol for Hibiscus moscheutos L. ‘Berry Awesome’. Horticulturae, 10(1), 21. https://doi.org/10.3390/horticulturae10010021