Artificial Polyploidization Enhances Morphological, Physiological, and Biological Characteristics in Melothria scabra Naudin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Acquisition and In Vitro Transfer
2.2. Autopolyploid Induction
2.3. Flow Cytometry Analysis
2.4. Transfer to Ex Vitro Condition
2.5. Quantitative and Morphological Evaluation
2.6. Determination of Dry Matter, Ash, and Crude Protein Content among the Diploid and Tetraploid Fruits
2.7. Determination of Vitamin C, Sugars, and Citric Acid among the Diploid and Tetraploid Fruits
2.8. Total Antioxidant Activity Comparison among the Diploid and Tetraploid Fruits
2.9. Total Phenolic Content among the Diploid and Tetraploid Fruits
2.10. Analysis of Carotenoids among the Diploid and Tetraploid Fruits
2.11. Statistical Analysis
3. Results
3.1. Effect of Oryzalin on the Survival and Polyploid Induction Rate
3.2. Morphological Comparisons between Diploid and Tetraploids of Melothria scabra
3.3. Nutritional Comparisons between Diploid and Autotetraploids of Melothria scabra
3.4. Polyphenol, Antioxidant, and Carotenoid Contents
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamaruddin, H.S.; Megawati, M.; Nurliana, N.; Sabandar, C.W. Chemical Constituents and Antioxidant Activity of Melothria Scabra Naudin Fruits. Borneo J. Pharm. 2021, 4, 283–292. [Google Scholar] [CrossRef]
- Bhowmick, B.K.; Jha, S. A Critical Review on Cytogenetics of Cucurbitaceae with Updates on Indian Taxa. Comp. Cytogenet. 2022, 16, 93–125. [Google Scholar] [CrossRef] [PubMed]
- Woodson, R.E.; Schery, R.W.; Wunderlin, R.P. Flora of Panama. Part IX. Family 182. Cucurbitaceae. Ann. Mo. Bot. Gard. 1978, 65, 285. [Google Scholar] [CrossRef]
- Govindula, A.; Reddy, S.; Manasa, P.; Ajay kumar, B.B. Phytochemical Investigation and In Vitro antidiabetic activity of melothria scabra. Asian J. Pharm. Res. Dev. 2019, 7, 43–48. [Google Scholar] [CrossRef]
- Bharati, R.; Sen, M.K.; Severová, L.; Svoboda, R.; Cusimamani, E.F. Polyploidization and Genomic Selection Integration for Grapevine Breeding: A Perspective. Front. Plant Sci. 2023, 14, 1248978. [Google Scholar] [CrossRef]
- Maria George, N.; Akkaraparambil; Duraisamy, P. Synthetic Polyploidy in Spice Crops: A Review. Crop Sci. 2023, in press. [Google Scholar] [CrossRef]
- Chen, J.-T.; Coate, J.E.; Meru, G. Artificial Polyploidy in Plants. Front. Plant Sci. 2020, 11, 621849. [Google Scholar] [CrossRef]
- Gantait, S.; Mukherjee, E. Induced Autopolyploidy—A Promising Approach for Enhanced Biosynthesis of Plant Secondary Metabolites: An Insight. J. Genet. Eng. Biotechnol. 2021, 19, 4. [Google Scholar] [CrossRef]
- Niazian, M.; Nalousi, A.M. Artificial Polyploidy Induction for Improvement of Ornamental and Medicinal Plants. Plant Cell Tissue Organ Cult. 2020, 142, 447–469. [Google Scholar] [CrossRef]
- Zahumenická, P.; Fernández, E.; Šedivá, J.; Žiarovská, J.; Ros-Santaella, J.L.; Martínez-Fernández, D.; Russo, D.; Milella, L. Morphological, Physiological and Genomic Comparisons between Diploids and Induced Tetraploids in Anemone Sylvestris L. Plant Cell Tiss. Organ. Cult. 2018, 132, 317–327. [Google Scholar] [CrossRef]
- Šedivá, J.; Mrázková, M.; Zahumenická, P.; Cusimamani, E.F.; Zahradník, D. Identification of Phytophthora Tolerance in the Anemone Sylvestris Tetraploid. Sci. Hortic. 2019, 256, 108579. [Google Scholar] [CrossRef]
- Homaidan Shmeit, Y.; Fernandez, E.; Novy, P.; Kloucek, P.; Orosz, M.; Kokoska, L. Autopolyploidy Effect on Morphological Variation and Essential Oil Content in Thymus Vulgaris L. Sci. Hortic. 2020, 263, 109095. [Google Scholar] [CrossRef]
- Bharati, R.; Fernández-Cusimamani, E.; Gupta, A.; Novy, P.; Moses, O.; Severová, L.; Svoboda, R.; Šrédl, K. Oryzalin Induces Polyploids with Superior Morphology and Increased Levels of Essential Oil Production in Mentha Spicata L. Ind. Crop. Prod. 2023, 198, 116683. [Google Scholar] [CrossRef]
- Dhooghe, E.; Van Laere, K.; Eeckhaut, T.; Leus, L.; Van Huylenbroeck, J. Mitotic Chromosome Doubling of Plant Tissues in Vitro. Plant Cell Tissue Organ Cult. 2011, 104, 359–373. [Google Scholar] [CrossRef]
- Beranová, K.; Bharati, R.; Žiarovská, J.; Bilčíková, J.; Hamouzová, K.; Klíma, M.; Fernández-Cusimamani, E. Morphological, Cytological, and Molecular Comparison between Diploid and Induced Autotetraploids of Callisia Fragrans (Lindl.) Woodson. Agronomy 2022, 12, 2520. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Soltanloo, H.; Shariatpanahi, M.E.; Eskandari, A.; Ramezanpour, S.S. Improved Chromosome Doubling of Parthenogenetic Haploid Plants of Cucumber (Cucumis Sativus L.) Using Colchicine, Trifluralin, and Oryzalin. Plant Cell Tissue Organ Cult. 2018, 135, 407–417. [Google Scholar] [CrossRef]
- Bae, S.-J.; Islam, M.M.; Kim, H.-Y.; Lim, K.-B. Induction of Tetraploidy in Watermelon with Oryzalin Treatments. Hortic. Sci. Technol. 2020, 38, 385–393. [Google Scholar] [CrossRef]
- Cho, W.-Y.; Deepo, D.M.; Islam, M.M.; Nam, S.-C.; Kim, H.-Y.; Han, J.-S.; Kim, C.-K.; Chung, M.-Y.; Lim, K.-B. Induction of Polyploidy in Cucumis Melo ‘Chammel’ and Evaluation of Morphological and Cytogenetic Changes. Hortic. Sci. Technol. 2021, 39, 625–636. [Google Scholar] [CrossRef]
- Parsons, J.L.; Martin, S.L.; James, T.; Golenia, G.; Boudko, E.A.; Hepworth, S.R. Polyploidization for the Genetic Improvement of Cannabis Sativa. Front. Plant Sci. 2019, 10, 476. [Google Scholar] [CrossRef]
- Wang, K.; He, L.; Yan, H.; Wei, X. Induction of Tetraploidity with Antimicrotubule Agents in Oriental Melon (Cucumis Melo Var. Makuwa). Isr. J. Plant Sci. 2015, 62, 198–207. [Google Scholar] [CrossRef]
- Zheng, J.; Sun, C.; Yan, L.; Feng, Z. Development of Cucumber Autotetraploids and Their Phenotypic Characterization. Cytologia 2019, 84, 359–365. [Google Scholar] [CrossRef]
- Gaikwad, K.J.; Jambhale, N.D.; Bhave, S.G. Induction of Polyploidy in Watermelon (Citrullus Lanatus (Thunb.) Matsum and Nakai.). Agric. Biol. Res. 2009, 25, 110–118. [Google Scholar]
- Noh, J.; Sheikh, S.; Chon, H.G.; Seong, M.H.; Lim, J.H.; Lee, S.G.; Jung, G.T.; Kim, J.M.; Ju, H.-J.; Huh, Y.C. Screening Different Methods of Tetraploid Induction in Watermelon [Citrullus Lanatus (Thunb.) Manst. and Nakai]. Hortic. Environ. Biotechnol. 2012, 53, 521–529. [Google Scholar] [CrossRef]
- Ghotbi Ravandi, E.; Rezanejad, F.; Zolala, J.; Dehghan, E. The Effects of Chromosome-Doubling on Selected Morphological and Phytochemical Characteristics of Cichorium intybus L. J. Hortic. Sci. Biotechnol. 2013, 88, 701–709. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- ISO 5983-2:2009. Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 2: Block Digestion and Steam Distillation Method. Available online: https://cdn.standards.iteh.ai/samples/52199/e624eee677374dc58a4b23c0c72cba6d/ISO-5983-2-2009.pdf (accessed on 22 September 2023).
- Sabolová, M.; Kouřimská, L. Vitamin C and Nitrates Contents in Fruit and Vegetables from Farmers’ Markets and Supermarkets. Slovak J. Food Sci. 2020, 14, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Paznocht, L.; Kotíková, Z.; Šulc, M.; Lachman, J.; Orsák, M.; Eliášová, M.; Martinek, P. Free and Esterified Carotenoids in Pigmented Wheat, Tritordeum and Barley Grains. Food Chem. 2018, 240, 670–678. [Google Scholar] [CrossRef]
- Kurdziel, A.; Sychta, K.; Sliwinska, E.; Miszczak, S.; Szarek-Łukaszewska, G.; Rostański, A.; Słomka, A. Stable Artificial Autopolyploids of the Zn/Cd Accumulator Arabidopsis Arenosa—A Promising Genetic Resource for Phytoremediation. Appl. Sci. 2023, 13, 1617. [Google Scholar] [CrossRef]
- Eng, W.-H.; Ho, W.-S. Polyploidization Using Colchicine in Horticultural Plants: A Review. Sci. Hortic. 2019, 246, 604–617. [Google Scholar] [CrossRef]
- Salma, U.; Kundu, S.; Mandal, N. Artificial Polyploidy in Medicinal Plants: Advancement in the Last Two Decades and Impending Prospects. J. Crop. Sci. Biotechnol. 2017, 20, 9–19. [Google Scholar] [CrossRef]
- Wu, J.-H.; Ferguson, A.R.; Murray, B.G.; Jia, Y.; Datson, P.M.; Zhang, J. Induced Polyploidy Dramatically Increases the Size and Alters the Shape of Fruit in Actinidia Chinensis. Ann. Bot. 2012, 109, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-H.; Ferguson, A.R.; Murray, B.G.; Duffy, A.M.; Jia, Y.; Cheng, C.; Martin, P.J. Fruit Quality in Induced Polyploids of Actinidia Chinensis. HortScience 2013, 48, 701–707. [Google Scholar] [CrossRef]
- Sabooni, N.; Gharaghani, A. Induced Polyploidy Deeply Influences Reproductive Life Cycles, Related Phytochemical Features, and Phytohormonal Activities in Blackberry Species. Front. Plant Sci. 2022, 13, 938284. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.; Oustric, J.; Santini, J.; Morillon, R. Synthetic Polyploidy in Grafted Crops. Front. Plant Sci. 2020, 11, 540894. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Kaur, R.; Nayyar, H. Ascorbic Acid. In Oxidative Damage to Plants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 235–287. ISBN 978-0-12-799963-0. [Google Scholar]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.; Shin, J.; Keum, Y.-S.; Lee, J.-H. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits—A Review of Recent Advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, S.; Corleo, D.; Di Pace, F.; Petroni, M.; Satriano, A.; Marchesini, G. The Effect of Lutein on Eye and Extra-Eye Health. Nutrients 2018, 10, 1321. [Google Scholar] [CrossRef]
- Tossi, V.E.; Martínez Tosar, L.J.; Laino, L.E.; Iannicelli, J.; Regalado, J.J.; Escandón, A.S.; Baroli, I.; Causin, H.F.; Pitta-Álvarez, S.I. Impact of Polyploidy on Plant Tolerance to Abiotic and Biotic Stresses. Front. Plant Sci. 2022, 13, 869423. [Google Scholar] [CrossRef]
- Hias, N.; Svara, A.; Keulemans, J.W. Effect of Polyploidisation on the Response of Apple (Malus × Domestica Borkh.) to Venturia Inaequalis Infection. Eur. J. Plant Pathol. 2018, 151, 515–526. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S.; Wang, Y.; Zhang, B.; Zhang, F.; Xue, H.; Jiang, Q.; Ma, Y. Overexpression of Chitinase Gene Enhances Resistance to Colletotrichum Gloeosporioides and Alternaria Alternata in Apple (Malus×domestica). Sci. Hortic. 2021, 277, 109779. [Google Scholar] [CrossRef]
Treatment | Oryzalin (µM) | Number of Treated Explants | Time of Treatment (h) | Survival Rate (%) | Number of Tetraploid Plants | Number of Mixoploid Plants | Polyploidization Efficiency of Tetraploids (%) |
---|---|---|---|---|---|---|---|
T1 | 40 40 | 40 | 24 | 70.5 | 3 | 3 | 7.5 |
T2 | 40 | 48 | 62.5 | 3 | 1 | 7.5 | |
T3 | 60 60 | 40 | 24 | 60.0 | 3 | 4 | 7.5 |
T4 | 40 | 48 | 50.0 | 4 | 3 | 10.0 | |
T5 | 80 80 | 40 | 24 | 37.5 | 1 | 2 | 2.5 |
T6 | 40 | 48 | 20.0 | 6 | 2 | 15.0 |
Variant | Flower Width (mm) | Receptacle Width (mm) | Flower Height (mm) | Number of Petals |
---|---|---|---|---|
Control | 8.46 ± 1.74 a | 2.28 ± 0.71 a | 2.89 ± 0.57 a | 5 ± 0 a |
Genotype 31 | 11.18 ± 1.24 b | 2.83 ± 0.35 a | 3.05 ± 0.64 a | 5 ± 0 a |
Genotype 52 | 11.5 ± 1.29 b | 2.69 ± 0.57 a | 3.33 ± 0.45 a | 5 ± 0 a |
Variant | Fruit Length (mm) | Fruit Width (mm) | Fruit Weight (g) | Seed Length (mm) | Seed Width (mm) | Average Weight of 100 Seeds (mg) |
---|---|---|---|---|---|---|
Control | 27.1 ± 1.63 a | 14.9 ± 0.64 a | 3.4 ± 0.45 a | 3.1 ± 0.1 a | 1.7 ± 0.04 a | 375.2 ± 27.5 a |
Genotype 31 | 27.7 ± 2.42 a | 17.0 ± 0.97 b | 4.2 ± 0.58 b | 2.9 ± 0.1 ab | 1.8 ± 0.09 a | 83.3 ± 7.5 b |
Genotype 52 | 24.5 ± 2.01 b | 17.2 ± 0.91 b | 3.9 ± 0.39 b | 2.7 ± 0.1 b | 1.5 ± 0.01 b | 76.2 ± 5.8 c |
Variant | Dry Weight g/100 g FW | Crude Protein g/100 g DM | Ash g/100 g DM | Vitamin C mg/kg DM | Glucose mg/100 g DM | Fructose g/100 g DM | Citric Acid g/100 g DM |
---|---|---|---|---|---|---|---|
Control | 10.30 ± 0.07 a | 21.15 ± 0.88 a | 4.19 ± 0.07 a | 14.49 ± 0,71 a | 109.67 ± 3.04 c | 8.30 ± 0.18 c | 15.26 ± 0.72 a |
Genotype 31 | 7.98 ± 0.05 b | 15.74 ± 0.60 b | 3.25 ± 0.06 b | 12.77 ± 0.66 b | 189.28 ± 0.75 b | 12.84 ± 0.01 b | 11.35 ± 0.19 b |
Genotype 52 | 7.73 ± 0.12 b | 16.23 ± 0.62 b | 3.16 ± 0.03 b | 11.96 ± 0.20 b | 265.65 ± 0.75 a | 14.22 ± 0.01 a | 13.50 ± 0.01 a |
Variant | Polyphenols (μg GAE/g DW) | Antioxidant Activity (μg TE/g DW) | Carotenoids (μg/g DW) | |||
---|---|---|---|---|---|---|
Lutein | Zeaxanthin | α-Carotene | β-Carotene | |||
Control | 1183 ± 26.66 c | 1509 ± 42.00 a | 62.61 ± 5.60 a | 2.89 ± 0.29 b | 0.72 ± 0.24 a | 18.46 ± 4.85 a |
Genotype 31 | 2055 ± 14.04 b | 1467 ± 49.35 a | 44.63 ± 2.04 b | 2.48 ± 0.04 b | 0.87 ± 0.11 a | 18.34 ± 2.86 a |
Genotype 52 | 2377 ± 22.27 a | 1527 ± 17.95 a | 68.2 ± 9.63 a | 3.46 ± 0.40 a | 0.84 ± 0.25 a | 21.93 ± 5.79 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Cusimamani, E.; Bharati, R.; Javůrková, T.A.; Škvorová, P.; Paznocht, L.; Kotikova, Z.; Kouřimská, L.; Orsák, M. Artificial Polyploidization Enhances Morphological, Physiological, and Biological Characteristics in Melothria scabra Naudin. Horticulturae 2024, 10, 22. https://doi.org/10.3390/horticulturae10010022
Fernández-Cusimamani E, Bharati R, Javůrková TA, Škvorová P, Paznocht L, Kotikova Z, Kouřimská L, Orsák M. Artificial Polyploidization Enhances Morphological, Physiological, and Biological Characteristics in Melothria scabra Naudin. Horticulturae. 2024; 10(1):22. https://doi.org/10.3390/horticulturae10010022
Chicago/Turabian StyleFernández-Cusimamani, Eloy, Rohit Bharati, Tereza Anna Javůrková, Petra Škvorová, Luboš Paznocht, Zora Kotikova, Lenka Kouřimská, and Matyáš Orsák. 2024. "Artificial Polyploidization Enhances Morphological, Physiological, and Biological Characteristics in Melothria scabra Naudin" Horticulturae 10, no. 1: 22. https://doi.org/10.3390/horticulturae10010022
APA StyleFernández-Cusimamani, E., Bharati, R., Javůrková, T. A., Škvorová, P., Paznocht, L., Kotikova, Z., Kouřimská, L., & Orsák, M. (2024). Artificial Polyploidization Enhances Morphological, Physiological, and Biological Characteristics in Melothria scabra Naudin. Horticulturae, 10(1), 22. https://doi.org/10.3390/horticulturae10010022