Effects of Nitrogen Source on Mineral Element, Phytochemical Content, and Antioxidant Activity of Short-Day Onion (Allium cepa) Bulbs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Experimental Design and Treatments
- (i)
- pre-plant base application of 80 kg ha−1 N from CaCN2,
- (ii)
- pre-plant base application of 80 kg ha−1 N from CaCN2 + top-dressing with 50 kg ha−1 N from limestone ammonium nitrate (LAN),
- (iii)
- pre-plant base application of 80 kg ha−1 N from CaCN2 + top-dressing with 50 kg ha−1 N from urea,
- (iv)
- pre-plant base application of 80 kg ha−1 N from LAN and top-dressing with 50 kg ha−1 N from LAN,
- (v)
- pre-plant base application of 80 kg ha−1 N from urea and top-dressing with 50 kg ha−1 N from urea, and
- (vi)
- 0 kg ha−1 N.
2.3. Determination of Onion Bulb Mineral Composition
2.4. Total Phenolic and Flavonoid Contents
2.5. Antioxidant Assays
2.5.1. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Free Radical Scavenging Activity
2.5.2. Antioxidant Activity Using β-Carotene Linoleic Acid Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Biochemical Composition
3.1.1. Effect of N Source Fertilizer on Total Phenolic Content
3.1.2. Effect of N Source Fertilizer on Onion Bulb Flavonoids
3.1.3. Free Radical Scavenging Activity
3.1.4. Effect of N Source Fertilizer on Antioxidant Activity
3.2. Bulb Mineral Composition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geisseler, D.; Ortiz, R.S.; Diaz, J. Nitrogen nutrition and fertilization of onions (Allium cepa L.)—A literature review. Sci. Hort. 2022, 291, 110591. [Google Scholar] [CrossRef]
- Bahram-Parvar, M.; Lim, L.T. Fresh-cut onion: A review on processing, health benefits, and shelf-life. Compr. Rev. Food Sci. Food Saf. 2018, 17, 290–308. [Google Scholar] [CrossRef] [PubMed]
- Khandagale, K.; Gawande, S. Genetics of bulb colour variation and flavonoids in onion. J. Hortic. Sci. Biotechnol. 2019, 94, 522–532. [Google Scholar] [CrossRef]
- Grubben, G.J.H.; Denton, O.A. Plant Resources of Tropical Africa 2. Vegetables; PROTA; Plant Resources of Tropical Africa Foundation: Wageningen, The Netherlands, 2004. [Google Scholar]
- Kandoliya, U.K.; Bodar, N.P.; Bajaniya, V.K.; Bhadja, N.V.; Golakiya, B.A. Determination of nutritional value and antioxidant from bulbs of different onion (Allium cepa) variety. Int. J. Curr. MicroBiol. Appl. Sci. 2015, 4, 635–645. [Google Scholar]
- Mitra, J.; Shrivastava, S.L.; Rao, P.S. Onion dehydration: A review. J. Food Sci. Technol. 2012, 49, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Olalusi, A. Hot air drying and quality of red and white varieties of onion (Allium cepa). J. Agric. Food Chem. 2014, 3, 13–19. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Z.; Cui, R.; Su, L.; Sun, X.; Borras-Hidalgo, O.; Li, K.; Wei, J.; Yue, Q.; Zhao, L. Effects of nitrogen application on phytochemical component levels and anticancer and antioxidant activities of Allium fistulosum. PeerJ 2021, 10, e11706. [Google Scholar] [CrossRef]
- Chang, T.-C.; Jang, H.D.; Lin, W.D.; Duan, P.F. Antioxidant and antimicrobial activities of commercial rice wine extracts of Taiwanese Allium fistulosum. Food Chem. 2016, 190, 724–729. [Google Scholar] [CrossRef]
- Pan, Y.; Zheng, Y.M.; Ho, W.S. Effect of quercetin glucosides from Allium extracts on HepG2, PC-3, and HT-29 cancer cell lines. Oncol. Lett. 2018, 15, 4657–4661. [Google Scholar] [CrossRef]
- Choi, H.K.; Hwang, J.T.; Nam, T.G.; Kim, S.H.; Min, D.K.; Park, S.W.; Chung, M.Y. Welsh onion extract inhibits PCSK9 expression contributing to the maintenance of the LDLR level under lipid depletion conditions of HepG2 cells. Food Funct. 2017, 8, 4582–4591. [Google Scholar] [CrossRef]
- Sung, Y.Y.; Kim, D.S.; Kim, S.H.; Kim, H.K. Aqueous and ethanolic extracts of Welsh onion, Allium fistulosum, attenuate high-fat diet-induced obesity. BMC Complement Altern. Med. 2018, 18, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Meyers, K.J.; Van Der Heide, J.; Liu, R.H. Varietal differences in phenolic content and antioxidant and antiproliferative activities of onions. Agric. Food Chem. 2004, 52, 6787–6793. [Google Scholar] [CrossRef] [PubMed]
- Slimestad, R.; Fossen, T.; Vagen, I.M. Onions: A source of unique dietary flavonoids. Agric. Food Chem. 2007, 55, 10067–10080. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.S.; Huang, G.J.; Lu, Y.H.; Chang, L.W. Anti-inflammatory effects of an aqueous extract of Welsh onion green leaves in mice. Food Chem. 2013, 138, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.A.; Sultana, M.H.; Sazzad, M.A.; Islam, M.; Ahtashom, M.M. Analysis of proximate composition and energy values of two varieties of onion (Allium cepa L.) bulbs of different origin: A comparative study. Int. J. Food Sci. Nutr. 2013, 2, 246–253. [Google Scholar] [CrossRef]
- Sun, J.; Chu, Y.F.; Wu, X.; Liu, R.H. Antioxidant and antiproliferative activities of common fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef] [PubMed]
- Lazić, B.; Marković, V.; Đurovka, M.; Ilin, Ž. Vegetable; Faculty of Agriculture, University of Novi Sad: Novi Sad, Serbia, 1998; pp. 1–472. [Google Scholar]
- Vojnović, Đ.; Maksimović, I.; Tepić Horecki, A.; Karadžić Banjac, M.; Kovačević, S.; Daničić, T.; Podunavac-Kuzmanović, S.; Ilin, Ž. Onion (Allium cepa L.) Yield and quality depending on biostimulants and nitrogen fertilization—A Chemometric perspective. Processes 2023, 11, 684. [Google Scholar] [CrossRef]
- Yu, Z.; Shen, Z.; Xu, L.; Yu, J.; Zhang, L.; Wang, X.; Yin, G.; Zhang, W.; Li, Y.; Zuo, W. Effect of combined application of slow-release and conventional urea on yield and nitrogen use efficiency of rice and wheat under full straw return. J. Agron. 2022, 12, 998. [Google Scholar] [CrossRef]
- Simelane, M.P.Z.; Soundy, P.; Maboko, M.M. Effect of Calcium Cyanamide as an Alternative Nitrogen Source on Growth, Yield, and Nitrogen Use Efficiency of Short-Day Onion. Agronomy 2023, 13, 2746. [Google Scholar] [CrossRef]
- Lyu, Y.; Yang, X.; Pan, H.; Zhang, X.; Cao, H.; Ulgiati, S.; Wu, J.; Zhang, Y.; Wang, G.; Xiao, Y. Impact of fertilization schemes with different ratios of urea to controlled release nitrogen fertilizer on environmental sustainability, nitrogen use efficiency and economic benefit of rice production: A study case from Southwest China. J. Clean. Prod. 2021, 293, 126198. [Google Scholar] [CrossRef]
- Sapkota, A.; Sharma, M.D.; Giri, H.N.; Shrestha, B.; Panday, D. Effect of organic and inorganic sources of nitrogen on growth, yield, and quality of beetroot varieties in Nepal. Nitrogen 2021, 2, 378–391. [Google Scholar] [CrossRef]
- Asibi, A.E.; Chai, Q.A.; Coulter, J. Mechanisms of nitrogen use in maize. J. Agron. 2019, 9, 775. [Google Scholar] [CrossRef]
- Zecevic, V.; Knezevic, D.; Boskovic, J.; Micanovic, D.; Dozet, G. Effect of nitrogen fertilization on winter wheat quality. Cereal Res. Commun. 2010, 38, 243–249. [Google Scholar] [CrossRef]
- Ghada, F.M.; Horia, S.M. Impact of different fertilizers on some phytochemical constituents and biological activities of Beta vulgaris L. leaves. Int. J. Basic Appl. Sci. 2017, 6, 1. [Google Scholar]
- Makinde, E.A.; Ayeni, L.S.; Ojeniyi, S.O.; Odedina, J.N. Effect of organic, organomineral fertilizers and NPK fertilizer on nutritional quality of Amaranthus cruentus. J. Sci. Res. 2010, 2, 91–96. [Google Scholar]
- Jurgiel-Malecka, G.; Gibczynska, M.; Nawrocka-Pezik, M. Comparison of chemical composition of selected cultivars of white, yellow and red onions. Bulg. J. Agric. Sci. 2015, 21, 736–741. [Google Scholar]
- Barrales-Heredia, S.M.; Grimaldo-Juárez, O.; Suárez-Hernández, Á.M.; González-Vega, R.I.; Díaz-Ramírez, J.; García-López, A.M.; Soto-Ortiz, R.; González-Mendoza, D.; Iturralde García, R.D.; Dórame-Miranda, R.F. Effects of different irrigation regimes and nitrogen fertilization on the physicochemical and bioactive characteristics of onion (Allium cepa L.). Hortic. Res. 2023, 9, 344. [Google Scholar] [CrossRef]
- Kołota, E.; Adamczewska-Sowińska, K.; Uklańska-Pusz, C. Response of Japanese bunching onion (Allium fistulosum L.) to nitrogen fertilization. Acta Sci. Pol. Hortorum Cultus. 2013, 12, 51–61. [Google Scholar]
- Abdissa, Y.; Tekalign, T.; Pant, L.M. Growth, bulb yield and quality of onion (Allium cepa L.) as influenced by nitrogen and phosphorus fertilization on vertisol I. growth attributes, biomass production and bulb yield. Afr. J. Agric. Res. 2011, 6, 3252–3258. [Google Scholar]
- Mofunanya, A.A.J.; Ebigwai, J.K.; Bello, O.S.; Egbe, A.O.N. Comparative study of the effects of organic and inorganic fertilizer on nutritional composition of Amaranthus spinosus L. Asian J. Plant Sci. 2015, 14, 34–39. [Google Scholar] [CrossRef]
- Ren, F.; Zhou, S. Phenolic components and health beneficial properties of onions. J. Agric. 2021, 11, 872. [Google Scholar] [CrossRef]
- Elemike, E.E.; Uzoh, I.M.; Onwudiwe, D.C.; Babalola, O.O. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl. Sci. 2019, 9, 499. [Google Scholar] [CrossRef]
- Swify, S.; Avizienyte, D.; Mazeika, R.; Braziene, Z. Comparative study effect of urea-sulfur fertilizers on nitrogen uptake and maize productivity. Plants 2022, 11, 3020. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Y.; Sun, Y.; Li, Y.; Jiang, M.; Wang, C.; Zhao, J.; Sun, Y.; Xu, H.; Yan, F. Effects of slow-release urea on nitrogen utilization and yield in mechanically-transplanted rice under different nitrogen application rates. Chin. J. Rice Sci. 2017, 31, 50–64. [Google Scholar]
- Ahmadi, F.; Samadi, A.; Rahimi, A. Improving growth properties and phytochemical compounds of Echinacea purpurea (L.) medicinal plant using novel nitrogen slow release fertilizer under greenhouse conditions. Sci Rep. 2020, 10, 13842. [Google Scholar] [CrossRef]
- Chohura, P.; Kołota, E. Suitability of some nitrogen fertilizers for the cultivation of early cabbage. Int. Electron. J. Elem. Educ. 2014, 11, 661–672. [Google Scholar] [CrossRef]
- Huang, H.C.; Sun, S.K. Effects of S-H Mixture or Perlka on carpogenic germination and survival of sclerotia of Sclerotinia sclerotiorum. Soil Biol. Biochem. 1991, 23, 809–813. [Google Scholar]
- Dixon, G.R. Managing clubroot disease (caused by Plasmodiophora brassicae Wor.) by exploiting the interactions between calcium cyanamide fertilizer and soil microorganisms. J. Agric. Sci. 2017, 4, 527–543. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- Apak, R. Current issues in antioxidant measurement. J. Agric. Food Chem. 2019, 67, 9187–9202. [Google Scholar] [CrossRef]
- Amoo, S.O.; Aremu, A.; Moyo, M.; Van Staden, J. Antioxidant and acetylcholinesterase-inhibitory properties of long-term stored medicinal plants. BMC Complement. Altern. Med. 2012, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Amoo, S.; Ndhlala, A.; Finnie, J.; Van Staden, J. Antifungal, acetylcholinesterase inhibition, antioxidant and phytochemical properties of three Barleria species. S. Afr. J. Bot. 2011, 77, 435–445. [Google Scholar] [CrossRef]
- Amarowicz, R.; Karama, C.M.; Shahidi, F. Antioxidant activity of phenolic fractions of lentil (Lens culinaris). J. Food Lipids 2003, 10, 2268–2276. [Google Scholar] [CrossRef]
- Moyo, M.; Amoo, S.O.; Aremu, A.O.; Gruz, J.; Subrtova, M.; Jarosova, M.; Tarkowski, P.; Dolezal, K. Determination of mineral constituents, phytochemicals and antioxidant qualities of Cleome gynandra, compared to Brassica oleracea and Beta vulgaris. Front. Chem. 2018, 5, 128. [Google Scholar] [CrossRef] [PubMed]
- Aberoumand, A. Screening of plants phenols compounds commonly consumed in Iran. J. Microbiol. Biotechnol. Food Sci. 2011, 1, 164–172. [Google Scholar]
- Sabatino, L.; D’anna, F.; Prinzivalli, C.; Iapichino, G. Soil solarization and calcium cyanamide affect plant vigor, yield, nutritional traits, and nutraceutical compounds of strawberry grown in a protected cultivation system. J. Agron. 2019, 9, 513. [Google Scholar] [CrossRef]
- Mogren, L.M.; Olsson, M.E.; Gertsson, U.E. Quercetin content in field-cured onions (Allium cepa L.): Effects of cultivar, lifting time, and nitrogen fertilizer level. J. Agric. Food Chem. 2006, 54, 6185–6191. [Google Scholar] [CrossRef]
- Thor, K. Calcium-nutrient and messenger. Front. Plant Sci. 2019, 10, 440. [Google Scholar] [CrossRef]
- Treutter, D. Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints. Int. J. Mol. Sci. 2010, 11, 807–857. [Google Scholar] [CrossRef]
- Onyango, C.M.; Harbinson, J.; Imungi, J.K.; Onwonga, R.N.; Van Kooten, O. Effect of nitrogen source, crop maturity stage and storage conditions on phenolics and oxalate contents in vegetable amaranth (Amaranthus hypochondriacus). J. Agric. Sci. 2012, 4, 1916–9752. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 29, e47. [Google Scholar] [CrossRef]
- Matrella, M.L.; Valletti, A.; Marra, F.; Mallamaci, C.; Cocco, T.; Muscolo, A. Phytochemicals from Red Onion, Grown with Eco-Sustainable Fertilizers, Protect Mammalian Cells from Oxidative Stress, Increasing Their Viability Maria Laura. Molecules 2022, 27, 6365. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.H.; Jaafar, H.Z.; Rahmat, A.; Rahman, Z.A. Involvement of nitrogen on flavonoids, glutathione, anthocyanin, ascorbic acid and antioxidant activities of Malaysian medicinal plant Labisia pumila Blume (Kacip Fatimah). Int. J. Mol. Sci. 2012, 13, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, K.H.; Bast, G.; Berlin, J. Medium- and light-induced formation of serpentine and anthocyanins in cell suspension cultures of Catharanthus roseus. Phytochemistry 1982, 21, 591–594. [Google Scholar] [CrossRef]
- Smolen, S.; Sady, W. The effect of various nitrogen fertilization and foliar nutrition regimes on the concentrations of sugars, carotenoids and phenolic compounds in carrot (Daucus carota L.). Sci. Hortic. 2009, 120, 315–324. [Google Scholar] [CrossRef]
- Amal, B.; Mohamed, E.O.; Amal, K.; Abdelhakim, B.; Lhoussain, H.; Hassan, H.; Hamid, M. Characterization of the Biochemical Potential of Moroccan Onions (Allium cepa L.). Int. J. Food Sci. 2022, 10, 1155. [Google Scholar]
- Noureddine, B. Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Braz. Arch. Biol. Technol. 2005, 48, 753–759. [Google Scholar]
- Prakash, D.; Brahma, N.S.; Upadhyay, G. Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Int. J. Pharm. Sci. 1999, 8, 200–783. [Google Scholar] [CrossRef]
- Nuutila, A.M.; Riitta, P.P.; Marjukka, A.; Kirsimarja, O.C. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem. 2003, 81, 485–493. [Google Scholar] [CrossRef]
- Amerian, M. The Effect of nitrogenous fertilizers on antimicrobial activity and some physiological characteristics of onion (Allium cepa L.). J. Plant Ecol. 2018, 12, 107–122. [Google Scholar]
- Rigueira, G.D.J.; Bandeira, A.V.M.; Chagas, C.G.O.; Milagres, R.C.R.M. Atividade antioxidante e teor de fenólicos em couve-manteiga (Brassica oleracea L. var. acephala) submetida a diferentes sistemas de cultivo e métodos de preparo. Semin. Ciênc. Biol. Saúde. 2017, 37, 3–12. [Google Scholar] [CrossRef]
- El-Mergawi, R.A.; Al-Redhaiman, K.N.; Abouziena, H.F. Comparison of antioxidant activity and antioxidant components in lettuce, onion and tomato obtained with different levels and forms of nitrogen fertilization. J. Agric. Sci. Technol. 2014, 4, 597–604. [Google Scholar]
- Ross, D.S.; Quirine, K. Recommended methods for determining soil cation exchange capacity. Recomm. Soil Test. Proced. Northeast. United States 1995, 101, 62–69. [Google Scholar]
- Edet, A.; Eseyin, O.; Aniebiet, E. Anti-nutrient composition and mineral analysis of Allium cepa (onion) bulbs. Afr. J. Pharm. Pharmacol. 2015, 9, 456–459. [Google Scholar]
- Stagnari, F.; Di Bitetto, V.; Pisante, M. Effects of N fertilizers and rates on yield, safety and nutrients in processing spinach genotypes. J. Am. Soc. Hortic. Sci. 2007, 114, 225–233. [Google Scholar] [CrossRef]
- International Potash Institute (IPI). Nutrition and Health—The Importance of Potassium; International Potash Institute (IPI): Basel, Switzerland, 2013. [Google Scholar]
- Jacob, A.G.; Etong, D.I.; Tijjani, A. Proximate, mineral and anti-nutritional compositions of melon (Citrullus lanatus) seeds. Br. J. Res. 2015, 2, 142–151. [Google Scholar]
Fertilizer Source | Total Phenolics (mg GAE g−1) | Flavonoids (mg CE g−1) | Free Radical Scavenging Activity (%) | Antioxidant Activity (%) |
---|---|---|---|---|
Control | 2.530 ± 0.036 f | 0.315 ± 0.002 e | 17.14 ± 0.77 d | 18.57 ± 0.06 f |
LAN | 4.414 ± 0.006 e | 0.653 ±0.025 c | 21.73 ± 0.74 c | 37.47 ± 0.07 d |
Urea | 4.556 ± 0.011 d | 0.695 ± 0.003 b | 22.26 ± 1.60 c | 23.73 ± 0.16 e |
CaCN2 | 4.672 ± 0.069 c | 0.630± 0.010 d | 23.63 ± 1.53 bc | 48.63 ± 0.10 c |
CaCN2 + Urea | 5.484 ± 0.008 a | 0.741 ± 0.002 a | 24.53 ± 1.06 ab | 55.90 ± 0.10 b |
CaCN2 + LAN | 5.134 ± 0.080 b | 0.701 ± 0.002 b | 26.33 ± 0.32 a | 58.30 ± 0.03 a |
LSD 0.05 | 0.0885 | 0.02076 | 1.918 | 1.675 |
Nitrogen Fertilizer Source | Ca | Na | Mg | Mn | P | K | Cu | Fe | Zn |
---|---|---|---|---|---|---|---|---|---|
(mg 100 g−1 Dry Weight) | |||||||||
Control | 540.67 ± 5.51 d | 423.0 ± 1.2 | 92.9 ± 2.2 d | 1.17 ± 0.02 | 303.33 ± 2.08 | 1711 ± 48 e | 2.17 ± 0.01 | 5.98 ± 0.02 | 6.02 ± 0.05 |
Urea | 717.32 ± 30.29 c | 423.7 ± 0.5 | 119.3 ± 1.1 b | 1.18 ± 0.02 | 303.67 ± 1.53 | 1869 ± 43 d | 2.17 ± 0.02 | 6.01 ± 0.01 | 6.04 ± 0.01 |
LAN | 698.00 ± 24.25 c | 423.8 ± 1.1 | 119.1 ± 0.6 b | 1.19 ± 0.02 | 304.67 ± 1.51 | 1893 ± 32 cd | 2.17 ± 0.01 | 5.43 ± 0.01 | 6.05 ± 0.02 |
CaCN2 | 745.33 ± 5.03 bc | 423.9 ± 0.4 | 110.2 ± 2.2 c | 1.18 ± 0.01 | 303.00 ± 2.64 | 1935 ± 5 c | 2.17 ± 0.03 | 6.00 ± 0.01 | 6.05 ± 0.01 |
CaCN2 + Urea | 828.00 ± 17.09 a | 423.7 ± 0.4 | 122.3 ± 1.0 a | 1.19 ± 0.01 | 304.67 ± 1.52 | 2335 ± 22 a | 2.18 ± 0.01 | 6.30 ± 0.03 | 6.04 ± 0.01 |
CaCN2 + LAN | 792.00 ± 7.21 ab | 424.0 ± 0.2 | 123.3 ± 0.5 a | 1.19 ± 0.01 | 304.00 ± 1.00 | 2261 ± 54 b | 2.18 ± 0.01 | 6.03 ± 0.01 | 6.05 ± 0.01 |
LSD 0.05 | 33.95 | NS | 2.766 | NS | NS | 51.80 | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simelane, M.P.Z.; Soundy, P.; Amoo, S.O.; Maboko, M.M. Effects of Nitrogen Source on Mineral Element, Phytochemical Content, and Antioxidant Activity of Short-Day Onion (Allium cepa) Bulbs. Horticulturae 2024, 10, 10. https://doi.org/10.3390/horticulturae10010010
Simelane MPZ, Soundy P, Amoo SO, Maboko MM. Effects of Nitrogen Source on Mineral Element, Phytochemical Content, and Antioxidant Activity of Short-Day Onion (Allium cepa) Bulbs. Horticulturae. 2024; 10(1):10. https://doi.org/10.3390/horticulturae10010010
Chicago/Turabian StyleSimelane, Mzwakhile Petros Zakhe, Puffy Soundy, Stephen O. Amoo, and Martin Makgose Maboko. 2024. "Effects of Nitrogen Source on Mineral Element, Phytochemical Content, and Antioxidant Activity of Short-Day Onion (Allium cepa) Bulbs" Horticulturae 10, no. 1: 10. https://doi.org/10.3390/horticulturae10010010
APA StyleSimelane, M. P. Z., Soundy, P., Amoo, S. O., & Maboko, M. M. (2024). Effects of Nitrogen Source on Mineral Element, Phytochemical Content, and Antioxidant Activity of Short-Day Onion (Allium cepa) Bulbs. Horticulturae, 10(1), 10. https://doi.org/10.3390/horticulturae10010010