Quality Improvement of Zao Pepper by Inoculation with Lactobacillus plantarum 5-1: Probiotic Ability and Fermentation Characteristics of Lactic Acid Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Zao Pepper
2.2. Source and Culture of Strains
2.3. Isolation and Physiochemical Analysis of LAB
2.4. Sensory Evaluation of Zao Pepper
2.5. Probiotic Capacity and Safety Testing
2.5.1. Determination of Growth and Acidification Capacity
2.5.2. Determination of Antibiotic Sensitivity
2.5.3. Detection of Antibiotic Resistance Genes
2.5.4. Determination of Antimicrobial Activity
2.5.5. Determination of Auto-Aggregation Activity
2.5.6. Measure the Nitrite Reductase Activity
2.6. Analysis of Physicochemical Characteristics of Zao Pepper
2.6.1. Analysis of pH and TA of Zao Pepper
2.6.2. Analysis of the Nitrite Content of Zao Pepper
2.6.3. Analysis of the Color and Texture of Zao Pepper
2.7. Statistical Analysis
3. Results and Discussion
3.1. Strain Isolation and Identification
3.2. Sensory Evaluation of Zao Pepper
3.3. Probiotic Ability and Safety of LAB
3.3.1. Growth and Acid-Producing Capacity
3.3.2. Antibiotic Susceptibility Experiment
3.3.3. Antibacterial Activity
3.3.4. Auto-Aggregation Capability
3.3.5. Viability of Nitrite Reductase
3.4. Physicochemical Properties of Zao Pepper
3.5. Quality Changes of Zao Pepper
3.5.1. Color Analysis of Zao Pepper
3.5.2. Analysis of Texture Properties of Zao Pepper
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Wang, R.; Xiao, Q.; Liu, C.; Deng, F.; Zhou, H. SPME/GC-MS characterization of volatile compounds of Chinese traditional-chopped pepper during fermentation. Int. J. Food Prop. 2019, 22, 1863–1872. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.Y.; Jang, D.-J.; Yang, H.J.; Chung, K.R. History of Korean gochu, gochujang, and kimchi. J. Ethn. Foods 2014, 1, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.N.; Singhal, R.S. 3—Fermented Fruits and Vegetables. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Sanromán, M.Á., Du, G., Soccol, C.R., Dussap, C.-G., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 45–89. [Google Scholar]
- Chen, Z.; Geng, Y.; Wang, M.; Lv, D.; Huang, S.; Guan, Y.; Hu, Y. Relationship between microbial community and flavor profile during the fermentation of chopped red chili (Capsicum annuum L.). Food Biosci. 2022, 50, 102071. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Jiang, L.; Deng, F. Determination of fungal community diversity in fresh and traditional Chinese fermented pepper by pyrosequencing. FEMS Microbiol. Lett. 2016, 363, fnw273. [Google Scholar] [CrossRef] [PubMed]
- Lobo, A.; Zúñiga, C.; Worobo, R.W.; Padilla-Zakour, O.I.; Usaga, J. Fate of Spoilage and Pathogenic Microorganisms in Acidified Cold-Filled Hot Pepper Sauces. J. Food Prot. 2019, 82, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wu, J.; Chen, X.; Huang, L.; Zhang, X.; Gao, X. The Role of the Bacterial Community in Producing a Peculiar Smell in Chinese Fermented Sour Soup. Microorganisms 2020, 8, 1270. [Google Scholar] [CrossRef] [PubMed]
- Antunes, P.; Novais, C.; Peixe, L. Food-to-Humans Bacterial Transmission. Microbiol. Spectr. 2020, 8, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Chen, J.; Chen, L.; Hu, T.; Shi, L.; Wan, S.; Wang, M. Analysis and control of microbial gas production in fermented chili paste. J. Food Process. Pres. 2020, 44, e14806. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Xiao, Q.; Liu, C.; Jiang, L.; Deng, F.; Zhou, H. Analysis of bacterial diversity during fermentation of Chinese traditional fermented chopped pepper. Lett. Appl. Microbiol. 2019, 69, 346–352. [Google Scholar] [CrossRef]
- Hf, A.; Te, B.; Vs, C.; Mt, D.; Gt, E.; Tk, B.; Cm, E.; Sai, F.; Fz, G. Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria: Facts and gaps. Food Biosci. 2022, 47, 101741. [Google Scholar] [CrossRef]
- Rhee, S.J.; Lee, J.-E.; Lee, C.-H. Importance of lactic acid bacteria in Asian fermented foods. Microb. Cell Factories 2011, 10, S5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Hu, W.; Xiu, Z.; Jiang, A.; Feng, K. Comparison of northeast sauerkraut fermentation between single lactic acid bacteria strains and traditional fermentation. Food Res. Int. 2020, 137, 109553. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, H.; Ding, S.; Ye, M.; Jiang, L.; Wang, R. Changes in free amino acids of fermented minced peppers during natural and inoculated fermentation process based on HPLC-MS/MS. J. Food Sci. 2020, 85, 2803–2811. [Google Scholar] [CrossRef] [PubMed]
- Campedelli, I.; Mathur, H.; Salvetti, E.; Clarke, S.; Rea Mary, C.; Torriani, S.; Ross, R.P.; Hill, C.; O’Toole Paul, W. Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appl. Environ. Microbiol. 2018, 85, e01738-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Cui, X.; Gu, S.; Yan, X.; Li, R.; Xia, S.; Chen, H.; Ge, J. Antioxidative and Probiotic Activities of Lactic Acid Bacteria Isolated from Traditional Artisanal Milk Cheese from Northeast China. Probiotics Antimicrob. Proteins 2019, 11, 1086–1099. [Google Scholar] [CrossRef]
- Hu, Y.; Tian, Y.; Zhu, J.; Wen, R.; Chen, Q.; Kong, B. Technological characterization and flavor-producing potential of lactic acid bacteria isolated from traditional dry fermented sausages in northeast China. Food Microbiol. 2022, 106, 104059. [Google Scholar] [CrossRef]
- Kang, W.; Pan, L.; Peng, C.; Dong, L.; Cao, S.; Cheng, H.; Wang, Y.; Zhang, C.; Gu, R.; Wang, J.; et al. Isolation and characterization of lactic acid bacteria from human milk. J. Dairy Sci. 2020, 103, 9980–9991. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, J.; Zang, M.; Zhang, K.; Li, D.; Li, X. Flavor Profile Analysis of Instant and Traditional Lanzhou Beef Bouillons Using HS-SPME-GC/MS, Electronic Nose and Electronic Tongue. Bioengineering 2022, 9, 582. [Google Scholar] [CrossRef]
- Yang, E.; Fan, L.; Yan, J.; Jiang, Y.; Doucette, C.; Fillmore, S.; Walker, B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 2018, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Issaoui, K.E.; Khay, E.O.; Abrini, J.; Zinebi, S.; Amajoud, N.; Senhaji, N.S.; Abriouel, H. Molecular identification and antibiotic resistance of bacteriocinogenic lactic acid bacteria isolated from table olives. Arch. Microbiol. 2021, 203, 597–607. [Google Scholar] [CrossRef]
- M100-S24; Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement. Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2013.
- Das, P.; Khowala, S.; Biswas, S. In vitro probiotic characterization of Lactobacillus casei isolated from marine samples. LWT Food Sci. Technol. 2016, 73, 383–390. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Yang, H.; Bu, Y.; Yi, H.; Zhang, L.; Han, X.; Ai, L. Purification and Partial Characterization of Bacteriocin Lac-B23, a Novel Bacteriocin Production by Lactobacillus plantarum J23, Isolated From Chinese Traditional Fermented Milk. Front. Microbiol. 2018, 9, 2165. [Google Scholar] [CrossRef]
- Reuben, R.C.; Roy, P.C.; Sarkar, S.L.; Alam, A.; Jahid, I.K. Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties—ScienceDirect. J. Dairy Sci. 2020, 103, 1223–1237. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Bakyrbay, S.; Liu, L.; Tang, X.; Liu, Y. Microbiota Succession and Chemical Composition Involved in Lactic Acid Bacteria-Fermented Pickles. Fermentation 2023, 9, 330. [Google Scholar] [CrossRef]
- Yang, X.; Hu, W.; Jiang, A.; Xiu, Z.; Ji, Y.; Guan, Y.; Yang, X. Effect of salt concentration on quality of Chinese northeast sauerkraut fermented by Leuconostoc mesenteroides and Lactobacillus plantarum. Food Biosci. 2019, 30, 100421. [Google Scholar] [CrossRef]
- Cristea, E.; Ghendov-Mosanu, A.; Patras, A.; Socaciu, C.; Pintea, A.; Tudor, C.; Sturza, R. The Influence of Temperature, Storage Conditions, pH, and Ionic Strength on the Antioxidant Activity and Color Parameters of Rowan Berry Extracts. Molecules 2021, 26, 3786. [Google Scholar] [CrossRef]
- Lee, Y.; Wang, C. Morphological Change and Decreasing Transfer Rate of Biofilm-Featured Listeria monocytogenes EGDe. J. Food Prot. 2017, 80, 368–375. [Google Scholar] [CrossRef]
- An, Y.; Cai, X.; Cong, L.; Hu, Y.; Liu, R.; Xiong, S.; Hu, X. Quality Improvement of Zhayu, a Fermented Fish Product in China: Effects of Inoculated Fermentation with Three Kinds of Lactic Acid Bacteria. Foods 2022, 11, 2756. [Google Scholar] [CrossRef]
- Sauer, M.; Han, N.S. Lactic acid bacteria: Little helpers for many human tasks. Essays Biochem. 2021, 65, 163–171. [Google Scholar] [CrossRef]
- Wang, J.; Pu, Y.; Zeng, Y.; Chen, Y.; Zhao, W.; Niu, L.; Chen, B.; Yang, Z.; Wu, L.; Pan, K.; et al. Multi-functional Potential of Five Lactic Acid Bacteria Strains Derived from Giant Panda (Ailuropoda melanoleuca). Probiotics Antimicrob. Proteins 2022, 15, 668–681. [Google Scholar] [CrossRef]
- Mathur, S.; Singh, R. Antibiotic resistance in food lactic acid bacteria—A review. Int. J. Food Microbiol. 2005, 105, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Aquilanti, L.; Garofalo, C.; Osimani, A.; Silvestri, G.; Vignaroli, C.; Clementi, F. Isolation and Molecular Characterization of Antibiotic-Resistant Lactic Acid Bacteria from Poultry and Swine Meat Products. J. Food Prot. 2007, 70, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Ammor Mohammed, S.; Gueimonde, M.; Danielsen, M.; Zagorec, M.; van Hoek Angela, H.A.M.; de los Reyes-Gavilán Clara, G.; Mayo, B.; Margolles, A. Two Different Tetracycline Resistance Mechanisms, Plasmid-Carried tet(L) and Chromosomally Located Transposon-Associated tet(M), Coexist in Lactobacillus sakei Rits 9. Appl. Environ. Microb. 2008, 74, 1394–1401. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, Y.; Li, A.; Iqbal, M.; Zhang, L.; Pan, H.; Liu, Z.; Li, J. Probiotic potential and safety assessment of Lactobacillus isolated from yaks. Microb. Pathog. 2020, 145, 104213. [Google Scholar] [CrossRef] [PubMed]
- Kirtzalidou, E.; Pramateftaki, P.; Kotsou, M.; Kyriacou, A. Screening for lactobacilli with probiotic properties in the infant gut microbiota. Anaerobe 2011, 17, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Toxins in Fermented Foods: Prevalence and Preventions—A Mini Review. Toxins 2019, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Gálvez, A.; Abriouel, H.; López, R.L.; Omar, N.B. Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 2007, 120, 51–70. [Google Scholar] [CrossRef]
- Sornsenee, P.; Singkhamanan, K.; Sangkhathat, S.; Saengsuwan, P.; Romyasamit, C. Probiotic Properties of Lactobacillus Species Isolated from Fermented Palm Sap in Thailand. Probiotics Antimicrob. Proteins 2021, 13, 957–969. [Google Scholar] [CrossRef]
- Motey, G.A.; Johansen, P.G.; Owusu-Kwarteng, J.; Ofori, L.A.; Obiri-Danso, K.; Siegumfeldt, H.; Larsen, N.; Jespersen, L. Probiotic potential of Saccharomyces cerevisiae and Kluyveromyces marxianus isolated from West African spontaneously fermented cereal and milk products. Yeast 2020, 37, 403–412. [Google Scholar] [CrossRef]
- Wei, W.; Hu, X.; Yang, S.; Wang, K.; Zeng, C.; Hou, Z.; Cui, H.; Liu, S.; Zhu, L. Denitrifying halophilic archaea derived from salt dominate the degradation of nitrite in salted radish during pickling. Food Res. Int. 2022, 152, 110906. [Google Scholar] [CrossRef]
- Ye, Z.; Shang, Z.; Zhang, S.; Li, M.; Zhang, X.; Ren, H.; Hu, X.; Yi, J. Dynamic analysis of flavor properties and microbial communities in Chinese pickled chili pepper (Capsicum frutescens L.): A typical industrial-scale natural fermentation process. Food Res. Int. 2022, 153, 110952. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hu, W.; Xiu, Z.; Jiang, A.; Yang, X.; Ji, Y.; Guan, Y.; Feng, K. Microbial dynamics and volatilome profiles during the fermentation of Chinese northeast sauerkraut by Leuconostoc mesenteroides ORC 2 and Lactobacillus plantarum HBUAS 51041 under different salt concentrations. Food Res. Int. 2020, 130, 108926. [Google Scholar] [CrossRef] [PubMed]
- Motey, G.A.; Owusu-Kwarteng, J.; Obiri-Danso, K.; Ofori, L.A.; Ellis, W.O.; Jespersen, L. In vitro properties of potential probiotic lactic acid bacteria originating from Ghanaian indigenous fermented milk products. World J. Microbiol. Biotechnol. 2021, 37, 52. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, P.; Xie, Y.; Wang, X. Co-fermentation with Lactobacillus curvatus LAB26 and Pediococcus pentosaceus SWU73571 for improving quality and safety of sour meat. Meat Sci. 2020, 170, 108240. [Google Scholar] [CrossRef] [PubMed]
- Fadda, S.; López, C.; Vignolo, G. Role of lactic acid bacteria during meat conditioning and fermentation: Peptides generated as sensorial and hygienic biomarkers. Meat Sci. 2010, 86, 66–79. [Google Scholar] [CrossRef]
- Petchpoung, K.; Soiklom, S.; Siri-anusornsak, W.; Khlangsap, N.; Tara, A.; Maneeboon, T. Predicting antioxidant activity of wood vinegar using color and spectrophotometric parameters. MethodsX 2020, 7, 100783. [Google Scholar] [CrossRef]
- Carbonell, J.V.; Piñaga, F.; Yusá, V.; Peña, J.L. The dehydration of paprika with ambient and heated air and the kinetics of colour degradation during storage. J. Food Eng. 1986, 5, 179–193. [Google Scholar] [CrossRef]
- Janiszewska-Turak, E.; Witrowa-Rajchert, D.; Rybak, K.; Rolof, J.; Pobiega, K.; Woźniak, Ł.; Gramza-Michałowska, A. The Influence of Lactic Acid Fermentation on Selected Properties of Pickled Red, Yellow, and Green Bell Peppers. Molecules 2022, 27, 8637. [Google Scholar] [CrossRef]
- Xu, H.; Chen, Y.; Ding, S.; Qin, Y.; Jiang, L.; Zhou, H.; Deng, F.; Wang, R. Changes in texture qualities and pectin characteristics of fermented minced pepper during natural and inoculated fermentation process. Int. J. Food Sci. Technol. 2021, 56, 6073–6085. [Google Scholar] [CrossRef]
- Clauss, M.; Tafin, U.F.; Bizzini, A.; Trampuz, A.; Ilchmann, T. Biofilm formation by staphylococci on fresh, fresh-frozen and processed human and bovine bone grafts. Eur. Cell Mater. 2013, 25, 159–166. [Google Scholar] [CrossRef]
Strains and Antibiotic Sensitivity | |||||||||
---|---|---|---|---|---|---|---|---|---|
Antibiotic Category | Antibiotic | Content (μg/mL) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Penicillins | Penicillin | 10 | S | S | S | S | R | S | S |
Amoxicillin | 10 | S | S | S | S | S | S | S | |
Ampicillin | 10 | S | S | S | S | S | S | S | |
Cephalosporins | Cephalexin | 30 | S | S | R | S | S | S | S |
Aminoglycosides | Kanamycin | 30 | R | I | R | R | R | R | R |
Neomycin | 30 | R | I | R | I | S | I | I | |
Gentamicin | 10 | I | I | I | S | S | S | I | |
Streptomycin | 300 | R | R | R | R | I | R | R | |
Tetracyclines | Tetracycline | 30 | I | I | S | S | S | S | S |
Phenylpropanol | Chloramphenicol | 30 | S | S | S | S | S | S | S |
Lincomamines | Clindamycin | 2 | S | S | I | S | S | S | S |
Macrolides | Erythromycin | 15 | S | S | S | S | S | S | S |
Sugar titanium | Vancomycin | 30 | R | R | R | R | R | R | R |
Lipopeptides | Rifampicin | 5 | S | S | S | S | S | S | S |
Fermented Time (Days) | Fermented Type | L* | a* | b* |
---|---|---|---|---|
5 | Spontaneous fermentation | 35.0 ± 1.67 | 21.52 ± 1.43 | 16.62 ± 3.06 |
10 | 31.51 ± 1.02 | 19.75 ± 0.798 | 11.00 ± 1.01 | |
15 | 30.32 ± 0.69 | 17.79 ± 2.34 | 9.20 ± 0.67 | |
20 | 29.81 ± 0.04 | 15.32 ± 0.16 | 8.35 ± 0.08 | |
25 | 32.74 ± 0.06 | 16.88 ± 0.46 | 12.10 ± 0.61 | |
30 | 29.99 ± 0.51 | 15.92 ± 0.85 | 8.49 ± 0.48 | |
5 | Inoculated fermentation | 35.78 ± 0.87 | 22.71 ± 0.82 | 17.24 ± 1.00 |
10 | 32.50 ± 0.01 * | 20.50 ± 0.25 | 12.89 ± 0.25 * | |
15 | 33.77 ± 0.02 ** | 25.44 ± 0.04 ** | 14.59 ± 0.02 ** | |
20 | 33.17 ± 0.16 ** | 23.04 ± 1.61 ** | 13.55 ± 0.37 ** | |
25 | 32.09 ± 0.09 | 19.54 ± 0.33 ** | 12.21 ± 0.13 | |
30 | 32.84 ± 0.37 ** | 22.17 ± 0.49 ** | 13.31 ± 0.58 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Wu, Y.; Li, C.; Zhang, L.; Tong, S.; Yuan, S. Quality Improvement of Zao Pepper by Inoculation with Lactobacillus plantarum 5-1: Probiotic Ability and Fermentation Characteristics of Lactic Acid Bacteria. Fermentation 2023, 9, 547. https://doi.org/10.3390/fermentation9060547
Cai Y, Wu Y, Li C, Zhang L, Tong S, Yuan S. Quality Improvement of Zao Pepper by Inoculation with Lactobacillus plantarum 5-1: Probiotic Ability and Fermentation Characteristics of Lactic Acid Bacteria. Fermentation. 2023; 9(6):547. https://doi.org/10.3390/fermentation9060547
Chicago/Turabian StyleCai, Yafei, Yongjun Wu, Cen Li, Lincheng Zhang, Shuoqiu Tong, and Shenglan Yuan. 2023. "Quality Improvement of Zao Pepper by Inoculation with Lactobacillus plantarum 5-1: Probiotic Ability and Fermentation Characteristics of Lactic Acid Bacteria" Fermentation 9, no. 6: 547. https://doi.org/10.3390/fermentation9060547
APA StyleCai, Y., Wu, Y., Li, C., Zhang, L., Tong, S., & Yuan, S. (2023). Quality Improvement of Zao Pepper by Inoculation with Lactobacillus plantarum 5-1: Probiotic Ability and Fermentation Characteristics of Lactic Acid Bacteria. Fermentation, 9(6), 547. https://doi.org/10.3390/fermentation9060547