Effects of Alfalfa Hay to Oat Hay Ratios on Chemical Composition, Fermentation Characteristics, and Fungal Communities during Aerobic Exposure of Fermented Total Mixed Ration
Abstract
:1. Introduction
2. Materials and Methods
2.1. FTMR Preparation
2.2. Aerobic Stability
2.3. Chemical, Fermentation, and Microbial Analyses
2.4. DNA Extraction, Amplification, and Sequencing
2.5. Bioinformatics Analysis
2.6. Statistical Analysis
3. Results
3.1. Effects of Alfalfa Hay to Oat Hay Ratios on Aerobic Stability during Aerobic Exposure of FTMR
3.2. Fermentation Characteristics of FTMR after Aerobic Exposure
3.3. Microbial Compositions of FTMR after Aerobic Exposure
3.4. Microbial Community of FTMR after Aerobic Exposure
3.5. Relationships between Fermentation Characteristics and Fungal Community
3.6. ITS Gene-Predicted Fungal Functional Profiles during Aerobic Exposure Stage of FTMR Analyzed by FUNGuild and PICRUST2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Ding, Z.T.; Usman, S.; Zhang, J.Y.; Chen, M.Y.; Guo, X.S. Metagenomics insights into the effects of lactic acid bacteria inoculation on the biological reduction of antibiotic resistance genes in alfalfa silage. J. Hazard. Mater. 2023, 443, 130329. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.J.; Wang, Y.; Wang, Z.J.; Ge, G.T.; Jia, Y.S.; Du, S. Effects of replacing alfalfa hay with oat hay in fermented total mixed ration on growth performance and rumen microbiota in lambs. Fermentation 2023, 9, 9. [Google Scholar] [CrossRef]
- Su, S.F.; Wang, L.W.; Fu, S.Y.; Zhao, J.; He, X.L.; Chen, Q.J.; Belobrajdic, D.P.; Yu, C.Z.; Liu, H.K.; Wu, H.Q.; et al. Effects of oat (Avena sativa L.) hay diet supplementation on the intestinal microbiome and metabolome of Small-tail Han sheep. Front. Microbiol. 2022, 13, 1032622. [Google Scholar] [CrossRef] [PubMed]
- Bauchop, T. The anaerobic fungi in rumen fibre digestion. Agric Environ. 1981, 6, 339–348. [Google Scholar] [CrossRef]
- Atasoglu, C.; Wallace, R.J. De novo synthesis of amino acids by the ruminal anaerobic fungi, piromyces communis and neocallimastix frontalis. FEMS Microbiol. Lett. 2002, 212, 243–247. [Google Scholar] [CrossRef]
- An, X.J.; Zhang, L.Y.; Luo, J.; Zhao, S.G.; Jiao, T. Effects of oat hay content in diets on nutrient metabolism and the rumen microflora in sheep. Animals 2022, 10, 2341. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Jin, W.; Mao, S. Isolation and characterization of ruminal yeast strain with probiotic potential and its effects on growth performance, nutrients digestibility, rumen fermentation and microbiota of Hu sheep. J. Fungi. 2022, 8, 1260. [Google Scholar] [CrossRef]
- Sun, Y.K.; Hou, T.Y.; Yu, Q.Y.; Zhang, C.R.; Zhang, Y.G.; Xu, L.J. Mixed oats and alfalfa improved the antioxidant activity of mutton and the performance of goats by affecting intestinal microbiota. Front. Microbiol. 2023, 13, 1056315. [Google Scholar] [CrossRef]
- Bharanidharan, R.; Lee, C.H.; Thirugnanasambantham, K.; Ibidhi, R.; Woo, Y.W.; Lee, H.G.; Kim, J.G.; Kim, K.H. Feeding systems and host breeds influence ruminal fermentation, methane production, microbial diversity and metagenomic gene abundance. Front. Microbiol. 2021, 12, 701081. [Google Scholar] [CrossRef]
- Beigh, Y.A.; Ganai, A.M.; Ahmad, H.A. Prospects of complete feed system in ruminant feeding: A review. Vet. World 2017, 10, 424–437. [Google Scholar] [CrossRef]
- Gao, R.; Luo, Y.; Xu, S.Y.; Wang, M.S.; Sun, Z.Q.; Wang, L.; Yu, Z. Effects of replacing ensiled-alfalfa with fresh-alfalfa on dynamic fermentation characteristics, chemical compositions, and protein fractions in fermented total mixed ration with different additives. Animals 2021, 11, 572. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, S.R.; Dong, Z.H.; Chen, L.; Shao, T. Partial substitution of whole-crop corn with bamboo shoot shell improves aerobic stability of total mixed ration silage without affecting in vitro digestibility. J. Anim. Physiol. Anim. Nutr. 2021, 105, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.X.; Wang, L.; Li, W.Q.; Xu, S.Y.; Bao, J.Z.; Deng, J.Z.; Wu, Z.; Yu, Z. Fermentation quality, in vitro digestibility, and aerobic stability of total mixed ration silage in response to varying proportion alfalfa silage. Animals 2022, 12, 1039. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Wang, H.L.; Ning, T.T.; Yang, F.Y.; Xu, C.C. Aerobic stability and effects of yeasts during deterioration of non-fermented and fermented total mixed ration with different moisture levels. Asian-Australas. J. Anim. Sci. 2015, 28, 816–826. [Google Scholar] [CrossRef]
- Chen, R.; Li, M.; Yang, J.S.; Chen, L.W.; Zi, X.J.; Zhou, H.L.; Tang, J. Exploring the effect of wilting on fermentation profiles and microbial community structure during ensiling and air exposure of king grass silage. Front. Microbiol. 2022, 13, 971426. [Google Scholar] [CrossRef]
- Liu, Y.C.; Li, Y.Y.; Lu, Q.; Sun, L.; Du, S.; Liu, T.Y.; Hou, M.L.; Ge, G.T.; Wang, Z.J.; Jia, Y.S. Effects of lactic acid bacteria additives on the quality, volatile chemicals and microbial community of leymus chinensis silage during aerobic exposure. Front. Microbiol. 2022, 13, 938153. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Muck, R.E. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol. Rev. 1996, 19, 53–68. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Z.; Na, R.S. Effects of different additives on fermentation quality and aerobic stability of Leymus chinensis silage. Grass Forage Sci. 2018, 73, 413–419. [Google Scholar] [CrossRef]
- Amaral, R.C.; Bernardes, T.F.; Siqueira, G.R.; Reis, R.A. Estabilidade aeróbia de silagens do capim-marandu submetidas a diferentes intensidades de compactação na ensilagem. Rev. Bras. De Zootec. 2008, 37, 977–983. [Google Scholar] [CrossRef]
- Ranjit, N.K.; Kung, L.I.M.I.N., Jr. The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 2000, 83, 526–535. [Google Scholar] [CrossRef]
- Haigh, P.M. A note on the relationship between oven and toluene determined dry matter concentrations in big-bale grass silages. Irish J. Agr. Food Res. 1995, 34, 189–191. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Methods of Analysis; Association of Official Analytical Chemists: Arlington, TX, USA, 1990. [Google Scholar]
- Li, M.; Zhang, L.D.; Zhang, Q.; Zi, X.J.; Lv, R.L.; Tang, J.; Zhou, H.L. Impacts of citric acid and malic acid on fermentation quality and bacterial community of cassava foliage silage. Front. Microbiol. 2020, 11, 595622. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- You, S.H.; Du, S.; Ge, G.T.; Wan, T.; Jia, Y.S. Microbial community and fermentation characteristics of native grass prepared without or with isolated lactic acid bacteria on the mongolian plateau. Front. Microbiol. 2021, 12, 731770. [Google Scholar] [CrossRef]
- Wang, C.; He, L.W.; Xing, Y.Q.; Zhou, W.; Yang, F.Y.; Chen, X.Y.; Zhang, Q. Fermentation quality and microbial community of alfalfa and stylo silage mixed with moringa oleifera leaves. Bioresourc. Technol. 2019, 284, 240–247. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- SAS, Inc. SAS OnlineDoc®, Version 9.1.3; SAS Inc.: Cary, NC, USA, 2007.
- Chen, L.; Guo, G.; Yuan, X.J.; Zhang, J.; Wen, A.Y.; Sun, X.H.; Shao, T. Effect of ensiling whole crop oat with lucerne in different ratios on fermentation quality, aerobic stability and in vitro digestibility on the Tibetan plateau. J. Anim. Physiol. Anim. Nutr. 2017, 101, 144–153. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Tan, Z.F.; Wu, G.F.; Wang, L.; Qin, G.Y.; Wang, Y.P.; Pang, H.L. Microbial community and fermentation characteristic of whole-crop wheat silage treated by lactic acid bacteria and Artemisia argyi during ensiling and aerobic exposure. Front. Microbiol. 2022, 13, 1004495. [Google Scholar] [CrossRef]
- Pitt, R.E.; Muck, R.E.; Pickering, N.B. A model of aerobic fungal growth in silage. Grass Forage Sci. 1991, 46, 301–312. [Google Scholar] [CrossRef]
- Salawu, M.B.; Adesogan, A.T.; Dewhurst, R.J. Milk production from dairy cows offered pea-wheat bi-crops containing different ratios of peas to wheat and harvested at two maturity stages. In Proceedings of the British Society of Animal Science; Cambridge University Press: Cambridge, UK, 2000; p. 149. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Taylor, C.C.; Lynch, M.P.; Neylon, J.M. The effect of treating alfalfa with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for lactating dairy cows. J. Dairy Sci. 2003, 86, 336–343. [Google Scholar] [CrossRef]
- Mu, L.; Xie, Z.; Hu, L.X.; Chen, G.H.; Zhang, Z.F. Cellulase interacts with Lactobacillus plantarum to affect chemical composition, bacterial communities, and aerobic stability in mixed silage of high-moisture amaranth and rice straw. Bioresour. Technol. 2020, 315, 123772. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.; Yang, S.; Ran, Q.F.; Yan, Y.H.; Wang, X.; Dandan, L.; Cai, Y.M.; Zhang, X.Q. The microbiome and metabolome of napier grass silages prepared with screened lactic acid bacteria during ensiling and aerobic exposure. J. Anim. Feed Sci. 2020, 269, 114673. [Google Scholar] [CrossRef]
- Parvin, S.; Nishino, N. Bacterial community associated with ensilage process of wilted guinea grass. J. Appl. Microbiol. 2009, 107, 2029–2036. [Google Scholar] [CrossRef] [PubMed]
- Mugabe, W.Z.; Shao, T.; Li, J.F.; Dong, Z.H.; Yuan, X.J. Effect of hexanoic acid, Lactobacillus plantarum and their combination on the aerobic stability of napier grass silage. J. Appl. Microbiol. 2020, 129, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Majlát, M.; Juráček, M.; Biro, D.; Šimko, M.; Gálik, B.; Rolinec, M.; Herkel, R. The effect of aerobic exposure on nutritive value and fermentation parameters of maize silage. JCEA 2016, 17, 335–345. [Google Scholar] [CrossRef]
- Larsen, S.U.; Hjort-Gregersen, K.; Vazifehkhoran, A.H.; Triolo, J.M. Co-ensiling of straw with sugar beet leaves increases the methane yield from straw. Bioresourc. Technol. 2017, 245, 106–115. [Google Scholar] [CrossRef]
- Bai, C.C.; Wang, C.; Sun, L.; Xu, H.W.; Jiang, Y.; Na, N.; Yin, G.M.; Liu, S.B.; Xue, Y.L. Dynamics of bacterial and fungal communities and metabolites during aerobic exposure in whole-plant corn silages with two different moisture levels. Front. Microbiol. 2021, 12, 663895. [Google Scholar] [CrossRef]
- Zhou, G.P.; Gao, S.J.; Chang, D.; Rees, R.M.; Cao, W.D. Using milk vetch (Astragalus sinicus L.) to promote rice straw decomposition by regulating enzyme activity and bacterial community. Bioresourc. Technol. 2021, 319, 124215. [Google Scholar] [CrossRef]
- Fleet, G. Spoilage yeasts. Crit. Rev. Biotechnol. 1992, 12, 1–44. [Google Scholar] [CrossRef]
- Brüning, D.; Gerlach, K.; Weiß, K.; Südekum, K.H. Effect of compaction, delayed sealing and aerobic exposure on forage choice and short-term intake of maize silage by goats. Grass Forage Sci. 2017, 73, 392–405. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of ensiling. Silage Sci. Technol. 2003, 42, 31–93. [Google Scholar] [CrossRef]
- Nussio, L.G.; Stronge, M.D. Silage production and utilization. In Proceedings of the XIV International Silage Conference, a Satellite Workshop of the XX International Grassland Congress, Belfast, Northern Ireland, July 2005; Wageningen Acad: Wageningen, The Netherlands; pp. 97–107. [Google Scholar] [CrossRef]
- Kleinschmit, D.H.; Schmidt, R.J.; Kung, L., Jr. The effects of various antifungal additives on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 2015, 88, 2130–2139. [Google Scholar] [CrossRef] [PubMed]
- Duniere, L.; Xu, S.W.; Long, J.; Elekwachi, C.; Wang, Y.X.; Turkington, K.; Forster, R.; McAllister, T.A. Bacterial and fungal core microbiomes associated with small grain silages during ensiling and aerobic spoilage. BMC Microbiol. 2017, 17, 50. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.Y.L.; Hu, Z.F.; Wei, M.L.; Yong, M.; Niu, H.X. Effects of inoculation of Lactiplantibacillus plantarum and Lentilactobacillus buchneri on fermentation quality, aerobic stability, and microbial community dynamics of wilted Leymus chinensis silage. Front. Microbiol. 2022, 13, 928731. [Google Scholar] [CrossRef]
- Chen, D.D.; Zheng, M.Y.; Zhou, Y.X.; Gao, L.; Zhou, W.; Wang, M.Y.; Zhu, Y.W.; Xu, W.J. Improving the quality of napier grass silage with pyroligneous acid: Fermentation, aerobic stability, and microbial communities. Front. Microbiol. 2022, 13, 1034198. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhao, L.; Xu, S.J., Jr.; Liu, Y.Z.; Liu, H.Y.; Cheng, G.D. Soil moisture effect on ba cterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. J. Appl. Microbiol. 2013, 114, 1054–1065. [Google Scholar] [CrossRef]
- He, M.Q.; Zhao, R.L. Outline of Basidiomycota. Encycl. Mycol. 2021, 1, 310–319. [Google Scholar] [CrossRef]
- Ali, N.; Wang, S.R.; Zhao, J.; Dong, Z.H.; Li, J.F.; Nazar, M.; Shao, T. Microbial diversity and fermentation profile of red clover silage inoculated with reconstituted indigenous and exogenous epiphytic microbiota. Bioresourc. Technol. 2020, 314, 123606. [Google Scholar] [CrossRef]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Collaborators, G.R.C.; Janssen, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef]
- Dolci, P.; Tabacco, E.; Cocolin, L.; Borreani, G. Microbial dynamics during aerobic exposure of corn silage stored under oxygen barrier or polyethylene films. Appl. Environ. Microbiol. 2011, 77, 7499–7507. [Google Scholar] [CrossRef]
- Storm, I.D.M.L.; Srensen, J.L.; Rasmussen, R.R.; Nielsen, K.F.; Thrane, U. Mycotoxins in silage. Stewart Postharvest Rev. 2008, 4, 1–12. [Google Scholar] [CrossRef]
- Hou, J.J.; Nishino, N. Bacterial and fungal microbiota of guinea grass silage shows various levels of acetic acid fermentation. Fermentation 2022, 8, 10. [Google Scholar] [CrossRef]
- Geiser, D.M.; Gueidan, C.; Miadlikowska, J.; Lutzoni, F.; Kauff, F.; Hofstetter, V.; Fraker, E.; Schoch, C.L.; Tibell, L.; Untereiner, W.A.; et al. Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 2006, 98, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.W.; Yang, J.L.; Qi, M.; Smiley, B.; Rutherford, W.; Wang, Y.X.; McAllister, T.A. Impact of saccharomyces cerevisiae and Lactobacillus buchneri on microbial communities during ensiling and aerobic spoilage of corn silage1. J. Anim. Sci. 2019, 97, 1273–1285. [Google Scholar] [CrossRef]
- Agarussi, M.C.N.; Pereira, O.G.; Pimentel, F.E.; Azevedo, C.F.; da Silva, V.P.; Silva, F.F.E. Microbiome of rehydrated corn and sorghum grain silages treated with microbial inoculants in different fermentation periods. Sci. Rep. 2022, 12, 16864. [Google Scholar] [CrossRef]
- Inglis, G.D.; Yanke, L.J.; Kawchuk, L.M.; McAllister, T.A. The influence of bacterial inoculants on the microbial ecology of aerobic spoilage of barley silage. Can J. Microbiol. 1999, 45, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Bhadana, B.; Chauhan, M. Bioethanol production using saccharomyces cerevisiae with different perspectives: Substrates, growth variables, inhibitor reduction and immobilization. Ferment Technol. 2016, 5, 2–5. [Google Scholar] [CrossRef]
- Du, G.L.; Zhang, G.L.; Shi, J.P.; Zhang, J.X.; Ma, Z.G.; Liu, X.C.; Yuan, C.Y.; Li, X.; Zhang, B.G. Keystone taxa Lactiplantibacillus and Lacticaseibacillus directly improve the ensiling performance and microflora profile in co-ensiling cabbage byproduct and rice straw. Microorganisms 2021, 9, 1099. [Google Scholar] [CrossRef]
- Sen, S.; Makkar, H.P.; Becker, K. Alfalfa saponins and their implication in animal nutrition. J. Agric. Food Chem. 1998, 46, 131–140. [Google Scholar] [CrossRef]
- Morón-Ríos, A.; Gómez-Cornelio, S.; Ortega-Morales, B.O.; De la Rosa-García, S.; Partida-Martínez, L.P.; Quintana, P.; Alayón-Gamboa, J.A.; Cappello-García, S.; González-Gómez, S. Interactions between abundant fungal species influence the fungal community assemblage on limestone. PLoS ONE 2017, 12, e0188443. [Google Scholar] [CrossRef]
- Su, W.F.; Jiang, Z.P.; Hao, L.H.; Li, W.T.; Gong, T.; Zhang, Y.; Du, S.; Wang, C.; Lu, Z.P.; Jin, M.L.; et al. Variations of soybean meal and corn mixed substrates in physicochemical characteristics and microbiota during two-stage solid-statefermentation. Front. Microbiol. 2021, 12, 688839. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Zhong, L.; Liu, Y.N.; Lu, J.; LaPointe, G.; Lu, F.; Lu, Z.X. Protective effects of Lactococcus lactis expressing alcohol dehydrogenase and acetaldehyde dehydrogenase on acute alcoholic liver injury in mice. J. Chme. Tecohnol. Biot. 2018, 93, 1502–1510. [Google Scholar] [CrossRef]
- Thomson, J.M.; Gaucher, E.A.; Burgan, M.F.; De Kee, D.W.; Li, T.; Aris, J.P.; Benner, S.A. Resurrecting ancestral alcohol dehydrogenases from yeast. Nat. Genet. 2005, 37, 630–635. [Google Scholar] [CrossRef] [PubMed]
Items | LO | MO | HO | SEM | p-Value |
---|---|---|---|---|---|
Ingredient (g/kg DM) | |||||
Oat hay | 200 | 300 | 400 | - | - |
Alfalfa hay | 400 | 300 | 200 | - | - |
Natural forage | 30 | 30 | 30 | - | - |
Corn stalk | 20 | 20 | 20 | - | - |
Corn | 220 | 200 | 180 | - | - |
Soybean meal | 90 | 110 | 130 | - | - |
Wheat bran | 20 | 20 | 20 | - | - |
Calcium hydrogen phosphate | 3 | 3 | 3 | - | - |
NaCl | 2 | 2 | 2 | - | - |
NaHCO3 | 5 | 5 | 5 | - | - |
Premix | 10 | 10 | 10 | - | - |
Chemical compositions | |||||
DM (g/kg FW) | 63.17 | 63.34 | 63.21 | 0.2528 | 0.9241 |
CP (g/kg DM) | 13.33 | 13.28 | 13.12 | 0.1107 | 0.7873 |
NDF (g/kg DM) | 43.20 c | 50.29 b | 55.30 a | 1.7237 | 0.0005 |
ADF (g/kg DM) | 29.53 | 31.83 | 33.77 | 0.8122 | 0.1191 |
Fermentation profile | |||||
pH | 4.55 | 4.52 | 4.49 | 0.0243 | 0.7547 |
Lactic acid (g/kg DM) | 10.28 | 9.86 | 9.69 | 0.2635 | 0.7329 |
Acetic acid (g/kg DM) | 1.15 a | 0.88 b | 0.76 b | 0.0651 | 0.0279 |
Propionic acid (g/kg DM) | 1.24 a | 0.63 c | 0.94 b | 0.0914 | 0.0055 |
Ammonia-N (g/kg DM) | 3.03 b | 2.65 b | 4.39 a | 0.2556 | 0.0001 |
Microbial counts | |||||
Lactic acid bacteria (Log10 cfu/g FM) | 5.90 b | 7.81 a | 5.91 b | 0.3183 | 0.0015 |
Aerobic bacteria (Log10 cfu/g FM) | 6.05 a | 4.48 b | 6.74 a | 0.3433 | 0.0009 |
Item | Treatment | Aerobic Exposure Days | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
AE3 | AE6 | AE9 | AE12 | T | D | D × T | |||
pH | LO | 4.79 Ac | 4.87 Ac | 5.15 Ab | 5.53 a | 0.086 | <0.001 | <0.001 | 0.996 |
MO | 4.64 Bd | 4.77 ABc | 5.02 ABb | 5.41 a | 0.086 | ||||
HO | 4.55 Cd | 4.73 Bc | 4.98 Bb | 5.35 a | 0.089 | ||||
NH3-N | LO | 3.48 bc | 3.06 Bc | 4.11 Bb | 5.60 a | 0.292 | <0.001 | <0.001 | 0.004 |
MO | 3.58 bc | 2.84 Bc | 4.35 Bb | 5.48 a | 0.300 | ||||
HO | 3.93 c | 4.89 Ab | 5.42 Aab | 5.89 a | 0.221 | ||||
LA | LO | 9.82 Aa | 8.30 b | 8.77 Ab | 7.36 Ab | 0.311 | <0.001 | <0.001 | 0.141 |
MO | 9.17 Ba | 8.54 b | 6.98 Bc | 6.29 ABd | 0.343 | ||||
HO | 9.06 Ba | 7.95 b | 7.09 Bbc | 6.19 Bc | 0.329 | ||||
AA | LO | 1.02 a | 0.92 Aa | 0.79 Aab | 0.67 Ab | 0.048 | <0.001 | <0.001 | 0.99 |
MO | 0.83 a | 0.78 Bb | 0.67 ABb | 0.51 ABc | 0.039 | ||||
HO | 0.74 a | 0.67 Cab | 0.59 Bb | 0.43 Bc | 0.037 | ||||
PA | LO | 1.21 Aa | 0.96 Aab | 0.85 Ab | 0.67 Ab | 0.066 | <0.001 | <0.001 | 0.057 |
MO | 0.57 Ba | 0.52 Cab | 0.52 Cab | 0.42 Bb | 0.071 | ||||
HO | 0.94 Aa | 0.78 Bb | 0.69 Bb | 0.48 Bc | 0.051 | ||||
BA | LO | 0.17 b | 0.32 Aa | 0.25 Bab | 0.32 a | 0.021 | 0.706 | <0.001 | 0.003 |
MO | 0.24 b | 0.19 Bb | 0.25 Bb | 0.42 a | 0.027 | ||||
HO | 0.23 b | 0.24 ABb | 0.29 Ab | 0.38 a | 0.019 | ||||
CP | LO | 13.48 Aa | 12.81 ab | 12.41 b | 11.53 c | 0.225 | 0.022 | <0.001 | 0.579 |
MO | 13.37 Aa | 12.95 a | 12.57 ab | 11.90 b | 0.185 | ||||
HO | 12.59 Ba | 12.78 a | 12.25 a | 11.25 b | 0.193 | ||||
ADF | LO | 29.62 B | 32.6 | 30.44 | 30.66 B | 0.601 | 0.005 | 0.089 | 0.209 |
MO | 33.97 Aa | 33.09 a | 30.66 b | 33.79 Aa | 0.462 | ||||
HO | 32.76 AB | 32.59 | 32.04 | 34.03 A | 0.368 | ||||
NDF | LO | 45.79 B | 46.88 B | 45.09 B | 46.74 C | 0.653 | <0.001 | 0.338 | 0.429 |
MO | 52.08 A | 50.08 A | 53.56 A | 52.46 B | 0.593 | ||||
HO | 55.34 A | 52.48 A | 53.2 A | 56.51 A | 0.766 |
Item | Treatment | Aerobic Exposure Days | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
AE3 | AE6 | AE9 | AE12 | T | D | D × T | |||
LAB cfu/g FM | LO | 6.29 Aab | 5.13 Bb | 5.38 Bab | 6.82 a | 0.271 | <0.001 | 0.124 | 0.008 |
MO | 7.48 Aa | 7.43 Aa | 6.85 Ab | 6.81 b | 0.112 | ||||
HO | 4.73 Bb | 6.24 ABa | 5.79 Bab | 6.53 a | 0.265 | ||||
AB cfu/g FM | LO | 6.82 | 7.22 A | 6.80 | 6.92 A | 0.077 | 0.006 | 0.056 | 0.054 |
MO | 6.46 | 6.94 AB | 7.12 | 7.14 A | 0.143 | ||||
HO | 6.27 b | 6.06 Bb | 7.05 a | 6.49 Bb | 0.119 | ||||
Yeast cfu/g FM | LO | 4.38 b | 5.2 Bb | 7.12 a | 7.06 a | 0.358 | 0.241 | <0.001 | 0.599 |
MO | 4.15 b | 6.15 ABa | 7.09 a | 7.13 a | 0.381 | ||||
HO | 4.54 b | 6.37 Aa | 7.64 a | 7.01 a | 0.382 |
Days | Treatment | Item | ||||
---|---|---|---|---|---|---|
ASVs | Shannon | Simpson | Chao1 | Coverage | ||
TE60 | HO | 98.33 c | 3.48 ab | 0.7667 | 99.1267 d | 0.999 |
MO | 139.67 bc | 3.13 b | 0.6367 | 142.8333 bcd | 0.999 | |
LO | 190.00 abc | 4.03 ab | 0.8167 | 192.8200 abcd | 0.999 | |
AE3 | HO | 176 abc | 3.88 ab | 0.7267 | 178.2500 abcd | 0.999 |
MO | 184.00 abc | 4.71 ab | 0.8900 | 188.1367 abcd | 0.999 | |
LO | 161.67 abc | 3.50 ab | 0.6900 | 165.0900 abcd | 0.999 | |
AE6 | HO | 104.33 c | 3.64 ab | 0.8167 | 106.9367 cd | 0.999 |
MO | 195.67 abc | 4.86 a | 0.8800 | 199.6600 abc | 0.999 | |
LO | 181.00 abc | 3.33 ab | 0.6533 | 182.7167 abcd | 0.999 | |
AE9 | HO | 103.33 c | 3.37 ab | 0.7467 | 104.7000 cd | 0.999 |
MO | 206.00 ab | 4.59 ab | 0.8633 | 207.5900 ab | 0.999 | |
LO | 186.00 abc | 4.45 ab | 0.8600 | 188.2333 abcd | 0.999 | |
AE12 | HO | 123.00 bc | 3.39 ab | 0.7033 | 127.3700 bcd | 0.999 |
MO | 244.67 a | 4.83 ab | 0.8733 | 249.3000 a | 0.999 | |
LO | 147.67 bc | 3.88 ab | 0.7567 | 148.2967 bcd | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Sun, L.; Wang, Z.; Ge, G.; Jia, Y.; Du, S. Effects of Alfalfa Hay to Oat Hay Ratios on Chemical Composition, Fermentation Characteristics, and Fungal Communities during Aerobic Exposure of Fermented Total Mixed Ration. Fermentation 2023, 9, 480. https://doi.org/10.3390/fermentation9050480
Liu M, Sun L, Wang Z, Ge G, Jia Y, Du S. Effects of Alfalfa Hay to Oat Hay Ratios on Chemical Composition, Fermentation Characteristics, and Fungal Communities during Aerobic Exposure of Fermented Total Mixed Ration. Fermentation. 2023; 9(5):480. https://doi.org/10.3390/fermentation9050480
Chicago/Turabian StyleLiu, Mingjian, Lin Sun, Zhijun Wang, Gentu Ge, Yushan Jia, and Shuai Du. 2023. "Effects of Alfalfa Hay to Oat Hay Ratios on Chemical Composition, Fermentation Characteristics, and Fungal Communities during Aerobic Exposure of Fermented Total Mixed Ration" Fermentation 9, no. 5: 480. https://doi.org/10.3390/fermentation9050480