The Potential of an Inexpensive Plant-Based Medium for Halal and Vegetarian Starter Culture Preparation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Effects of Soybean Powder Concentration and Sweet Potato Extract on the Growth of Lpb. plantarum TISTR 2075
2.3. Growth of LAB Strains in Plant-Based and MRS Media
2.4. Analysis of the Nutrient Composition of the Culture Media
2.5. Viability of LAB Strains from Frozen Stock Culture
2.6. Viability of LAB Strains on Slant Agar Stock Culture
2.7. Statistics
3. Results and Discussion
3.1. Effects of Soybean Powder and Sweet Potato Extract on the Growth of Lpb. plantarum TISTR 2075
3.2. Growth of LAB Strains in Plant-Based and MRS Media
3.3. Viability of LAB Strains from Frozen Stock Culture Using Different Media
3.4. Viability of LAB Strains on Slant Agar Stock Culture Using Different Media
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, H.; Takishima, T.; Kometani, T.; Yokogoshi, H. Psychological stress-reducing effect of chocolate enriched with gamma-aminobutyric acid (GABA) in humans: Assessment of stress using heart rate variability and salivary chromogranin A. Int. J. Food Sci. Nutr. 2009, 60 (Suppl. S5), 106–113. [Google Scholar] [CrossRef] [PubMed]
- Suwanmanon, K.; Hsieh, P.-C. Effect of γ-aminobutyric acid and nattokinase-enriched fermented beans on the blood pressure of spontaneously hypertensive and normotensive wistar-kyoto rats. J. Food Drug Anal. 2014, 22, 485–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woraprayote, W.; Malila, Y.; Sorapukdee, S.; Swetwiwathana, A.; Benjakul, S.; Visessanguan, W. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci. 2016, 120, 118–132. [Google Scholar] [CrossRef] [PubMed]
- De MAN, J.C.; Rogosa, M.; Sharpe, M.E. A Medium for the cultivation of Lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Hayek, S.A.; Shahbazi, A.; Awaisheh, S.S.; Shah, N.P.; Ibrahim, S.A. Sweet potatoes as a basic component in developing a medium for the cultivation of Lactobacilli. Biosci. Biotechnol. Biochem. 2013, 77, 2248–2254. [Google Scholar] [CrossRef] [Green Version]
- Mohanraj, R.; Sivasankar, S. Sweet potato (Ipomoea batatas [L.] Lam)—A valuable medicinal food: A review. J. Med. Food 2014, 17, 733–741. [Google Scholar] [CrossRef]
- Goldflus, F.; Ceccantini, M.; Santos, W. Amino acid content of soybean samples collected in different Brazilian states—Harvest 2003/2004. Braz. J. Poult. Sci. 2006, 8, 105–111. [Google Scholar] [CrossRef] [Green Version]
- O’Keefe, S.F.; Bianchi, L.; Sharman, J. Soybean Nutrition. SM J. Nutr. Metab. 2015, 1, 1006. [Google Scholar]
- Utami, T.; Cindarbhumi, A.; Khuangga, M.C.; Rahayu, E.S.; Cahyanto, M.N.; Nurfiyani, S.; Zulaichah, E. Preparation of indigenous lactic acid bacteria starter cultures for large scale production of fermented milk. Digit. Press Life Sci. 2020, 2, 00010. [Google Scholar] [CrossRef]
- Berner, D.; Viernstein, H. Effect of protective agents on the viability of Lactococcus lactis subjected to freeze-thawing and freeze-drying. Sci. Pharm. 2006, 74, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Novik, G.; Sidarenka, A.; Rakhuba, D.; Kolomiets, E. Cryopreservation of bifidobacteria and bacteriophages in belarusia collection 0f non-pathogenic microorganisms. J. Cult. Colect. 2009, 6, 76–84. [Google Scholar]
- Pathak, M.; Martirosyan, D. Optimization of an effective growth medium for culturing probiotic bacteria for applications in strict vegetarian food products. Funct. Foods Health Dis. 2012, 2, 369–378. [Google Scholar] [CrossRef]
- Pratiwi, R.D.; Zanjabila, S.; Fairuza, D.; Aminah, A.; Praharyawan, S.; Fuad, A.M. Evaluation of alternative components in growth media of Lactobacillus brevis for halal probiotic preparation. Ann. Bogor. 2020, 24, 11. [Google Scholar] [CrossRef]
- Johnson, A.S.; Holliday, D.L.; Mubarak-Assad, K. Impact of baking time and temperature on nutrient content and sensory quality of sweet potatoes. J. Culin. Sci. Technol. 2016, 14, 13–21. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Latimer, G.W. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Dako, E.; Retta, N.; Desse, G. Comparison of three sweet potato (Ipomoea batatas (L.) Lam) varieties on nutritional and anti-nutritional factors. Glob. J. Sci. Front. Res. 2016, 16, 63–72. [Google Scholar]
- Rose, I.; Vasanthakaalam, H. Comparison of the nutrient composition of four sweet potato varieties cultivated in Rwanda. Am. J. Food Nutr. 2011, 1, 34–38. [Google Scholar] [CrossRef]
- Owusu Mensah, E.; Oduro, I. Cooking treatment effects on sugar profile and sweetness of eleven-released sweet Potato aarieties. J. Food Process. Technol. 2016, 07. [Google Scholar] [CrossRef]
- Ojimelukwe, P.C.; Ukom, A.N.; Kalu, O.O. Contribution of planting space and harvesting period on the nutrient compositions of some OFSP sweet potato varieties grown in Southeast Nigeria Ultisol. J. Nutr. 2018, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Uthayasooriyan, M.; Pathmanathan, S.; Ravimannan, N.; Sathyaruban, S. Formulation of alternative culture media for bacterial and fungal growth. Pharm. Lett. 2016, 8, 431–436. [Google Scholar]
- Cheng, F.; Chen, H.; Lei, N.; Zhang, M.; Wan, H. Effects of carbon and nitrogen sources on activity of cell envelope proteinase produced by LP69. Acta Univ. Cibiniensis Ser. E Food Technol. 2019, 23, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Andreevskaya, M.; Johansson, P.; Jääskeläinen, E.; Rämö, T.; Ritari, J.; Paulin, L.; Björkroth, J.; Auvinen, P. Lactobacillus oligofermentans glucose, ribose and xylose transcriptomes show higher similarity between glucose and xylose catabolism-induced responses in the early exponential growth phase. BMC Genom. 2016, 17, 539. [Google Scholar] [CrossRef] [Green Version]
- Chooklin, S.; Kaewsichan, L.; Kaewsrichan, J. Potential use of Lactobacillus casei TISTR 1500 for the bioconversion from palmyra sap and oil palm sap to lactic acid. Electron. J. Biotechnol. 2011, 14, 10. [Google Scholar]
- Mohseni, J.; Fazeli, M.; Lavasani, A.S. Effect of various parameters of carbon and nitrogen sources and environmental conditions on the growth of Lactobacillus casei in the production of lactic acid. J. Med. Res. 2017, 16, 66–73. [Google Scholar]
- Watson, D.; O’Connell Motherway, M.; Schoterman, M.H.C.; van Neerven, R.J.J.; Nauta, A.; van Sinderen, D. selective carbohydrate utilization by Lactobacilli and Bifidobacteria. J. Appl. Microbiol. 2013, 114, 1132–1146. [Google Scholar] [CrossRef] [PubMed]
- Gubelt, A.; Blaschke, L.; Hahn, T.; Rupp, S.; Hirth, T.; Zibek, S. Comparison of different lactobacilli regarding substrate utilization and their tolerance towards lignocellulose degradation products. Curr. Microbiol. 2020, 77, 3136–3146. [Google Scholar] [CrossRef]
- Miloud, B.; Halima, Z.-K.; Nour-Eddine, K. Development of a sweet whey-based medium for culture of Lactobacillus. Afr. J. Biotechnol. 2017, 16, 1630–1637. [Google Scholar] [CrossRef] [Green Version]
- Das, A.J.; Das, M.J.; Miyaji, T.; Deka, S.C. Growth and metabolic characterization of four lactic acid bacteria species isolated from rice beer prepared in Assam, India. Access Microbiol. 2019, 1, e000028. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Song, Z.; Shan, C.; Zhu, R.; Liu, F. Development of a simple, low-cost and eurytopic medium based on Pleurotus eryngii for lactic acid bacteria. AMB Express 2016, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Annous, B.A.; Kozempel, M.F.; Kurantz, M.J. Changes in membrane fatty acid composition of Pediococcus Sp. Strain NRRL B-2354 in response to growth conditions and its effect on thermal resistance. Appl. Environ. Microbiol. 1999, 65, 2857–2862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, A.S.; Silva, J.; Ho, P.; Teixeira, P.; Malcata, F.X.; Gibbs, P. Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus Delbrueckii Ssp. Bulgaricus. Biotechnol. Prog. 2004, 20, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Barach, J.T.; Adams, D.M.; Speck, M.L. Stabilization of a psychrotrophic Pseudomonas protease by calcium against thermal inactivation in milk at ultrahigh temperature. Appl. Environ. Microbiol. 1976, 31, 875–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Incubation Time (h). | log CFU/mL | ||||
---|---|---|---|---|---|
MRS | SPE 0 g/L | SPE 10 g/L | SPE 20 g/L | SPE 30 g/L | |
0 | 5.46 ± 0.47 a | 5.36 ± 0.01 a | 5.30 ± 0.39 a | 5.41 ± 0.14 a | 5.59 ± 0.28 a |
12 | 8.55 ± 0.58 a | 8.34 ± 0.08 a | 8.75 ± 0.41 a | 8.46 ± 0.29 a | 8.67 ± 0.34 a |
24 | 9.24 ± 0.11 b | 8.82 ± 0.26 a | 9.06 ±0.07 ab | 8.92 ±0.12 ab | 8.83 ± 0.22 a |
36 | 9.30 ± 0.10 b | 8.98 ± 0.15 a | 9.12 ±0.04 ab | 9.04 ±0.14 ab | 8.90 ± 0.21 a |
48 | 9.05 ± 0.14 a | 9.03 ± 0.18 a | 8.94 ± 0.16 a | 8.99 ± 0.18 a | 8.83 ± 0.14 a |
Media | Specific Growth Rate (µ) |
---|---|
MRS | 0.036 ± 0.002 ab |
SPE 0 g/L | 0.040 ± 0.000 b |
SPE 10 g/L | 0.040± 0.001 b |
SPE 20 g/L | 0.033 ± 0.001 a |
SPE 30 g/L | 0.035 ± 0.000 a |
Media | Total Carbohydrate (g/L) | Total Protein (g/L) |
---|---|---|
Sweet potato extract | 32.72 ± 0.03 b | 1.87 ± 0.01 a |
Plant-based | 38.21 ± 0.03 c | 4.58 ± 0.02 b |
MRS | 17.58 ± 0.00 a | 12.87 ± 0.00 c |
Media | Total Sugar (g/100 g) | Nitrogen (g/100 g) | Sugar/Nitrogen Ratio | C/N Ratio |
---|---|---|---|---|
Plant-based | Sucrose 0.91 | 0.05 | 55.8 | 23.51 |
Maltose 1.88 | ||||
Total 2.79 | ||||
MRS | Dextrose (glucose) 2.00 g/100 mL (Stated in the product composition) | 0.37 | 5.41 | 2.16 |
Medium | Composition | Composition Cost per 100 g (USD/100 g) | Amount (g/L) | Cost (USD) | Total Cost (USD) | |
---|---|---|---|---|---|---|
Plant-based | Sweet potato | 0.21 | 260 1 | 0.55 | 0.56 | |
Peeled split soybean | 0.14 | 10 | 0.01 | |||
MRS | Proteose peptone | 34.10 | 10.000 | 3.41 | 10.14 | |
Beef extract | 29.36 | 10.000 | 2.94 | |||
Yeast Extract | 24.50 | 5.000 | 1.23 | |||
Dextrose | 4.90 | 20.000 | 0.98 | |||
Tween 80 | 10.84 | 1.000 | 0.11 | |||
Ammonium citrate | 5.46 | 2.000 | 0.11 | |||
Sodium acetate | 24.20 | 5.000 | 1.21 | |||
Magnesium sulphate | 6.40 | 0.100 | 0.01 | |||
Manganese sulphate | 39.00 | 0.050 | 0.02 | |||
Dipotassium hydrogen phosphate | 5.76 | 2.000 | 0.12 | |||
MRS broth powder | 23.59 | 55.15 | 13.01 | 13.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayu, B.T.; Chamnipa, N.; Apiraksakorn, J. The Potential of an Inexpensive Plant-Based Medium for Halal and Vegetarian Starter Culture Preparation. Fermentation 2023, 9, 216. https://doi.org/10.3390/fermentation9030216
Ayu BT, Chamnipa N, Apiraksakorn J. The Potential of an Inexpensive Plant-Based Medium for Halal and Vegetarian Starter Culture Preparation. Fermentation. 2023; 9(3):216. https://doi.org/10.3390/fermentation9030216
Chicago/Turabian StyleAyu, Bella Tiara, Nuttaporn Chamnipa, and Jirawan Apiraksakorn. 2023. "The Potential of an Inexpensive Plant-Based Medium for Halal and Vegetarian Starter Culture Preparation" Fermentation 9, no. 3: 216. https://doi.org/10.3390/fermentation9030216
APA StyleAyu, B. T., Chamnipa, N., & Apiraksakorn, J. (2023). The Potential of an Inexpensive Plant-Based Medium for Halal and Vegetarian Starter Culture Preparation. Fermentation, 9(3), 216. https://doi.org/10.3390/fermentation9030216